Linux Kernel  3.7.1
 All Data Structures Namespaces Files Functions Variables Typedefs Enumerations Enumerator Macros Groups Pages
skge.c
Go to the documentation of this file.
1 /*
2  * New driver for Marvell Yukon chipset and SysKonnect Gigabit
3  * Ethernet adapters. Based on earlier sk98lin, e100 and
4  * FreeBSD if_sk drivers.
5  *
6  * This driver intentionally does not support all the features
7  * of the original driver such as link fail-over and link management because
8  * those should be done at higher levels.
9  *
10  * Copyright (C) 2004, 2005 Stephen Hemminger <[email protected]>
11  *
12  * This program is free software; you can redistribute it and/or modify
13  * it under the terms of the GNU General Public License as published by
14  * the Free Software Foundation; either version 2 of the License.
15  *
16  * This program is distributed in the hope that it will be useful,
17  * but WITHOUT ANY WARRANTY; without even the implied warranty of
18  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
19  * GNU General Public License for more details.
20  *
21  * You should have received a copy of the GNU General Public License
22  * along with this program; if not, write to the Free Software
23  * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
24  */
25 
26 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
27 
28 #include <linux/in.h>
29 #include <linux/kernel.h>
30 #include <linux/module.h>
31 #include <linux/moduleparam.h>
32 #include <linux/netdevice.h>
33 #include <linux/etherdevice.h>
34 #include <linux/ethtool.h>
35 #include <linux/pci.h>
36 #include <linux/if_vlan.h>
37 #include <linux/ip.h>
38 #include <linux/delay.h>
39 #include <linux/crc32.h>
40 #include <linux/dma-mapping.h>
41 #include <linux/debugfs.h>
42 #include <linux/sched.h>
43 #include <linux/seq_file.h>
44 #include <linux/mii.h>
45 #include <linux/slab.h>
46 #include <linux/dmi.h>
47 #include <linux/prefetch.h>
48 #include <asm/irq.h>
49 
50 #include "skge.h"
51 
52 #define DRV_NAME "skge"
53 #define DRV_VERSION "1.14"
54 
55 #define DEFAULT_TX_RING_SIZE 128
56 #define DEFAULT_RX_RING_SIZE 512
57 #define MAX_TX_RING_SIZE 1024
58 #define TX_LOW_WATER (MAX_SKB_FRAGS + 1)
59 #define MAX_RX_RING_SIZE 4096
60 #define RX_COPY_THRESHOLD 128
61 #define RX_BUF_SIZE 1536
62 #define PHY_RETRIES 1000
63 #define ETH_JUMBO_MTU 9000
64 #define TX_WATCHDOG (5 * HZ)
65 #define NAPI_WEIGHT 64
66 #define BLINK_MS 250
67 #define LINK_HZ HZ
68 
69 #define SKGE_EEPROM_MAGIC 0x9933aabb
70 
71 
72 MODULE_DESCRIPTION("SysKonnect Gigabit Ethernet driver");
73 MODULE_AUTHOR("Stephen Hemminger <[email protected]>");
74 MODULE_LICENSE("GPL");
76 
77 static const u32 default_msg = (NETIF_MSG_DRV | NETIF_MSG_PROBE |
80 
81 static int debug = -1; /* defaults above */
82 module_param(debug, int, 0);
83 MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)");
84 
85 static DEFINE_PCI_DEVICE_TABLE(skge_id_table) = {
86  { PCI_DEVICE(PCI_VENDOR_ID_3COM, 0x1700) }, /* 3Com 3C940 */
87  { PCI_DEVICE(PCI_VENDOR_ID_3COM, 0x80EB) }, /* 3Com 3C940B */
88 #ifdef CONFIG_SKGE_GENESIS
89  { PCI_DEVICE(PCI_VENDOR_ID_SYSKONNECT, 0x4300) }, /* SK-9xx */
90 #endif
91  { PCI_DEVICE(PCI_VENDOR_ID_SYSKONNECT, 0x4320) }, /* SK-98xx V2.0 */
92  { PCI_DEVICE(PCI_VENDOR_ID_DLINK, 0x4b01) }, /* D-Link DGE-530T (rev.B) */
93  { PCI_DEVICE(PCI_VENDOR_ID_DLINK, 0x4c00) }, /* D-Link DGE-530T */
94  { PCI_DEVICE(PCI_VENDOR_ID_DLINK, 0x4302) }, /* D-Link DGE-530T Rev C1 */
95  { PCI_DEVICE(PCI_VENDOR_ID_MARVELL, 0x4320) }, /* Marvell Yukon 88E8001/8003/8010 */
96  { PCI_DEVICE(PCI_VENDOR_ID_MARVELL, 0x5005) }, /* Belkin */
97  { PCI_DEVICE(PCI_VENDOR_ID_CNET, 0x434E) }, /* CNet PowerG-2000 */
98  { PCI_DEVICE(PCI_VENDOR_ID_LINKSYS, 0x1064) }, /* Linksys EG1064 v2 */
99  { PCI_VENDOR_ID_LINKSYS, 0x1032, PCI_ANY_ID, 0x0015 }, /* Linksys EG1032 v2 */
100  { 0 }
101 };
102 MODULE_DEVICE_TABLE(pci, skge_id_table);
103 
104 static int skge_up(struct net_device *dev);
105 static int skge_down(struct net_device *dev);
106 static void skge_phy_reset(struct skge_port *skge);
107 static void skge_tx_clean(struct net_device *dev);
108 static int xm_phy_write(struct skge_hw *hw, int port, u16 reg, u16 val);
109 static int gm_phy_write(struct skge_hw *hw, int port, u16 reg, u16 val);
110 static void genesis_get_stats(struct skge_port *skge, u64 *data);
111 static void yukon_get_stats(struct skge_port *skge, u64 *data);
112 static void yukon_init(struct skge_hw *hw, int port);
113 static void genesis_mac_init(struct skge_hw *hw, int port);
114 static void genesis_link_up(struct skge_port *skge);
115 static void skge_set_multicast(struct net_device *dev);
116 static irqreturn_t skge_intr(int irq, void *dev_id);
117 
118 /* Avoid conditionals by using array */
119 static const int txqaddr[] = { Q_XA1, Q_XA2 };
120 static const int rxqaddr[] = { Q_R1, Q_R2 };
121 static const u32 rxirqmask[] = { IS_R1_F, IS_R2_F };
122 static const u32 txirqmask[] = { IS_XA1_F, IS_XA2_F };
123 static const u32 napimask[] = { IS_R1_F|IS_XA1_F, IS_R2_F|IS_XA2_F };
124 static const u32 portmask[] = { IS_PORT_1, IS_PORT_2 };
125 
126 static inline bool is_genesis(const struct skge_hw *hw)
127 {
128 #ifdef CONFIG_SKGE_GENESIS
129  return hw->chip_id == CHIP_ID_GENESIS;
130 #else
131  return false;
132 #endif
133 }
134 
135 static int skge_get_regs_len(struct net_device *dev)
136 {
137  return 0x4000;
138 }
139 
140 /*
141  * Returns copy of whole control register region
142  * Note: skip RAM address register because accessing it will
143  * cause bus hangs!
144  */
145 static void skge_get_regs(struct net_device *dev, struct ethtool_regs *regs,
146  void *p)
147 {
148  const struct skge_port *skge = netdev_priv(dev);
149  const void __iomem *io = skge->hw->regs;
150 
151  regs->version = 1;
152  memset(p, 0, regs->len);
153  memcpy_fromio(p, io, B3_RAM_ADDR);
154 
156  regs->len - B3_RI_WTO_R1);
157 }
158 
159 /* Wake on Lan only supported on Yukon chips with rev 1 or above */
160 static u32 wol_supported(const struct skge_hw *hw)
161 {
162  if (is_genesis(hw))
163  return 0;
164 
165  if (hw->chip_id == CHIP_ID_YUKON && hw->chip_rev == 0)
166  return 0;
167 
168  return WAKE_MAGIC | WAKE_PHY;
169 }
170 
171 static void skge_wol_init(struct skge_port *skge)
172 {
173  struct skge_hw *hw = skge->hw;
174  int port = skge->port;
175  u16 ctrl;
176 
177  skge_write16(hw, B0_CTST, CS_RST_CLR);
178  skge_write16(hw, SK_REG(port, GMAC_LINK_CTRL), GMLC_RST_CLR);
179 
180  /* Turn on Vaux */
181  skge_write8(hw, B0_POWER_CTRL,
183 
184  /* WA code for COMA mode -- clear PHY reset */
185  if (hw->chip_id == CHIP_ID_YUKON_LITE &&
186  hw->chip_rev >= CHIP_REV_YU_LITE_A3) {
187  u32 reg = skge_read32(hw, B2_GP_IO);
188  reg |= GP_DIR_9;
189  reg &= ~GP_IO_9;
190  skge_write32(hw, B2_GP_IO, reg);
191  }
192 
193  skge_write32(hw, SK_REG(port, GPHY_CTRL),
194  GPC_DIS_SLEEP |
197 
198  skge_write32(hw, SK_REG(port, GPHY_CTRL),
199  GPC_DIS_SLEEP |
202 
203  skge_write32(hw, SK_REG(port, GMAC_CTRL), GMC_RST_CLR);
204 
205  /* Force to 10/100 skge_reset will re-enable on resume */
206  gm_phy_write(hw, port, PHY_MARV_AUNE_ADV,
209  /* no 1000 HD/FD */
210  gm_phy_write(hw, port, PHY_MARV_1000T_CTRL, 0);
211  gm_phy_write(hw, port, PHY_MARV_CTRL,
214 
215 
216  /* Set GMAC to no flow control and auto update for speed/duplex */
217  gma_write16(hw, port, GM_GP_CTRL,
220 
221  /* Set WOL address */
222  memcpy_toio(hw->regs + WOL_REGS(port, WOL_MAC_ADDR),
223  skge->netdev->dev_addr, ETH_ALEN);
224 
225  /* Turn on appropriate WOL control bits */
226  skge_write16(hw, WOL_REGS(port, WOL_CTRL_STAT), WOL_CTL_CLEAR_RESULT);
227  ctrl = 0;
228  if (skge->wol & WAKE_PHY)
230  else
232 
233  if (skge->wol & WAKE_MAGIC)
235  else
237 
239  skge_write16(hw, WOL_REGS(port, WOL_CTRL_STAT), ctrl);
240 
241  /* block receiver */
242  skge_write8(hw, SK_REG(port, RX_GMF_CTRL_T), GMF_RST_SET);
243 }
244 
245 static void skge_get_wol(struct net_device *dev, struct ethtool_wolinfo *wol)
246 {
247  struct skge_port *skge = netdev_priv(dev);
248 
249  wol->supported = wol_supported(skge->hw);
250  wol->wolopts = skge->wol;
251 }
252 
253 static int skge_set_wol(struct net_device *dev, struct ethtool_wolinfo *wol)
254 {
255  struct skge_port *skge = netdev_priv(dev);
256  struct skge_hw *hw = skge->hw;
257 
258  if ((wol->wolopts & ~wol_supported(hw)) ||
259  !device_can_wakeup(&hw->pdev->dev))
260  return -EOPNOTSUPP;
261 
262  skge->wol = wol->wolopts;
263 
264  device_set_wakeup_enable(&hw->pdev->dev, skge->wol);
265 
266  return 0;
267 }
268 
269 /* Determine supported/advertised modes based on hardware.
270  * Note: ethtool ADVERTISED_xxx == SUPPORTED_xxx
271  */
272 static u32 skge_supported_modes(const struct skge_hw *hw)
273 {
274  u32 supported;
275 
276  if (hw->copper) {
277  supported = (SUPPORTED_10baseT_Half |
284  SUPPORTED_TP);
285 
286  if (is_genesis(hw))
287  supported &= ~(SUPPORTED_10baseT_Half |
291 
292  else if (hw->chip_id == CHIP_ID_YUKON)
293  supported &= ~SUPPORTED_1000baseT_Half;
294  } else
295  supported = (SUPPORTED_1000baseT_Full |
299 
300  return supported;
301 }
302 
303 static int skge_get_settings(struct net_device *dev,
304  struct ethtool_cmd *ecmd)
305 {
306  struct skge_port *skge = netdev_priv(dev);
307  struct skge_hw *hw = skge->hw;
308 
309  ecmd->transceiver = XCVR_INTERNAL;
310  ecmd->supported = skge_supported_modes(hw);
311 
312  if (hw->copper) {
313  ecmd->port = PORT_TP;
314  ecmd->phy_address = hw->phy_addr;
315  } else
316  ecmd->port = PORT_FIBRE;
317 
318  ecmd->advertising = skge->advertising;
319  ecmd->autoneg = skge->autoneg;
320  ethtool_cmd_speed_set(ecmd, skge->speed);
321  ecmd->duplex = skge->duplex;
322  return 0;
323 }
324 
325 static int skge_set_settings(struct net_device *dev, struct ethtool_cmd *ecmd)
326 {
327  struct skge_port *skge = netdev_priv(dev);
328  const struct skge_hw *hw = skge->hw;
329  u32 supported = skge_supported_modes(hw);
330  int err = 0;
331 
332  if (ecmd->autoneg == AUTONEG_ENABLE) {
333  ecmd->advertising = supported;
334  skge->duplex = -1;
335  skge->speed = -1;
336  } else {
337  u32 setting;
338  u32 speed = ethtool_cmd_speed(ecmd);
339 
340  switch (speed) {
341  case SPEED_1000:
342  if (ecmd->duplex == DUPLEX_FULL)
343  setting = SUPPORTED_1000baseT_Full;
344  else if (ecmd->duplex == DUPLEX_HALF)
345  setting = SUPPORTED_1000baseT_Half;
346  else
347  return -EINVAL;
348  break;
349  case SPEED_100:
350  if (ecmd->duplex == DUPLEX_FULL)
351  setting = SUPPORTED_100baseT_Full;
352  else if (ecmd->duplex == DUPLEX_HALF)
353  setting = SUPPORTED_100baseT_Half;
354  else
355  return -EINVAL;
356  break;
357 
358  case SPEED_10:
359  if (ecmd->duplex == DUPLEX_FULL)
360  setting = SUPPORTED_10baseT_Full;
361  else if (ecmd->duplex == DUPLEX_HALF)
362  setting = SUPPORTED_10baseT_Half;
363  else
364  return -EINVAL;
365  break;
366  default:
367  return -EINVAL;
368  }
369 
370  if ((setting & supported) == 0)
371  return -EINVAL;
372 
373  skge->speed = speed;
374  skge->duplex = ecmd->duplex;
375  }
376 
377  skge->autoneg = ecmd->autoneg;
378  skge->advertising = ecmd->advertising;
379 
380  if (netif_running(dev)) {
381  skge_down(dev);
382  err = skge_up(dev);
383  if (err) {
384  dev_close(dev);
385  return err;
386  }
387  }
388 
389  return 0;
390 }
391 
392 static void skge_get_drvinfo(struct net_device *dev,
393  struct ethtool_drvinfo *info)
394 {
395  struct skge_port *skge = netdev_priv(dev);
396 
397  strlcpy(info->driver, DRV_NAME, sizeof(info->driver));
398  strlcpy(info->version, DRV_VERSION, sizeof(info->version));
399  strlcpy(info->bus_info, pci_name(skge->hw->pdev),
400  sizeof(info->bus_info));
401 }
402 
403 static const struct skge_stat {
404  char name[ETH_GSTRING_LEN];
405  u16 xmac_offset;
406  u16 gma_offset;
407 } skge_stats[] = {
408  { "tx_bytes", XM_TXO_OK_HI, GM_TXO_OK_HI },
409  { "rx_bytes", XM_RXO_OK_HI, GM_RXO_OK_HI },
410 
411  { "tx_broadcast", XM_TXF_BC_OK, GM_TXF_BC_OK },
412  { "rx_broadcast", XM_RXF_BC_OK, GM_RXF_BC_OK },
413  { "tx_multicast", XM_TXF_MC_OK, GM_TXF_MC_OK },
414  { "rx_multicast", XM_RXF_MC_OK, GM_RXF_MC_OK },
415  { "tx_unicast", XM_TXF_UC_OK, GM_TXF_UC_OK },
416  { "rx_unicast", XM_RXF_UC_OK, GM_RXF_UC_OK },
417  { "tx_mac_pause", XM_TXF_MPAUSE, GM_TXF_MPAUSE },
418  { "rx_mac_pause", XM_RXF_MPAUSE, GM_RXF_MPAUSE },
419 
420  { "collisions", XM_TXF_SNG_COL, GM_TXF_SNG_COL },
421  { "multi_collisions", XM_TXF_MUL_COL, GM_TXF_MUL_COL },
422  { "aborted", XM_TXF_ABO_COL, GM_TXF_ABO_COL },
423  { "late_collision", XM_TXF_LAT_COL, GM_TXF_LAT_COL },
424  { "fifo_underrun", XM_TXE_FIFO_UR, GM_TXE_FIFO_UR },
425  { "fifo_overflow", XM_RXE_FIFO_OV, GM_RXE_FIFO_OV },
426 
427  { "rx_toolong", XM_RXF_LNG_ERR, GM_RXF_LNG_ERR },
428  { "rx_jabber", XM_RXF_JAB_PKT, GM_RXF_JAB_PKT },
429  { "rx_runt", XM_RXE_RUNT, GM_RXE_FRAG },
430  { "rx_too_long", XM_RXF_LNG_ERR, GM_RXF_LNG_ERR },
431  { "rx_fcs_error", XM_RXF_FCS_ERR, GM_RXF_FCS_ERR },
432 };
433 
434 static int skge_get_sset_count(struct net_device *dev, int sset)
435 {
436  switch (sset) {
437  case ETH_SS_STATS:
438  return ARRAY_SIZE(skge_stats);
439  default:
440  return -EOPNOTSUPP;
441  }
442 }
443 
444 static void skge_get_ethtool_stats(struct net_device *dev,
445  struct ethtool_stats *stats, u64 *data)
446 {
447  struct skge_port *skge = netdev_priv(dev);
448 
449  if (is_genesis(skge->hw))
450  genesis_get_stats(skge, data);
451  else
452  yukon_get_stats(skge, data);
453 }
454 
455 /* Use hardware MIB variables for critical path statistics and
456  * transmit feedback not reported at interrupt.
457  * Other errors are accounted for in interrupt handler.
458  */
459 static struct net_device_stats *skge_get_stats(struct net_device *dev)
460 {
461  struct skge_port *skge = netdev_priv(dev);
462  u64 data[ARRAY_SIZE(skge_stats)];
463 
464  if (is_genesis(skge->hw))
465  genesis_get_stats(skge, data);
466  else
467  yukon_get_stats(skge, data);
468 
469  dev->stats.tx_bytes = data[0];
470  dev->stats.rx_bytes = data[1];
471  dev->stats.tx_packets = data[2] + data[4] + data[6];
472  dev->stats.rx_packets = data[3] + data[5] + data[7];
473  dev->stats.multicast = data[3] + data[5];
474  dev->stats.collisions = data[10];
475  dev->stats.tx_aborted_errors = data[12];
476 
477  return &dev->stats;
478 }
479 
480 static void skge_get_strings(struct net_device *dev, u32 stringset, u8 *data)
481 {
482  int i;
483 
484  switch (stringset) {
485  case ETH_SS_STATS:
486  for (i = 0; i < ARRAY_SIZE(skge_stats); i++)
487  memcpy(data + i * ETH_GSTRING_LEN,
488  skge_stats[i].name, ETH_GSTRING_LEN);
489  break;
490  }
491 }
492 
493 static void skge_get_ring_param(struct net_device *dev,
494  struct ethtool_ringparam *p)
495 {
496  struct skge_port *skge = netdev_priv(dev);
497 
500 
501  p->rx_pending = skge->rx_ring.count;
502  p->tx_pending = skge->tx_ring.count;
503 }
504 
505 static int skge_set_ring_param(struct net_device *dev,
506  struct ethtool_ringparam *p)
507 {
508  struct skge_port *skge = netdev_priv(dev);
509  int err = 0;
510 
511  if (p->rx_pending == 0 || p->rx_pending > MAX_RX_RING_SIZE ||
513  return -EINVAL;
514 
515  skge->rx_ring.count = p->rx_pending;
516  skge->tx_ring.count = p->tx_pending;
517 
518  if (netif_running(dev)) {
519  skge_down(dev);
520  err = skge_up(dev);
521  if (err)
522  dev_close(dev);
523  }
524 
525  return err;
526 }
527 
528 static u32 skge_get_msglevel(struct net_device *netdev)
529 {
530  struct skge_port *skge = netdev_priv(netdev);
531  return skge->msg_enable;
532 }
533 
534 static void skge_set_msglevel(struct net_device *netdev, u32 value)
535 {
536  struct skge_port *skge = netdev_priv(netdev);
537  skge->msg_enable = value;
538 }
539 
540 static int skge_nway_reset(struct net_device *dev)
541 {
542  struct skge_port *skge = netdev_priv(dev);
543 
544  if (skge->autoneg != AUTONEG_ENABLE || !netif_running(dev))
545  return -EINVAL;
546 
547  skge_phy_reset(skge);
548  return 0;
549 }
550 
551 static void skge_get_pauseparam(struct net_device *dev,
552  struct ethtool_pauseparam *ecmd)
553 {
554  struct skge_port *skge = netdev_priv(dev);
555 
556  ecmd->rx_pause = ((skge->flow_control == FLOW_MODE_SYMMETRIC) ||
558  ecmd->tx_pause = (ecmd->rx_pause ||
559  (skge->flow_control == FLOW_MODE_LOC_SEND));
560 
561  ecmd->autoneg = ecmd->rx_pause || ecmd->tx_pause;
562 }
563 
564 static int skge_set_pauseparam(struct net_device *dev,
565  struct ethtool_pauseparam *ecmd)
566 {
567  struct skge_port *skge = netdev_priv(dev);
568  struct ethtool_pauseparam old;
569  int err = 0;
570 
571  skge_get_pauseparam(dev, &old);
572 
573  if (ecmd->autoneg != old.autoneg)
575  else {
576  if (ecmd->rx_pause && ecmd->tx_pause)
578  else if (ecmd->rx_pause && !ecmd->tx_pause)
580  else if (!ecmd->rx_pause && ecmd->tx_pause)
582  else
584  }
585 
586  if (netif_running(dev)) {
587  skge_down(dev);
588  err = skge_up(dev);
589  if (err) {
590  dev_close(dev);
591  return err;
592  }
593  }
594 
595  return 0;
596 }
597 
598 /* Chip internal frequency for clock calculations */
599 static inline u32 hwkhz(const struct skge_hw *hw)
600 {
601  return is_genesis(hw) ? 53125 : 78125;
602 }
603 
604 /* Chip HZ to microseconds */
605 static inline u32 skge_clk2usec(const struct skge_hw *hw, u32 ticks)
606 {
607  return (ticks * 1000) / hwkhz(hw);
608 }
609 
610 /* Microseconds to chip HZ */
611 static inline u32 skge_usecs2clk(const struct skge_hw *hw, u32 usec)
612 {
613  return hwkhz(hw) * usec / 1000;
614 }
615 
616 static int skge_get_coalesce(struct net_device *dev,
617  struct ethtool_coalesce *ecmd)
618 {
619  struct skge_port *skge = netdev_priv(dev);
620  struct skge_hw *hw = skge->hw;
621  int port = skge->port;
622 
623  ecmd->rx_coalesce_usecs = 0;
624  ecmd->tx_coalesce_usecs = 0;
625 
626  if (skge_read32(hw, B2_IRQM_CTRL) & TIM_START) {
627  u32 delay = skge_clk2usec(hw, skge_read32(hw, B2_IRQM_INI));
628  u32 msk = skge_read32(hw, B2_IRQM_MSK);
629 
630  if (msk & rxirqmask[port])
631  ecmd->rx_coalesce_usecs = delay;
632  if (msk & txirqmask[port])
633  ecmd->tx_coalesce_usecs = delay;
634  }
635 
636  return 0;
637 }
638 
639 /* Note: interrupt timer is per board, but can turn on/off per port */
640 static int skge_set_coalesce(struct net_device *dev,
641  struct ethtool_coalesce *ecmd)
642 {
643  struct skge_port *skge = netdev_priv(dev);
644  struct skge_hw *hw = skge->hw;
645  int port = skge->port;
646  u32 msk = skge_read32(hw, B2_IRQM_MSK);
647  u32 delay = 25;
648 
649  if (ecmd->rx_coalesce_usecs == 0)
650  msk &= ~rxirqmask[port];
651  else if (ecmd->rx_coalesce_usecs < 25 ||
652  ecmd->rx_coalesce_usecs > 33333)
653  return -EINVAL;
654  else {
655  msk |= rxirqmask[port];
656  delay = ecmd->rx_coalesce_usecs;
657  }
658 
659  if (ecmd->tx_coalesce_usecs == 0)
660  msk &= ~txirqmask[port];
661  else if (ecmd->tx_coalesce_usecs < 25 ||
662  ecmd->tx_coalesce_usecs > 33333)
663  return -EINVAL;
664  else {
665  msk |= txirqmask[port];
666  delay = min(delay, ecmd->rx_coalesce_usecs);
667  }
668 
669  skge_write32(hw, B2_IRQM_MSK, msk);
670  if (msk == 0)
671  skge_write32(hw, B2_IRQM_CTRL, TIM_STOP);
672  else {
673  skge_write32(hw, B2_IRQM_INI, skge_usecs2clk(hw, delay));
674  skge_write32(hw, B2_IRQM_CTRL, TIM_START);
675  }
676  return 0;
677 }
678 
680 static void skge_led(struct skge_port *skge, enum led_mode mode)
681 {
682  struct skge_hw *hw = skge->hw;
683  int port = skge->port;
684 
685  spin_lock_bh(&hw->phy_lock);
686  if (is_genesis(hw)) {
687  switch (mode) {
688  case LED_MODE_OFF:
689  if (hw->phy_type == SK_PHY_BCOM)
690  xm_phy_write(hw, port, PHY_BCOM_P_EXT_CTRL, PHY_B_PEC_LED_OFF);
691  else {
692  skge_write32(hw, SK_REG(port, TX_LED_VAL), 0);
693  skge_write8(hw, SK_REG(port, TX_LED_CTRL), LED_T_OFF);
694  }
695  skge_write8(hw, SK_REG(port, LNK_LED_REG), LINKLED_OFF);
696  skge_write32(hw, SK_REG(port, RX_LED_VAL), 0);
697  skge_write8(hw, SK_REG(port, RX_LED_CTRL), LED_T_OFF);
698  break;
699 
700  case LED_MODE_ON:
701  skge_write8(hw, SK_REG(port, LNK_LED_REG), LINKLED_ON);
702  skge_write8(hw, SK_REG(port, LNK_LED_REG), LINKLED_LINKSYNC_ON);
703 
704  skge_write8(hw, SK_REG(port, RX_LED_CTRL), LED_START);
705  skge_write8(hw, SK_REG(port, TX_LED_CTRL), LED_START);
706 
707  break;
708 
709  case LED_MODE_TST:
710  skge_write8(hw, SK_REG(port, RX_LED_TST), LED_T_ON);
711  skge_write32(hw, SK_REG(port, RX_LED_VAL), 100);
712  skge_write8(hw, SK_REG(port, RX_LED_CTRL), LED_START);
713 
714  if (hw->phy_type == SK_PHY_BCOM)
715  xm_phy_write(hw, port, PHY_BCOM_P_EXT_CTRL, PHY_B_PEC_LED_ON);
716  else {
717  skge_write8(hw, SK_REG(port, TX_LED_TST), LED_T_ON);
718  skge_write32(hw, SK_REG(port, TX_LED_VAL), 100);
719  skge_write8(hw, SK_REG(port, TX_LED_CTRL), LED_START);
720  }
721 
722  }
723  } else {
724  switch (mode) {
725  case LED_MODE_OFF:
726  gm_phy_write(hw, port, PHY_MARV_LED_CTRL, 0);
727  gm_phy_write(hw, port, PHY_MARV_LED_OVER,
733  break;
734  case LED_MODE_ON:
735  gm_phy_write(hw, port, PHY_MARV_LED_CTRL,
740 
741  gm_phy_write(hw, port, PHY_MARV_LED_OVER,
743  (skge->speed == SPEED_100 ?
745  break;
746  case LED_MODE_TST:
747  gm_phy_write(hw, port, PHY_MARV_LED_CTRL, 0);
748  gm_phy_write(hw, port, PHY_MARV_LED_OVER,
754  }
755  }
756  spin_unlock_bh(&hw->phy_lock);
757 }
758 
759 /* blink LED's for finding board */
760 static int skge_set_phys_id(struct net_device *dev,
762 {
763  struct skge_port *skge = netdev_priv(dev);
764 
765  switch (state) {
766  case ETHTOOL_ID_ACTIVE:
767  return 2; /* cycle on/off twice per second */
768 
769  case ETHTOOL_ID_ON:
770  skge_led(skge, LED_MODE_TST);
771  break;
772 
773  case ETHTOOL_ID_OFF:
774  skge_led(skge, LED_MODE_OFF);
775  break;
776 
777  case ETHTOOL_ID_INACTIVE:
778  /* back to regular LED state */
779  skge_led(skge, netif_running(dev) ? LED_MODE_ON : LED_MODE_OFF);
780  }
781 
782  return 0;
783 }
784 
785 static int skge_get_eeprom_len(struct net_device *dev)
786 {
787  struct skge_port *skge = netdev_priv(dev);
788  u32 reg2;
789 
790  pci_read_config_dword(skge->hw->pdev, PCI_DEV_REG2, &reg2);
791  return 1 << (((reg2 & PCI_VPD_ROM_SZ) >> 14) + 8);
792 }
793 
794 static u32 skge_vpd_read(struct pci_dev *pdev, int cap, u16 offset)
795 {
796  u32 val;
797 
798  pci_write_config_word(pdev, cap + PCI_VPD_ADDR, offset);
799 
800  do {
801  pci_read_config_word(pdev, cap + PCI_VPD_ADDR, &offset);
802  } while (!(offset & PCI_VPD_ADDR_F));
803 
804  pci_read_config_dword(pdev, cap + PCI_VPD_DATA, &val);
805  return val;
806 }
807 
808 static void skge_vpd_write(struct pci_dev *pdev, int cap, u16 offset, u32 val)
809 {
810  pci_write_config_dword(pdev, cap + PCI_VPD_DATA, val);
811  pci_write_config_word(pdev, cap + PCI_VPD_ADDR,
812  offset | PCI_VPD_ADDR_F);
813 
814  do {
815  pci_read_config_word(pdev, cap + PCI_VPD_ADDR, &offset);
816  } while (offset & PCI_VPD_ADDR_F);
817 }
818 
819 static int skge_get_eeprom(struct net_device *dev, struct ethtool_eeprom *eeprom,
820  u8 *data)
821 {
822  struct skge_port *skge = netdev_priv(dev);
823  struct pci_dev *pdev = skge->hw->pdev;
824  int cap = pci_find_capability(pdev, PCI_CAP_ID_VPD);
825  int length = eeprom->len;
826  u16 offset = eeprom->offset;
827 
828  if (!cap)
829  return -EINVAL;
830 
831  eeprom->magic = SKGE_EEPROM_MAGIC;
832 
833  while (length > 0) {
834  u32 val = skge_vpd_read(pdev, cap, offset);
835  int n = min_t(int, length, sizeof(val));
836 
837  memcpy(data, &val, n);
838  length -= n;
839  data += n;
840  offset += n;
841  }
842  return 0;
843 }
844 
845 static int skge_set_eeprom(struct net_device *dev, struct ethtool_eeprom *eeprom,
846  u8 *data)
847 {
848  struct skge_port *skge = netdev_priv(dev);
849  struct pci_dev *pdev = skge->hw->pdev;
850  int cap = pci_find_capability(pdev, PCI_CAP_ID_VPD);
851  int length = eeprom->len;
852  u16 offset = eeprom->offset;
853 
854  if (!cap)
855  return -EINVAL;
856 
857  if (eeprom->magic != SKGE_EEPROM_MAGIC)
858  return -EINVAL;
859 
860  while (length > 0) {
861  u32 val;
862  int n = min_t(int, length, sizeof(val));
863 
864  if (n < sizeof(val))
865  val = skge_vpd_read(pdev, cap, offset);
866  memcpy(&val, data, n);
867 
868  skge_vpd_write(pdev, cap, offset, val);
869 
870  length -= n;
871  data += n;
872  offset += n;
873  }
874  return 0;
875 }
876 
877 static const struct ethtool_ops skge_ethtool_ops = {
878  .get_settings = skge_get_settings,
879  .set_settings = skge_set_settings,
880  .get_drvinfo = skge_get_drvinfo,
881  .get_regs_len = skge_get_regs_len,
882  .get_regs = skge_get_regs,
883  .get_wol = skge_get_wol,
884  .set_wol = skge_set_wol,
885  .get_msglevel = skge_get_msglevel,
886  .set_msglevel = skge_set_msglevel,
887  .nway_reset = skge_nway_reset,
888  .get_link = ethtool_op_get_link,
889  .get_eeprom_len = skge_get_eeprom_len,
890  .get_eeprom = skge_get_eeprom,
891  .set_eeprom = skge_set_eeprom,
892  .get_ringparam = skge_get_ring_param,
893  .set_ringparam = skge_set_ring_param,
894  .get_pauseparam = skge_get_pauseparam,
895  .set_pauseparam = skge_set_pauseparam,
896  .get_coalesce = skge_get_coalesce,
897  .set_coalesce = skge_set_coalesce,
898  .get_strings = skge_get_strings,
899  .set_phys_id = skge_set_phys_id,
900  .get_sset_count = skge_get_sset_count,
901  .get_ethtool_stats = skge_get_ethtool_stats,
902 };
903 
904 /*
905  * Allocate ring elements and chain them together
906  * One-to-one association of board descriptors with ring elements
907  */
908 static int skge_ring_alloc(struct skge_ring *ring, void *vaddr, u32 base)
909 {
910  struct skge_tx_desc *d;
911  struct skge_element *e;
912  int i;
913 
914  ring->start = kcalloc(ring->count, sizeof(*e), GFP_KERNEL);
915  if (!ring->start)
916  return -ENOMEM;
917 
918  for (i = 0, e = ring->start, d = vaddr; i < ring->count; i++, e++, d++) {
919  e->desc = d;
920  if (i == ring->count - 1) {
921  e->next = ring->start;
922  d->next_offset = base;
923  } else {
924  e->next = e + 1;
925  d->next_offset = base + (i+1) * sizeof(*d);
926  }
927  }
928  ring->to_use = ring->to_clean = ring->start;
929 
930  return 0;
931 }
932 
933 /* Allocate and setup a new buffer for receiving */
934 static void skge_rx_setup(struct skge_port *skge, struct skge_element *e,
935  struct sk_buff *skb, unsigned int bufsize)
936 {
937  struct skge_rx_desc *rd = e->desc;
938  u64 map;
939 
940  map = pci_map_single(skge->hw->pdev, skb->data, bufsize,
942 
943  rd->dma_lo = map;
944  rd->dma_hi = map >> 32;
945  e->skb = skb;
946  rd->csum1_start = ETH_HLEN;
947  rd->csum2_start = ETH_HLEN;
948  rd->csum1 = 0;
949  rd->csum2 = 0;
950 
951  wmb();
952 
954  dma_unmap_addr_set(e, mapaddr, map);
955  dma_unmap_len_set(e, maplen, bufsize);
956 }
957 
958 /* Resume receiving using existing skb,
959  * Note: DMA address is not changed by chip.
960  * MTU not changed while receiver active.
961  */
962 static inline void skge_rx_reuse(struct skge_element *e, unsigned int size)
963 {
964  struct skge_rx_desc *rd = e->desc;
965 
966  rd->csum2 = 0;
967  rd->csum2_start = ETH_HLEN;
968 
969  wmb();
970 
972 }
973 
974 
975 /* Free all buffers in receive ring, assumes receiver stopped */
976 static void skge_rx_clean(struct skge_port *skge)
977 {
978  struct skge_hw *hw = skge->hw;
979  struct skge_ring *ring = &skge->rx_ring;
980  struct skge_element *e;
981 
982  e = ring->start;
983  do {
984  struct skge_rx_desc *rd = e->desc;
985  rd->control = 0;
986  if (e->skb) {
987  pci_unmap_single(hw->pdev,
988  dma_unmap_addr(e, mapaddr),
989  dma_unmap_len(e, maplen),
991  dev_kfree_skb(e->skb);
992  e->skb = NULL;
993  }
994  } while ((e = e->next) != ring->start);
995 }
996 
997 
998 /* Allocate buffers for receive ring
999  * For receive: to_clean is next received frame.
1000  */
1001 static int skge_rx_fill(struct net_device *dev)
1002 {
1003  struct skge_port *skge = netdev_priv(dev);
1004  struct skge_ring *ring = &skge->rx_ring;
1005  struct skge_element *e;
1006 
1007  e = ring->start;
1008  do {
1009  struct sk_buff *skb;
1010 
1011  skb = __netdev_alloc_skb(dev, skge->rx_buf_size + NET_IP_ALIGN,
1012  GFP_KERNEL);
1013  if (!skb)
1014  return -ENOMEM;
1015 
1016  skb_reserve(skb, NET_IP_ALIGN);
1017  skge_rx_setup(skge, e, skb, skge->rx_buf_size);
1018  } while ((e = e->next) != ring->start);
1019 
1020  ring->to_clean = ring->start;
1021  return 0;
1022 }
1023 
1024 static const char *skge_pause(enum pause_status status)
1025 {
1026  switch (status) {
1027  case FLOW_STAT_NONE:
1028  return "none";
1029  case FLOW_STAT_REM_SEND:
1030  return "rx only";
1031  case FLOW_STAT_LOC_SEND:
1032  return "tx_only";
1033  case FLOW_STAT_SYMMETRIC: /* Both station may send PAUSE */
1034  return "both";
1035  default:
1036  return "indeterminated";
1037  }
1038 }
1039 
1040 
1041 static void skge_link_up(struct skge_port *skge)
1042 {
1043  skge_write8(skge->hw, SK_REG(skge->port, LNK_LED_REG),
1045 
1046  netif_carrier_on(skge->netdev);
1047  netif_wake_queue(skge->netdev);
1048 
1049  netif_info(skge, link, skge->netdev,
1050  "Link is up at %d Mbps, %s duplex, flow control %s\n",
1051  skge->speed,
1052  skge->duplex == DUPLEX_FULL ? "full" : "half",
1053  skge_pause(skge->flow_status));
1054 }
1055 
1056 static void skge_link_down(struct skge_port *skge)
1057 {
1058  skge_write8(skge->hw, SK_REG(skge->port, LNK_LED_REG), LED_OFF);
1059  netif_carrier_off(skge->netdev);
1060  netif_stop_queue(skge->netdev);
1061 
1062  netif_info(skge, link, skge->netdev, "Link is down\n");
1063 }
1064 
1065 static void xm_link_down(struct skge_hw *hw, int port)
1066 {
1067  struct net_device *dev = hw->dev[port];
1068  struct skge_port *skge = netdev_priv(dev);
1069 
1070  xm_write16(hw, port, XM_IMSK, XM_IMSK_DISABLE);
1071 
1072  if (netif_carrier_ok(dev))
1073  skge_link_down(skge);
1074 }
1075 
1076 static int __xm_phy_read(struct skge_hw *hw, int port, u16 reg, u16 *val)
1077 {
1078  int i;
1079 
1080  xm_write16(hw, port, XM_PHY_ADDR, reg | hw->phy_addr);
1081  *val = xm_read16(hw, port, XM_PHY_DATA);
1082 
1083  if (hw->phy_type == SK_PHY_XMAC)
1084  goto ready;
1085 
1086  for (i = 0; i < PHY_RETRIES; i++) {
1087  if (xm_read16(hw, port, XM_MMU_CMD) & XM_MMU_PHY_RDY)
1088  goto ready;
1089  udelay(1);
1090  }
1091 
1092  return -ETIMEDOUT;
1093  ready:
1094  *val = xm_read16(hw, port, XM_PHY_DATA);
1095 
1096  return 0;
1097 }
1098 
1099 static u16 xm_phy_read(struct skge_hw *hw, int port, u16 reg)
1100 {
1101  u16 v = 0;
1102  if (__xm_phy_read(hw, port, reg, &v))
1103  pr_warning("%s: phy read timed out\n", hw->dev[port]->name);
1104  return v;
1105 }
1106 
1107 static int xm_phy_write(struct skge_hw *hw, int port, u16 reg, u16 val)
1108 {
1109  int i;
1110 
1111  xm_write16(hw, port, XM_PHY_ADDR, reg | hw->phy_addr);
1112  for (i = 0; i < PHY_RETRIES; i++) {
1113  if (!(xm_read16(hw, port, XM_MMU_CMD) & XM_MMU_PHY_BUSY))
1114  goto ready;
1115  udelay(1);
1116  }
1117  return -EIO;
1118 
1119  ready:
1120  xm_write16(hw, port, XM_PHY_DATA, val);
1121  for (i = 0; i < PHY_RETRIES; i++) {
1122  if (!(xm_read16(hw, port, XM_MMU_CMD) & XM_MMU_PHY_BUSY))
1123  return 0;
1124  udelay(1);
1125  }
1126  return -ETIMEDOUT;
1127 }
1128 
1129 static void genesis_init(struct skge_hw *hw)
1130 {
1131  /* set blink source counter */
1132  skge_write32(hw, B2_BSC_INI, (SK_BLK_DUR * SK_FACT_53) / 100);
1133  skge_write8(hw, B2_BSC_CTRL, BSC_START);
1134 
1135  /* configure mac arbiter */
1136  skge_write16(hw, B3_MA_TO_CTRL, MA_RST_CLR);
1137 
1138  /* configure mac arbiter timeout values */
1139  skge_write8(hw, B3_MA_TOINI_RX1, SK_MAC_TO_53);
1140  skge_write8(hw, B3_MA_TOINI_RX2, SK_MAC_TO_53);
1141  skge_write8(hw, B3_MA_TOINI_TX1, SK_MAC_TO_53);
1142  skge_write8(hw, B3_MA_TOINI_TX2, SK_MAC_TO_53);
1143 
1144  skge_write8(hw, B3_MA_RCINI_RX1, 0);
1145  skge_write8(hw, B3_MA_RCINI_RX2, 0);
1146  skge_write8(hw, B3_MA_RCINI_TX1, 0);
1147  skge_write8(hw, B3_MA_RCINI_TX2, 0);
1148 
1149  /* configure packet arbiter timeout */
1150  skge_write16(hw, B3_PA_CTRL, PA_RST_CLR);
1151  skge_write16(hw, B3_PA_TOINI_RX1, SK_PKT_TO_MAX);
1152  skge_write16(hw, B3_PA_TOINI_TX1, SK_PKT_TO_MAX);
1153  skge_write16(hw, B3_PA_TOINI_RX2, SK_PKT_TO_MAX);
1154  skge_write16(hw, B3_PA_TOINI_TX2, SK_PKT_TO_MAX);
1155 }
1156 
1157 static void genesis_reset(struct skge_hw *hw, int port)
1158 {
1159  static const u8 zero[8] = { 0 };
1160  u32 reg;
1161 
1162  skge_write8(hw, SK_REG(port, GMAC_IRQ_MSK), 0);
1163 
1164  /* reset the statistics module */
1165  xm_write32(hw, port, XM_GP_PORT, XM_GP_RES_STAT);
1166  xm_write16(hw, port, XM_IMSK, XM_IMSK_DISABLE);
1167  xm_write32(hw, port, XM_MODE, 0); /* clear Mode Reg */
1168  xm_write16(hw, port, XM_TX_CMD, 0); /* reset TX CMD Reg */
1169  xm_write16(hw, port, XM_RX_CMD, 0); /* reset RX CMD Reg */
1170 
1171  /* disable Broadcom PHY IRQ */
1172  if (hw->phy_type == SK_PHY_BCOM)
1173  xm_write16(hw, port, PHY_BCOM_INT_MASK, 0xffff);
1174 
1175  xm_outhash(hw, port, XM_HSM, zero);
1176 
1177  /* Flush TX and RX fifo */
1178  reg = xm_read32(hw, port, XM_MODE);
1179  xm_write32(hw, port, XM_MODE, reg | XM_MD_FTF);
1180  xm_write32(hw, port, XM_MODE, reg | XM_MD_FRF);
1181 }
1182 
1183 /* Convert mode to MII values */
1184 static const u16 phy_pause_map[] = {
1185  [FLOW_MODE_NONE] = 0,
1189 };
1190 
1191 /* special defines for FIBER (88E1011S only) */
1192 static const u16 fiber_pause_map[] = {
1197 };
1198 
1199 
1200 /* Check status of Broadcom phy link */
1201 static void bcom_check_link(struct skge_hw *hw, int port)
1202 {
1203  struct net_device *dev = hw->dev[port];
1204  struct skge_port *skge = netdev_priv(dev);
1205  u16 status;
1206 
1207  /* read twice because of latch */
1208  xm_phy_read(hw, port, PHY_BCOM_STAT);
1209  status = xm_phy_read(hw, port, PHY_BCOM_STAT);
1210 
1211  if ((status & PHY_ST_LSYNC) == 0) {
1212  xm_link_down(hw, port);
1213  return;
1214  }
1215 
1216  if (skge->autoneg == AUTONEG_ENABLE) {
1217  u16 lpa, aux;
1218 
1219  if (!(status & PHY_ST_AN_OVER))
1220  return;
1221 
1222  lpa = xm_phy_read(hw, port, PHY_XMAC_AUNE_LP);
1223  if (lpa & PHY_B_AN_RF) {
1224  netdev_notice(dev, "remote fault\n");
1225  return;
1226  }
1227 
1228  aux = xm_phy_read(hw, port, PHY_BCOM_AUX_STAT);
1229 
1230  /* Check Duplex mismatch */
1231  switch (aux & PHY_B_AS_AN_RES_MSK) {
1232  case PHY_B_RES_1000FD:
1233  skge->duplex = DUPLEX_FULL;
1234  break;
1235  case PHY_B_RES_1000HD:
1236  skge->duplex = DUPLEX_HALF;
1237  break;
1238  default:
1239  netdev_notice(dev, "duplex mismatch\n");
1240  return;
1241  }
1242 
1243  /* We are using IEEE 802.3z/D5.0 Table 37-4 */
1244  switch (aux & PHY_B_AS_PAUSE_MSK) {
1245  case PHY_B_AS_PAUSE_MSK:
1247  break;
1248  case PHY_B_AS_PRR:
1250  break;
1251  case PHY_B_AS_PRT:
1253  break;
1254  default:
1255  skge->flow_status = FLOW_STAT_NONE;
1256  }
1257  skge->speed = SPEED_1000;
1258  }
1259 
1260  if (!netif_carrier_ok(dev))
1261  genesis_link_up(skge);
1262 }
1263 
1264 /* Broadcom 5400 only supports giagabit! SysKonnect did not put an additional
1265  * Phy on for 100 or 10Mbit operation
1266  */
1267 static void bcom_phy_init(struct skge_port *skge)
1268 {
1269  struct skge_hw *hw = skge->hw;
1270  int port = skge->port;
1271  int i;
1272  u16 id1, r, ext, ctl;
1273 
1274  /* magic workaround patterns for Broadcom */
1275  static const struct {
1276  u16 reg;
1277  u16 val;
1278  } A1hack[] = {
1279  { 0x18, 0x0c20 }, { 0x17, 0x0012 }, { 0x15, 0x1104 },
1280  { 0x17, 0x0013 }, { 0x15, 0x0404 }, { 0x17, 0x8006 },
1281  { 0x15, 0x0132 }, { 0x17, 0x8006 }, { 0x15, 0x0232 },
1282  { 0x17, 0x800D }, { 0x15, 0x000F }, { 0x18, 0x0420 },
1283  }, C0hack[] = {
1284  { 0x18, 0x0c20 }, { 0x17, 0x0012 }, { 0x15, 0x1204 },
1285  { 0x17, 0x0013 }, { 0x15, 0x0A04 }, { 0x18, 0x0420 },
1286  };
1287 
1288  /* read Id from external PHY (all have the same address) */
1289  id1 = xm_phy_read(hw, port, PHY_XMAC_ID1);
1290 
1291  /* Optimize MDIO transfer by suppressing preamble. */
1292  r = xm_read16(hw, port, XM_MMU_CMD);
1293  r |= XM_MMU_NO_PRE;
1294  xm_write16(hw, port, XM_MMU_CMD, r);
1295 
1296  switch (id1) {
1297  case PHY_BCOM_ID1_C0:
1298  /*
1299  * Workaround BCOM Errata for the C0 type.
1300  * Write magic patterns to reserved registers.
1301  */
1302  for (i = 0; i < ARRAY_SIZE(C0hack); i++)
1303  xm_phy_write(hw, port,
1304  C0hack[i].reg, C0hack[i].val);
1305 
1306  break;
1307  case PHY_BCOM_ID1_A1:
1308  /*
1309  * Workaround BCOM Errata for the A1 type.
1310  * Write magic patterns to reserved registers.
1311  */
1312  for (i = 0; i < ARRAY_SIZE(A1hack); i++)
1313  xm_phy_write(hw, port,
1314  A1hack[i].reg, A1hack[i].val);
1315  break;
1316  }
1317 
1318  /*
1319  * Workaround BCOM Errata (#10523) for all BCom PHYs.
1320  * Disable Power Management after reset.
1321  */
1322  r = xm_phy_read(hw, port, PHY_BCOM_AUX_CTRL);
1323  r |= PHY_B_AC_DIS_PM;
1324  xm_phy_write(hw, port, PHY_BCOM_AUX_CTRL, r);
1325 
1326  /* Dummy read */
1327  xm_read16(hw, port, XM_ISRC);
1328 
1329  ext = PHY_B_PEC_EN_LTR; /* enable tx led */
1330  ctl = PHY_CT_SP1000; /* always 1000mbit */
1331 
1332  if (skge->autoneg == AUTONEG_ENABLE) {
1333  /*
1334  * Workaround BCOM Errata #1 for the C5 type.
1335  * 1000Base-T Link Acquisition Failure in Slave Mode
1336  * Set Repeater/DTE bit 10 of the 1000Base-T Control Register
1337  */
1338  u16 adv = PHY_B_1000C_RD;
1340  adv |= PHY_B_1000C_AHD;
1342  adv |= PHY_B_1000C_AFD;
1343  xm_phy_write(hw, port, PHY_BCOM_1000T_CTRL, adv);
1344 
1345  ctl |= PHY_CT_ANE | PHY_CT_RE_CFG;
1346  } else {
1347  if (skge->duplex == DUPLEX_FULL)
1348  ctl |= PHY_CT_DUP_MD;
1349  /* Force to slave */
1350  xm_phy_write(hw, port, PHY_BCOM_1000T_CTRL, PHY_B_1000C_MSE);
1351  }
1352 
1353  /* Set autonegotiation pause parameters */
1354  xm_phy_write(hw, port, PHY_BCOM_AUNE_ADV,
1355  phy_pause_map[skge->flow_control] | PHY_AN_CSMA);
1356 
1357  /* Handle Jumbo frames */
1358  if (hw->dev[port]->mtu > ETH_DATA_LEN) {
1359  xm_phy_write(hw, port, PHY_BCOM_AUX_CTRL,
1361 
1362  ext |= PHY_B_PEC_HIGH_LA;
1363 
1364  }
1365 
1366  xm_phy_write(hw, port, PHY_BCOM_P_EXT_CTRL, ext);
1367  xm_phy_write(hw, port, PHY_BCOM_CTRL, ctl);
1368 
1369  /* Use link status change interrupt */
1370  xm_phy_write(hw, port, PHY_BCOM_INT_MASK, PHY_B_DEF_MSK);
1371 }
1372 
1373 static void xm_phy_init(struct skge_port *skge)
1374 {
1375  struct skge_hw *hw = skge->hw;
1376  int port = skge->port;
1377  u16 ctrl = 0;
1378 
1379  if (skge->autoneg == AUTONEG_ENABLE) {
1381  ctrl |= PHY_X_AN_HD;
1383  ctrl |= PHY_X_AN_FD;
1384 
1385  ctrl |= fiber_pause_map[skge->flow_control];
1386 
1387  xm_phy_write(hw, port, PHY_XMAC_AUNE_ADV, ctrl);
1388 
1389  /* Restart Auto-negotiation */
1390  ctrl = PHY_CT_ANE | PHY_CT_RE_CFG;
1391  } else {
1392  /* Set DuplexMode in Config register */
1393  if (skge->duplex == DUPLEX_FULL)
1394  ctrl |= PHY_CT_DUP_MD;
1395  /*
1396  * Do NOT enable Auto-negotiation here. This would hold
1397  * the link down because no IDLEs are transmitted
1398  */
1399  }
1400 
1401  xm_phy_write(hw, port, PHY_XMAC_CTRL, ctrl);
1402 
1403  /* Poll PHY for status changes */
1404  mod_timer(&skge->link_timer, jiffies + LINK_HZ);
1405 }
1406 
1407 static int xm_check_link(struct net_device *dev)
1408 {
1409  struct skge_port *skge = netdev_priv(dev);
1410  struct skge_hw *hw = skge->hw;
1411  int port = skge->port;
1412  u16 status;
1413 
1414  /* read twice because of latch */
1415  xm_phy_read(hw, port, PHY_XMAC_STAT);
1416  status = xm_phy_read(hw, port, PHY_XMAC_STAT);
1417 
1418  if ((status & PHY_ST_LSYNC) == 0) {
1419  xm_link_down(hw, port);
1420  return 0;
1421  }
1422 
1423  if (skge->autoneg == AUTONEG_ENABLE) {
1424  u16 lpa, res;
1425 
1426  if (!(status & PHY_ST_AN_OVER))
1427  return 0;
1428 
1429  lpa = xm_phy_read(hw, port, PHY_XMAC_AUNE_LP);
1430  if (lpa & PHY_B_AN_RF) {
1431  netdev_notice(dev, "remote fault\n");
1432  return 0;
1433  }
1434 
1435  res = xm_phy_read(hw, port, PHY_XMAC_RES_ABI);
1436 
1437  /* Check Duplex mismatch */
1438  switch (res & (PHY_X_RS_HD | PHY_X_RS_FD)) {
1439  case PHY_X_RS_FD:
1440  skge->duplex = DUPLEX_FULL;
1441  break;
1442  case PHY_X_RS_HD:
1443  skge->duplex = DUPLEX_HALF;
1444  break;
1445  default:
1446  netdev_notice(dev, "duplex mismatch\n");
1447  return 0;
1448  }
1449 
1450  /* We are using IEEE 802.3z/D5.0 Table 37-4 */
1451  if ((skge->flow_control == FLOW_MODE_SYMMETRIC ||
1452  skge->flow_control == FLOW_MODE_SYM_OR_REM) &&
1453  (lpa & PHY_X_P_SYM_MD))
1455  else if (skge->flow_control == FLOW_MODE_SYM_OR_REM &&
1456  (lpa & PHY_X_RS_PAUSE) == PHY_X_P_ASYM_MD)
1457  /* Enable PAUSE receive, disable PAUSE transmit */
1459  else if (skge->flow_control == FLOW_MODE_LOC_SEND &&
1460  (lpa & PHY_X_RS_PAUSE) == PHY_X_P_BOTH_MD)
1461  /* Disable PAUSE receive, enable PAUSE transmit */
1463  else
1464  skge->flow_status = FLOW_STAT_NONE;
1465 
1466  skge->speed = SPEED_1000;
1467  }
1468 
1469  if (!netif_carrier_ok(dev))
1470  genesis_link_up(skge);
1471  return 1;
1472 }
1473 
1474 /* Poll to check for link coming up.
1475  *
1476  * Since internal PHY is wired to a level triggered pin, can't
1477  * get an interrupt when carrier is detected, need to poll for
1478  * link coming up.
1479  */
1480 static void xm_link_timer(unsigned long arg)
1481 {
1482  struct skge_port *skge = (struct skge_port *) arg;
1483  struct net_device *dev = skge->netdev;
1484  struct skge_hw *hw = skge->hw;
1485  int port = skge->port;
1486  int i;
1487  unsigned long flags;
1488 
1489  if (!netif_running(dev))
1490  return;
1491 
1492  spin_lock_irqsave(&hw->phy_lock, flags);
1493 
1494  /*
1495  * Verify that the link by checking GPIO register three times.
1496  * This pin has the signal from the link_sync pin connected to it.
1497  */
1498  for (i = 0; i < 3; i++) {
1499  if (xm_read16(hw, port, XM_GP_PORT) & XM_GP_INP_ASS)
1500  goto link_down;
1501  }
1502 
1503  /* Re-enable interrupt to detect link down */
1504  if (xm_check_link(dev)) {
1505  u16 msk = xm_read16(hw, port, XM_IMSK);
1506  msk &= ~XM_IS_INP_ASS;
1507  xm_write16(hw, port, XM_IMSK, msk);
1508  xm_read16(hw, port, XM_ISRC);
1509  } else {
1510 link_down:
1511  mod_timer(&skge->link_timer,
1512  round_jiffies(jiffies + LINK_HZ));
1513  }
1514  spin_unlock_irqrestore(&hw->phy_lock, flags);
1515 }
1516 
1517 static void genesis_mac_init(struct skge_hw *hw, int port)
1518 {
1519  struct net_device *dev = hw->dev[port];
1520  struct skge_port *skge = netdev_priv(dev);
1521  int jumbo = hw->dev[port]->mtu > ETH_DATA_LEN;
1522  int i;
1523  u32 r;
1524  static const u8 zero[6] = { 0 };
1525 
1526  for (i = 0; i < 10; i++) {
1527  skge_write16(hw, SK_REG(port, TX_MFF_CTRL1),
1528  MFF_SET_MAC_RST);
1529  if (skge_read16(hw, SK_REG(port, TX_MFF_CTRL1)) & MFF_SET_MAC_RST)
1530  goto reset_ok;
1531  udelay(1);
1532  }
1533 
1534  netdev_warn(dev, "genesis reset failed\n");
1535 
1536  reset_ok:
1537  /* Unreset the XMAC. */
1538  skge_write16(hw, SK_REG(port, TX_MFF_CTRL1), MFF_CLR_MAC_RST);
1539 
1540  /*
1541  * Perform additional initialization for external PHYs,
1542  * namely for the 1000baseTX cards that use the XMAC's
1543  * GMII mode.
1544  */
1545  if (hw->phy_type != SK_PHY_XMAC) {
1546  /* Take external Phy out of reset */
1547  r = skge_read32(hw, B2_GP_IO);
1548  if (port == 0)
1549  r |= GP_DIR_0|GP_IO_0;
1550  else
1551  r |= GP_DIR_2|GP_IO_2;
1552 
1553  skge_write32(hw, B2_GP_IO, r);
1554 
1555  /* Enable GMII interface */
1556  xm_write16(hw, port, XM_HW_CFG, XM_HW_GMII_MD);
1557  }
1558 
1559 
1560  switch (hw->phy_type) {
1561  case SK_PHY_XMAC:
1562  xm_phy_init(skge);
1563  break;
1564  case SK_PHY_BCOM:
1565  bcom_phy_init(skge);
1566  bcom_check_link(hw, port);
1567  }
1568 
1569  /* Set Station Address */
1570  xm_outaddr(hw, port, XM_SA, dev->dev_addr);
1571 
1572  /* We don't use match addresses so clear */
1573  for (i = 1; i < 16; i++)
1574  xm_outaddr(hw, port, XM_EXM(i), zero);
1575 
1576  /* Clear MIB counters */
1577  xm_write16(hw, port, XM_STAT_CMD,
1579  /* Clear two times according to Errata #3 */
1580  xm_write16(hw, port, XM_STAT_CMD,
1582 
1583  /* configure Rx High Water Mark (XM_RX_HI_WM) */
1584  xm_write16(hw, port, XM_RX_HI_WM, 1450);
1585 
1586  /* We don't need the FCS appended to the packet. */
1588  if (jumbo)
1589  r |= XM_RX_BIG_PK_OK;
1590 
1591  if (skge->duplex == DUPLEX_HALF) {
1592  /*
1593  * If in manual half duplex mode the other side might be in
1594  * full duplex mode, so ignore if a carrier extension is not seen
1595  * on frames received
1596  */
1597  r |= XM_RX_DIS_CEXT;
1598  }
1599  xm_write16(hw, port, XM_RX_CMD, r);
1600 
1601  /* We want short frames padded to 60 bytes. */
1602  xm_write16(hw, port, XM_TX_CMD, XM_TX_AUTO_PAD);
1603 
1604  /* Increase threshold for jumbo frames on dual port */
1605  if (hw->ports > 1 && jumbo)
1606  xm_write16(hw, port, XM_TX_THR, 1020);
1607  else
1608  xm_write16(hw, port, XM_TX_THR, 512);
1609 
1610  /*
1611  * Enable the reception of all error frames. This is is
1612  * a necessary evil due to the design of the XMAC. The
1613  * XMAC's receive FIFO is only 8K in size, however jumbo
1614  * frames can be up to 9000 bytes in length. When bad
1615  * frame filtering is enabled, the XMAC's RX FIFO operates
1616  * in 'store and forward' mode. For this to work, the
1617  * entire frame has to fit into the FIFO, but that means
1618  * that jumbo frames larger than 8192 bytes will be
1619  * truncated. Disabling all bad frame filtering causes
1620  * the RX FIFO to operate in streaming mode, in which
1621  * case the XMAC will start transferring frames out of the
1622  * RX FIFO as soon as the FIFO threshold is reached.
1623  */
1624  xm_write32(hw, port, XM_MODE, XM_DEF_MODE);
1625 
1626 
1627  /*
1628  * Initialize the Receive Counter Event Mask (XM_RX_EV_MSK)
1629  * - Enable all bits excepting 'Octets Rx OK Low CntOv'
1630  * and 'Octets Rx OK Hi Cnt Ov'.
1631  */
1632  xm_write32(hw, port, XM_RX_EV_MSK, XMR_DEF_MSK);
1633 
1634  /*
1635  * Initialize the Transmit Counter Event Mask (XM_TX_EV_MSK)
1636  * - Enable all bits excepting 'Octets Tx OK Low CntOv'
1637  * and 'Octets Tx OK Hi Cnt Ov'.
1638  */
1639  xm_write32(hw, port, XM_TX_EV_MSK, XMT_DEF_MSK);
1640 
1641  /* Configure MAC arbiter */
1642  skge_write16(hw, B3_MA_TO_CTRL, MA_RST_CLR);
1643 
1644  /* configure timeout values */
1645  skge_write8(hw, B3_MA_TOINI_RX1, 72);
1646  skge_write8(hw, B3_MA_TOINI_RX2, 72);
1647  skge_write8(hw, B3_MA_TOINI_TX1, 72);
1648  skge_write8(hw, B3_MA_TOINI_TX2, 72);
1649 
1650  skge_write8(hw, B3_MA_RCINI_RX1, 0);
1651  skge_write8(hw, B3_MA_RCINI_RX2, 0);
1652  skge_write8(hw, B3_MA_RCINI_TX1, 0);
1653  skge_write8(hw, B3_MA_RCINI_TX2, 0);
1654 
1655  /* Configure Rx MAC FIFO */
1656  skge_write8(hw, SK_REG(port, RX_MFF_CTRL2), MFF_RST_CLR);
1657  skge_write16(hw, SK_REG(port, RX_MFF_CTRL1), MFF_ENA_TIM_PAT);
1658  skge_write8(hw, SK_REG(port, RX_MFF_CTRL2), MFF_ENA_OP_MD);
1659 
1660  /* Configure Tx MAC FIFO */
1661  skge_write8(hw, SK_REG(port, TX_MFF_CTRL2), MFF_RST_CLR);
1662  skge_write16(hw, SK_REG(port, TX_MFF_CTRL1), MFF_TX_CTRL_DEF);
1663  skge_write8(hw, SK_REG(port, TX_MFF_CTRL2), MFF_ENA_OP_MD);
1664 
1665  if (jumbo) {
1666  /* Enable frame flushing if jumbo frames used */
1667  skge_write16(hw, SK_REG(port, RX_MFF_CTRL1), MFF_ENA_FLUSH);
1668  } else {
1669  /* enable timeout timers if normal frames */
1670  skge_write16(hw, B3_PA_CTRL,
1671  (port == 0) ? PA_ENA_TO_TX1 : PA_ENA_TO_TX2);
1672  }
1673 }
1674 
1675 static void genesis_stop(struct skge_port *skge)
1676 {
1677  struct skge_hw *hw = skge->hw;
1678  int port = skge->port;
1679  unsigned retries = 1000;
1680  u16 cmd;
1681 
1682  /* Disable Tx and Rx */
1683  cmd = xm_read16(hw, port, XM_MMU_CMD);
1684  cmd &= ~(XM_MMU_ENA_RX | XM_MMU_ENA_TX);
1685  xm_write16(hw, port, XM_MMU_CMD, cmd);
1686 
1687  genesis_reset(hw, port);
1688 
1689  /* Clear Tx packet arbiter timeout IRQ */
1690  skge_write16(hw, B3_PA_CTRL,
1691  port == 0 ? PA_CLR_TO_TX1 : PA_CLR_TO_TX2);
1692 
1693  /* Reset the MAC */
1694  skge_write16(hw, SK_REG(port, TX_MFF_CTRL1), MFF_CLR_MAC_RST);
1695  do {
1696  skge_write16(hw, SK_REG(port, TX_MFF_CTRL1), MFF_SET_MAC_RST);
1697  if (!(skge_read16(hw, SK_REG(port, TX_MFF_CTRL1)) & MFF_SET_MAC_RST))
1698  break;
1699  } while (--retries > 0);
1700 
1701  /* For external PHYs there must be special handling */
1702  if (hw->phy_type != SK_PHY_XMAC) {
1703  u32 reg = skge_read32(hw, B2_GP_IO);
1704  if (port == 0) {
1705  reg |= GP_DIR_0;
1706  reg &= ~GP_IO_0;
1707  } else {
1708  reg |= GP_DIR_2;
1709  reg &= ~GP_IO_2;
1710  }
1711  skge_write32(hw, B2_GP_IO, reg);
1712  skge_read32(hw, B2_GP_IO);
1713  }
1714 
1715  xm_write16(hw, port, XM_MMU_CMD,
1716  xm_read16(hw, port, XM_MMU_CMD)
1717  & ~(XM_MMU_ENA_RX | XM_MMU_ENA_TX));
1718 
1719  xm_read16(hw, port, XM_MMU_CMD);
1720 }
1721 
1722 
1723 static void genesis_get_stats(struct skge_port *skge, u64 *data)
1724 {
1725  struct skge_hw *hw = skge->hw;
1726  int port = skge->port;
1727  int i;
1728  unsigned long timeout = jiffies + HZ;
1729 
1730  xm_write16(hw, port,
1732 
1733  /* wait for update to complete */
1734  while (xm_read16(hw, port, XM_STAT_CMD)
1735  & (XM_SC_SNP_TXC | XM_SC_SNP_RXC)) {
1736  if (time_after(jiffies, timeout))
1737  break;
1738  udelay(10);
1739  }
1740 
1741  /* special case for 64 bit octet counter */
1742  data[0] = (u64) xm_read32(hw, port, XM_TXO_OK_HI) << 32
1743  | xm_read32(hw, port, XM_TXO_OK_LO);
1744  data[1] = (u64) xm_read32(hw, port, XM_RXO_OK_HI) << 32
1745  | xm_read32(hw, port, XM_RXO_OK_LO);
1746 
1747  for (i = 2; i < ARRAY_SIZE(skge_stats); i++)
1748  data[i] = xm_read32(hw, port, skge_stats[i].xmac_offset);
1749 }
1750 
1751 static void genesis_mac_intr(struct skge_hw *hw, int port)
1752 {
1753  struct net_device *dev = hw->dev[port];
1754  struct skge_port *skge = netdev_priv(dev);
1755  u16 status = xm_read16(hw, port, XM_ISRC);
1756 
1757  netif_printk(skge, intr, KERN_DEBUG, skge->netdev,
1758  "mac interrupt status 0x%x\n", status);
1759 
1760  if (hw->phy_type == SK_PHY_XMAC && (status & XM_IS_INP_ASS)) {
1761  xm_link_down(hw, port);
1762  mod_timer(&skge->link_timer, jiffies + 1);
1763  }
1764 
1765  if (status & XM_IS_TXF_UR) {
1766  xm_write32(hw, port, XM_MODE, XM_MD_FTF);
1767  ++dev->stats.tx_fifo_errors;
1768  }
1769 }
1770 
1771 static void genesis_link_up(struct skge_port *skge)
1772 {
1773  struct skge_hw *hw = skge->hw;
1774  int port = skge->port;
1775  u16 cmd, msk;
1776  u32 mode;
1777 
1778  cmd = xm_read16(hw, port, XM_MMU_CMD);
1779 
1780  /*
1781  * enabling pause frame reception is required for 1000BT
1782  * because the XMAC is not reset if the link is going down
1783  */
1784  if (skge->flow_status == FLOW_STAT_NONE ||
1786  /* Disable Pause Frame Reception */
1787  cmd |= XM_MMU_IGN_PF;
1788  else
1789  /* Enable Pause Frame Reception */
1790  cmd &= ~XM_MMU_IGN_PF;
1791 
1792  xm_write16(hw, port, XM_MMU_CMD, cmd);
1793 
1794  mode = xm_read32(hw, port, XM_MODE);
1795  if (skge->flow_status == FLOW_STAT_SYMMETRIC ||
1796  skge->flow_status == FLOW_STAT_LOC_SEND) {
1797  /*
1798  * Configure Pause Frame Generation
1799  * Use internal and external Pause Frame Generation.
1800  * Sending pause frames is edge triggered.
1801  * Send a Pause frame with the maximum pause time if
1802  * internal oder external FIFO full condition occurs.
1803  * Send a zero pause time frame to re-start transmission.
1804  */
1805  /* XM_PAUSE_DA = '010000C28001' (default) */
1806  /* XM_MAC_PTIME = 0xffff (maximum) */
1807  /* remember this value is defined in big endian (!) */
1808  xm_write16(hw, port, XM_MAC_PTIME, 0xffff);
1809 
1810  mode |= XM_PAUSE_MODE;
1811  skge_write16(hw, SK_REG(port, RX_MFF_CTRL1), MFF_ENA_PAUSE);
1812  } else {
1813  /*
1814  * disable pause frame generation is required for 1000BT
1815  * because the XMAC is not reset if the link is going down
1816  */
1817  /* Disable Pause Mode in Mode Register */
1818  mode &= ~XM_PAUSE_MODE;
1819 
1820  skge_write16(hw, SK_REG(port, RX_MFF_CTRL1), MFF_DIS_PAUSE);
1821  }
1822 
1823  xm_write32(hw, port, XM_MODE, mode);
1824 
1825  /* Turn on detection of Tx underrun */
1826  msk = xm_read16(hw, port, XM_IMSK);
1827  msk &= ~XM_IS_TXF_UR;
1828  xm_write16(hw, port, XM_IMSK, msk);
1829 
1830  xm_read16(hw, port, XM_ISRC);
1831 
1832  /* get MMU Command Reg. */
1833  cmd = xm_read16(hw, port, XM_MMU_CMD);
1834  if (hw->phy_type != SK_PHY_XMAC && skge->duplex == DUPLEX_FULL)
1835  cmd |= XM_MMU_GMII_FD;
1836 
1837  /*
1838  * Workaround BCOM Errata (#10523) for all BCom Phys
1839  * Enable Power Management after link up
1840  */
1841  if (hw->phy_type == SK_PHY_BCOM) {
1842  xm_phy_write(hw, port, PHY_BCOM_AUX_CTRL,
1843  xm_phy_read(hw, port, PHY_BCOM_AUX_CTRL)
1844  & ~PHY_B_AC_DIS_PM);
1845  xm_phy_write(hw, port, PHY_BCOM_INT_MASK, PHY_B_DEF_MSK);
1846  }
1847 
1848  /* enable Rx/Tx */
1849  xm_write16(hw, port, XM_MMU_CMD,
1850  cmd | XM_MMU_ENA_RX | XM_MMU_ENA_TX);
1851  skge_link_up(skge);
1852 }
1853 
1854 
1855 static inline void bcom_phy_intr(struct skge_port *skge)
1856 {
1857  struct skge_hw *hw = skge->hw;
1858  int port = skge->port;
1859  u16 isrc;
1860 
1861  isrc = xm_phy_read(hw, port, PHY_BCOM_INT_STAT);
1862  netif_printk(skge, intr, KERN_DEBUG, skge->netdev,
1863  "phy interrupt status 0x%x\n", isrc);
1864 
1865  if (isrc & PHY_B_IS_PSE)
1866  pr_err("%s: uncorrectable pair swap error\n",
1867  hw->dev[port]->name);
1868 
1869  /* Workaround BCom Errata:
1870  * enable and disable loopback mode if "NO HCD" occurs.
1871  */
1872  if (isrc & PHY_B_IS_NO_HDCL) {
1873  u16 ctrl = xm_phy_read(hw, port, PHY_BCOM_CTRL);
1874  xm_phy_write(hw, port, PHY_BCOM_CTRL,
1875  ctrl | PHY_CT_LOOP);
1876  xm_phy_write(hw, port, PHY_BCOM_CTRL,
1877  ctrl & ~PHY_CT_LOOP);
1878  }
1879 
1880  if (isrc & (PHY_B_IS_AN_PR | PHY_B_IS_LST_CHANGE))
1881  bcom_check_link(hw, port);
1882 
1883 }
1884 
1885 static int gm_phy_write(struct skge_hw *hw, int port, u16 reg, u16 val)
1886 {
1887  int i;
1888 
1889  gma_write16(hw, port, GM_SMI_DATA, val);
1890  gma_write16(hw, port, GM_SMI_CTRL,
1892  for (i = 0; i < PHY_RETRIES; i++) {
1893  udelay(1);
1894 
1895  if (!(gma_read16(hw, port, GM_SMI_CTRL) & GM_SMI_CT_BUSY))
1896  return 0;
1897  }
1898 
1899  pr_warning("%s: phy write timeout\n", hw->dev[port]->name);
1900  return -EIO;
1901 }
1902 
1903 static int __gm_phy_read(struct skge_hw *hw, int port, u16 reg, u16 *val)
1904 {
1905  int i;
1906 
1907  gma_write16(hw, port, GM_SMI_CTRL,
1910 
1911  for (i = 0; i < PHY_RETRIES; i++) {
1912  udelay(1);
1913  if (gma_read16(hw, port, GM_SMI_CTRL) & GM_SMI_CT_RD_VAL)
1914  goto ready;
1915  }
1916 
1917  return -ETIMEDOUT;
1918  ready:
1919  *val = gma_read16(hw, port, GM_SMI_DATA);
1920  return 0;
1921 }
1922 
1923 static u16 gm_phy_read(struct skge_hw *hw, int port, u16 reg)
1924 {
1925  u16 v = 0;
1926  if (__gm_phy_read(hw, port, reg, &v))
1927  pr_warning("%s: phy read timeout\n", hw->dev[port]->name);
1928  return v;
1929 }
1930 
1931 /* Marvell Phy Initialization */
1932 static void yukon_init(struct skge_hw *hw, int port)
1933 {
1934  struct skge_port *skge = netdev_priv(hw->dev[port]);
1935  u16 ctrl, ct1000, adv;
1936 
1937  if (skge->autoneg == AUTONEG_ENABLE) {
1938  u16 ectrl = gm_phy_read(hw, port, PHY_MARV_EXT_CTRL);
1939 
1940  ectrl &= ~(PHY_M_EC_M_DSC_MSK | PHY_M_EC_S_DSC_MSK |
1943 
1944  ectrl |= PHY_M_EC_M_DSC(0) | PHY_M_EC_S_DSC(1);
1945 
1946  gm_phy_write(hw, port, PHY_MARV_EXT_CTRL, ectrl);
1947  }
1948 
1949  ctrl = gm_phy_read(hw, port, PHY_MARV_CTRL);
1950  if (skge->autoneg == AUTONEG_DISABLE)
1951  ctrl &= ~PHY_CT_ANE;
1952 
1953  ctrl |= PHY_CT_RESET;
1954  gm_phy_write(hw, port, PHY_MARV_CTRL, ctrl);
1955 
1956  ctrl = 0;
1957  ct1000 = 0;
1958  adv = PHY_AN_CSMA;
1959 
1960  if (skge->autoneg == AUTONEG_ENABLE) {
1961  if (hw->copper) {
1963  ct1000 |= PHY_M_1000C_AFD;
1965  ct1000 |= PHY_M_1000C_AHD;
1967  adv |= PHY_M_AN_100_FD;
1969  adv |= PHY_M_AN_100_HD;
1971  adv |= PHY_M_AN_10_FD;
1973  adv |= PHY_M_AN_10_HD;
1974 
1975  /* Set Flow-control capabilities */
1976  adv |= phy_pause_map[skge->flow_control];
1977  } else {
1979  adv |= PHY_M_AN_1000X_AFD;
1981  adv |= PHY_M_AN_1000X_AHD;
1982 
1983  adv |= fiber_pause_map[skge->flow_control];
1984  }
1985 
1986  /* Restart Auto-negotiation */
1987  ctrl |= PHY_CT_ANE | PHY_CT_RE_CFG;
1988  } else {
1989  /* forced speed/duplex settings */
1990  ct1000 = PHY_M_1000C_MSE;
1991 
1992  if (skge->duplex == DUPLEX_FULL)
1993  ctrl |= PHY_CT_DUP_MD;
1994 
1995  switch (skge->speed) {
1996  case SPEED_1000:
1997  ctrl |= PHY_CT_SP1000;
1998  break;
1999  case SPEED_100:
2000  ctrl |= PHY_CT_SP100;
2001  break;
2002  }
2003 
2004  ctrl |= PHY_CT_RESET;
2005  }
2006 
2007  gm_phy_write(hw, port, PHY_MARV_1000T_CTRL, ct1000);
2008 
2009  gm_phy_write(hw, port, PHY_MARV_AUNE_ADV, adv);
2010  gm_phy_write(hw, port, PHY_MARV_CTRL, ctrl);
2011 
2012  /* Enable phy interrupt on autonegotiation complete (or link up) */
2013  if (skge->autoneg == AUTONEG_ENABLE)
2014  gm_phy_write(hw, port, PHY_MARV_INT_MASK, PHY_M_IS_AN_MSK);
2015  else
2016  gm_phy_write(hw, port, PHY_MARV_INT_MASK, PHY_M_IS_DEF_MSK);
2017 }
2018 
2019 static void yukon_reset(struct skge_hw *hw, int port)
2020 {
2021  gm_phy_write(hw, port, PHY_MARV_INT_MASK, 0);/* disable PHY IRQs */
2022  gma_write16(hw, port, GM_MC_ADDR_H1, 0); /* clear MC hash */
2023  gma_write16(hw, port, GM_MC_ADDR_H2, 0);
2024  gma_write16(hw, port, GM_MC_ADDR_H3, 0);
2025  gma_write16(hw, port, GM_MC_ADDR_H4, 0);
2026 
2027  gma_write16(hw, port, GM_RX_CTRL,
2028  gma_read16(hw, port, GM_RX_CTRL)
2030 }
2031 
2032 /* Apparently, early versions of Yukon-Lite had wrong chip_id? */
2033 static int is_yukon_lite_a0(struct skge_hw *hw)
2034 {
2035  u32 reg;
2036  int ret;
2037 
2038  if (hw->chip_id != CHIP_ID_YUKON)
2039  return 0;
2040 
2041  reg = skge_read32(hw, B2_FAR);
2042  skge_write8(hw, B2_FAR + 3, 0xff);
2043  ret = (skge_read8(hw, B2_FAR + 3) != 0);
2044  skge_write32(hw, B2_FAR, reg);
2045  return ret;
2046 }
2047 
2048 static void yukon_mac_init(struct skge_hw *hw, int port)
2049 {
2050  struct skge_port *skge = netdev_priv(hw->dev[port]);
2051  int i;
2052  u32 reg;
2053  const u8 *addr = hw->dev[port]->dev_addr;
2054 
2055  /* WA code for COMA mode -- set PHY reset */
2056  if (hw->chip_id == CHIP_ID_YUKON_LITE &&
2057  hw->chip_rev >= CHIP_REV_YU_LITE_A3) {
2058  reg = skge_read32(hw, B2_GP_IO);
2059  reg |= GP_DIR_9 | GP_IO_9;
2060  skge_write32(hw, B2_GP_IO, reg);
2061  }
2062 
2063  /* hard reset */
2064  skge_write32(hw, SK_REG(port, GPHY_CTRL), GPC_RST_SET);
2065  skge_write32(hw, SK_REG(port, GMAC_CTRL), GMC_RST_SET);
2066 
2067  /* WA code for COMA mode -- clear PHY reset */
2068  if (hw->chip_id == CHIP_ID_YUKON_LITE &&
2069  hw->chip_rev >= CHIP_REV_YU_LITE_A3) {
2070  reg = skge_read32(hw, B2_GP_IO);
2071  reg |= GP_DIR_9;
2072  reg &= ~GP_IO_9;
2073  skge_write32(hw, B2_GP_IO, reg);
2074  }
2075 
2076  /* Set hardware config mode */
2080 
2081  /* Clear GMC reset */
2082  skge_write32(hw, SK_REG(port, GPHY_CTRL), reg | GPC_RST_SET);
2083  skge_write32(hw, SK_REG(port, GPHY_CTRL), reg | GPC_RST_CLR);
2084  skge_write32(hw, SK_REG(port, GMAC_CTRL), GMC_PAUSE_ON | GMC_RST_CLR);
2085 
2086  if (skge->autoneg == AUTONEG_DISABLE) {
2087  reg = GM_GPCR_AU_ALL_DIS;
2088  gma_write16(hw, port, GM_GP_CTRL,
2089  gma_read16(hw, port, GM_GP_CTRL) | reg);
2090 
2091  switch (skge->speed) {
2092  case SPEED_1000:
2093  reg &= ~GM_GPCR_SPEED_100;
2094  reg |= GM_GPCR_SPEED_1000;
2095  break;
2096  case SPEED_100:
2097  reg &= ~GM_GPCR_SPEED_1000;
2098  reg |= GM_GPCR_SPEED_100;
2099  break;
2100  case SPEED_10:
2102  break;
2103  }
2104 
2105  if (skge->duplex == DUPLEX_FULL)
2106  reg |= GM_GPCR_DUP_FULL;
2107  } else
2109 
2110  switch (skge->flow_control) {
2111  case FLOW_MODE_NONE:
2112  skge_write32(hw, SK_REG(port, GMAC_CTRL), GMC_PAUSE_OFF);
2114  break;
2115  case FLOW_MODE_LOC_SEND:
2116  /* disable Rx flow-control */
2118  break;
2119  case FLOW_MODE_SYMMETRIC:
2120  case FLOW_MODE_SYM_OR_REM:
2121  /* enable Tx & Rx flow-control */
2122  break;
2123  }
2124 
2125  gma_write16(hw, port, GM_GP_CTRL, reg);
2126  skge_read16(hw, SK_REG(port, GMAC_IRQ_SRC));
2127 
2128  yukon_init(hw, port);
2129 
2130  /* MIB clear */
2131  reg = gma_read16(hw, port, GM_PHY_ADDR);
2132  gma_write16(hw, port, GM_PHY_ADDR, reg | GM_PAR_MIB_CLR);
2133 
2134  for (i = 0; i < GM_MIB_CNT_SIZE; i++)
2135  gma_read16(hw, port, GM_MIB_CNT_BASE + 8*i);
2136  gma_write16(hw, port, GM_PHY_ADDR, reg);
2137 
2138  /* transmit control */
2139  gma_write16(hw, port, GM_TX_CTRL, TX_COL_THR(TX_COL_DEF));
2140 
2141  /* receive control reg: unicast + multicast + no FCS */
2142  gma_write16(hw, port, GM_RX_CTRL,
2144 
2145  /* transmit flow control */
2146  gma_write16(hw, port, GM_TX_FLOW_CTRL, 0xffff);
2147 
2148  /* transmit parameter */
2149  gma_write16(hw, port, GM_TX_PARAM,
2153 
2154  /* configure the Serial Mode Register */
2158 
2159  if (hw->dev[port]->mtu > ETH_DATA_LEN)
2160  reg |= GM_SMOD_JUMBO_ENA;
2161 
2162  gma_write16(hw, port, GM_SERIAL_MODE, reg);
2163 
2164  /* physical address: used for pause frames */
2165  gma_set_addr(hw, port, GM_SRC_ADDR_1L, addr);
2166  /* virtual address for data */
2167  gma_set_addr(hw, port, GM_SRC_ADDR_2L, addr);
2168 
2169  /* enable interrupt mask for counter overflows */
2170  gma_write16(hw, port, GM_TX_IRQ_MSK, 0);
2171  gma_write16(hw, port, GM_RX_IRQ_MSK, 0);
2172  gma_write16(hw, port, GM_TR_IRQ_MSK, 0);
2173 
2174  /* Initialize Mac Fifo */
2175 
2176  /* Configure Rx MAC FIFO */
2177  skge_write16(hw, SK_REG(port, RX_GMF_FL_MSK), RX_FF_FL_DEF_MSK);
2178  reg = GMF_OPER_ON | GMF_RX_F_FL_ON;
2179 
2180  /* disable Rx GMAC FIFO Flush for YUKON-Lite Rev. A0 only */
2181  if (is_yukon_lite_a0(hw))
2182  reg &= ~GMF_RX_F_FL_ON;
2183 
2184  skge_write8(hw, SK_REG(port, RX_GMF_CTRL_T), GMF_RST_CLR);
2185  skge_write16(hw, SK_REG(port, RX_GMF_CTRL_T), reg);
2186  /*
2187  * because Pause Packet Truncation in GMAC is not working
2188  * we have to increase the Flush Threshold to 64 bytes
2189  * in order to flush pause packets in Rx FIFO on Yukon-1
2190  */
2191  skge_write16(hw, SK_REG(port, RX_GMF_FL_THR), RX_GMF_FL_THR_DEF+1);
2192 
2193  /* Configure Tx MAC FIFO */
2194  skge_write8(hw, SK_REG(port, TX_GMF_CTRL_T), GMF_RST_CLR);
2195  skge_write16(hw, SK_REG(port, TX_GMF_CTRL_T), GMF_OPER_ON);
2196 }
2197 
2198 /* Go into power down mode */
2199 static void yukon_suspend(struct skge_hw *hw, int port)
2200 {
2201  u16 ctrl;
2202 
2203  ctrl = gm_phy_read(hw, port, PHY_MARV_PHY_CTRL);
2204  ctrl |= PHY_M_PC_POL_R_DIS;
2205  gm_phy_write(hw, port, PHY_MARV_PHY_CTRL, ctrl);
2206 
2207  ctrl = gm_phy_read(hw, port, PHY_MARV_CTRL);
2208  ctrl |= PHY_CT_RESET;
2209  gm_phy_write(hw, port, PHY_MARV_CTRL, ctrl);
2210 
2211  /* switch IEEE compatible power down mode on */
2212  ctrl = gm_phy_read(hw, port, PHY_MARV_CTRL);
2213  ctrl |= PHY_CT_PDOWN;
2214  gm_phy_write(hw, port, PHY_MARV_CTRL, ctrl);
2215 }
2216 
2217 static void yukon_stop(struct skge_port *skge)
2218 {
2219  struct skge_hw *hw = skge->hw;
2220  int port = skge->port;
2221 
2222  skge_write8(hw, SK_REG(port, GMAC_IRQ_MSK), 0);
2223  yukon_reset(hw, port);
2224 
2225  gma_write16(hw, port, GM_GP_CTRL,
2226  gma_read16(hw, port, GM_GP_CTRL)
2228  gma_read16(hw, port, GM_GP_CTRL);
2229 
2230  yukon_suspend(hw, port);
2231 
2232  /* set GPHY Control reset */
2233  skge_write8(hw, SK_REG(port, GPHY_CTRL), GPC_RST_SET);
2234  skge_write8(hw, SK_REG(port, GMAC_CTRL), GMC_RST_SET);
2235 }
2236 
2237 static void yukon_get_stats(struct skge_port *skge, u64 *data)
2238 {
2239  struct skge_hw *hw = skge->hw;
2240  int port = skge->port;
2241  int i;
2242 
2243  data[0] = (u64) gma_read32(hw, port, GM_TXO_OK_HI) << 32
2244  | gma_read32(hw, port, GM_TXO_OK_LO);
2245  data[1] = (u64) gma_read32(hw, port, GM_RXO_OK_HI) << 32
2246  | gma_read32(hw, port, GM_RXO_OK_LO);
2247 
2248  for (i = 2; i < ARRAY_SIZE(skge_stats); i++)
2249  data[i] = gma_read32(hw, port,
2250  skge_stats[i].gma_offset);
2251 }
2252 
2253 static void yukon_mac_intr(struct skge_hw *hw, int port)
2254 {
2255  struct net_device *dev = hw->dev[port];
2256  struct skge_port *skge = netdev_priv(dev);
2257  u8 status = skge_read8(hw, SK_REG(port, GMAC_IRQ_SRC));
2258 
2259  netif_printk(skge, intr, KERN_DEBUG, skge->netdev,
2260  "mac interrupt status 0x%x\n", status);
2261 
2262  if (status & GM_IS_RX_FF_OR) {
2263  ++dev->stats.rx_fifo_errors;
2264  skge_write8(hw, SK_REG(port, RX_GMF_CTRL_T), GMF_CLI_RX_FO);
2265  }
2266 
2267  if (status & GM_IS_TX_FF_UR) {
2268  ++dev->stats.tx_fifo_errors;
2269  skge_write8(hw, SK_REG(port, TX_GMF_CTRL_T), GMF_CLI_TX_FU);
2270  }
2271 
2272 }
2273 
2274 static u16 yukon_speed(const struct skge_hw *hw, u16 aux)
2275 {
2276  switch (aux & PHY_M_PS_SPEED_MSK) {
2277  case PHY_M_PS_SPEED_1000:
2278  return SPEED_1000;
2279  case PHY_M_PS_SPEED_100:
2280  return SPEED_100;
2281  default:
2282  return SPEED_10;
2283  }
2284 }
2285 
2286 static void yukon_link_up(struct skge_port *skge)
2287 {
2288  struct skge_hw *hw = skge->hw;
2289  int port = skge->port;
2290  u16 reg;
2291 
2292  /* Enable Transmit FIFO Underrun */
2293  skge_write8(hw, SK_REG(port, GMAC_IRQ_MSK), GMAC_DEF_MSK);
2294 
2295  reg = gma_read16(hw, port, GM_GP_CTRL);
2296  if (skge->duplex == DUPLEX_FULL || skge->autoneg == AUTONEG_ENABLE)
2297  reg |= GM_GPCR_DUP_FULL;
2298 
2299  /* enable Rx/Tx */
2300  reg |= GM_GPCR_RX_ENA | GM_GPCR_TX_ENA;
2301  gma_write16(hw, port, GM_GP_CTRL, reg);
2302 
2303  gm_phy_write(hw, port, PHY_MARV_INT_MASK, PHY_M_IS_DEF_MSK);
2304  skge_link_up(skge);
2305 }
2306 
2307 static void yukon_link_down(struct skge_port *skge)
2308 {
2309  struct skge_hw *hw = skge->hw;
2310  int port = skge->port;
2311  u16 ctrl;
2312 
2313  ctrl = gma_read16(hw, port, GM_GP_CTRL);
2314  ctrl &= ~(GM_GPCR_RX_ENA | GM_GPCR_TX_ENA);
2315  gma_write16(hw, port, GM_GP_CTRL, ctrl);
2316 
2317  if (skge->flow_status == FLOW_STAT_REM_SEND) {
2318  ctrl = gm_phy_read(hw, port, PHY_MARV_AUNE_ADV);
2319  ctrl |= PHY_M_AN_ASP;
2320  /* restore Asymmetric Pause bit */
2321  gm_phy_write(hw, port, PHY_MARV_AUNE_ADV, ctrl);
2322  }
2323 
2324  skge_link_down(skge);
2325 
2326  yukon_init(hw, port);
2327 }
2328 
2329 static void yukon_phy_intr(struct skge_port *skge)
2330 {
2331  struct skge_hw *hw = skge->hw;
2332  int port = skge->port;
2333  const char *reason = NULL;
2334  u16 istatus, phystat;
2335 
2336  istatus = gm_phy_read(hw, port, PHY_MARV_INT_STAT);
2337  phystat = gm_phy_read(hw, port, PHY_MARV_PHY_STAT);
2338 
2339  netif_printk(skge, intr, KERN_DEBUG, skge->netdev,
2340  "phy interrupt status 0x%x 0x%x\n", istatus, phystat);
2341 
2342  if (istatus & PHY_M_IS_AN_COMPL) {
2343  if (gm_phy_read(hw, port, PHY_MARV_AUNE_LP)
2344  & PHY_M_AN_RF) {
2345  reason = "remote fault";
2346  goto failed;
2347  }
2348 
2349  if (gm_phy_read(hw, port, PHY_MARV_1000T_STAT) & PHY_B_1000S_MSF) {
2350  reason = "master/slave fault";
2351  goto failed;
2352  }
2353 
2354  if (!(phystat & PHY_M_PS_SPDUP_RES)) {
2355  reason = "speed/duplex";
2356  goto failed;
2357  }
2358 
2359  skge->duplex = (phystat & PHY_M_PS_FULL_DUP)
2361  skge->speed = yukon_speed(hw, phystat);
2362 
2363  /* We are using IEEE 802.3z/D5.0 Table 37-4 */
2364  switch (phystat & PHY_M_PS_PAUSE_MSK) {
2365  case PHY_M_PS_PAUSE_MSK:
2367  break;
2368  case PHY_M_PS_RX_P_EN:
2370  break;
2371  case PHY_M_PS_TX_P_EN:
2373  break;
2374  default:
2375  skge->flow_status = FLOW_STAT_NONE;
2376  }
2377 
2378  if (skge->flow_status == FLOW_STAT_NONE ||
2379  (skge->speed < SPEED_1000 && skge->duplex == DUPLEX_HALF))
2380  skge_write8(hw, SK_REG(port, GMAC_CTRL), GMC_PAUSE_OFF);
2381  else
2382  skge_write8(hw, SK_REG(port, GMAC_CTRL), GMC_PAUSE_ON);
2383  yukon_link_up(skge);
2384  return;
2385  }
2386 
2387  if (istatus & PHY_M_IS_LSP_CHANGE)
2388  skge->speed = yukon_speed(hw, phystat);
2389 
2390  if (istatus & PHY_M_IS_DUP_CHANGE)
2391  skge->duplex = (phystat & PHY_M_PS_FULL_DUP) ? DUPLEX_FULL : DUPLEX_HALF;
2392  if (istatus & PHY_M_IS_LST_CHANGE) {
2393  if (phystat & PHY_M_PS_LINK_UP)
2394  yukon_link_up(skge);
2395  else
2396  yukon_link_down(skge);
2397  }
2398  return;
2399  failed:
2400  pr_err("%s: autonegotiation failed (%s)\n", skge->netdev->name, reason);
2401 
2402  /* XXX restart autonegotiation? */
2403 }
2404 
2405 static void skge_phy_reset(struct skge_port *skge)
2406 {
2407  struct skge_hw *hw = skge->hw;
2408  int port = skge->port;
2409  struct net_device *dev = hw->dev[port];
2410 
2411  netif_stop_queue(skge->netdev);
2412  netif_carrier_off(skge->netdev);
2413 
2414  spin_lock_bh(&hw->phy_lock);
2415  if (is_genesis(hw)) {
2416  genesis_reset(hw, port);
2417  genesis_mac_init(hw, port);
2418  } else {
2419  yukon_reset(hw, port);
2420  yukon_init(hw, port);
2421  }
2422  spin_unlock_bh(&hw->phy_lock);
2423 
2424  skge_set_multicast(dev);
2425 }
2426 
2427 /* Basic MII support */
2428 static int skge_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd)
2429 {
2430  struct mii_ioctl_data *data = if_mii(ifr);
2431  struct skge_port *skge = netdev_priv(dev);
2432  struct skge_hw *hw = skge->hw;
2433  int err = -EOPNOTSUPP;
2434 
2435  if (!netif_running(dev))
2436  return -ENODEV; /* Phy still in reset */
2437 
2438  switch (cmd) {
2439  case SIOCGMIIPHY:
2440  data->phy_id = hw->phy_addr;
2441 
2442  /* fallthru */
2443  case SIOCGMIIREG: {
2444  u16 val = 0;
2445  spin_lock_bh(&hw->phy_lock);
2446 
2447  if (is_genesis(hw))
2448  err = __xm_phy_read(hw, skge->port, data->reg_num & 0x1f, &val);
2449  else
2450  err = __gm_phy_read(hw, skge->port, data->reg_num & 0x1f, &val);
2451  spin_unlock_bh(&hw->phy_lock);
2452  data->val_out = val;
2453  break;
2454  }
2455 
2456  case SIOCSMIIREG:
2457  spin_lock_bh(&hw->phy_lock);
2458  if (is_genesis(hw))
2459  err = xm_phy_write(hw, skge->port, data->reg_num & 0x1f,
2460  data->val_in);
2461  else
2462  err = gm_phy_write(hw, skge->port, data->reg_num & 0x1f,
2463  data->val_in);
2464  spin_unlock_bh(&hw->phy_lock);
2465  break;
2466  }
2467  return err;
2468 }
2469 
2470 static void skge_ramset(struct skge_hw *hw, u16 q, u32 start, size_t len)
2471 {
2472  u32 end;
2473 
2474  start /= 8;
2475  len /= 8;
2476  end = start + len - 1;
2477 
2478  skge_write8(hw, RB_ADDR(q, RB_CTRL), RB_RST_CLR);
2479  skge_write32(hw, RB_ADDR(q, RB_START), start);
2480  skge_write32(hw, RB_ADDR(q, RB_WP), start);
2481  skge_write32(hw, RB_ADDR(q, RB_RP), start);
2482  skge_write32(hw, RB_ADDR(q, RB_END), end);
2483 
2484  if (q == Q_R1 || q == Q_R2) {
2485  /* Set thresholds on receive queue's */
2486  skge_write32(hw, RB_ADDR(q, RB_RX_UTPP),
2487  start + (2*len)/3);
2488  skge_write32(hw, RB_ADDR(q, RB_RX_LTPP),
2489  start + (len/3));
2490  } else {
2491  /* Enable store & forward on Tx queue's because
2492  * Tx FIFO is only 4K on Genesis and 1K on Yukon
2493  */
2494  skge_write8(hw, RB_ADDR(q, RB_CTRL), RB_ENA_STFWD);
2495  }
2496 
2497  skge_write8(hw, RB_ADDR(q, RB_CTRL), RB_ENA_OP_MD);
2498 }
2499 
2500 /* Setup Bus Memory Interface */
2501 static void skge_qset(struct skge_port *skge, u16 q,
2502  const struct skge_element *e)
2503 {
2504  struct skge_hw *hw = skge->hw;
2505  u32 watermark = 0x600;
2506  u64 base = skge->dma + (e->desc - skge->mem);
2507 
2508  /* optimization to reduce window on 32bit/33mhz */
2509  if ((skge_read16(hw, B0_CTST) & (CS_BUS_CLOCK | CS_BUS_SLOT_SZ)) == 0)
2510  watermark /= 2;
2511 
2512  skge_write32(hw, Q_ADDR(q, Q_CSR), CSR_CLR_RESET);
2513  skge_write32(hw, Q_ADDR(q, Q_F), watermark);
2514  skge_write32(hw, Q_ADDR(q, Q_DA_H), (u32)(base >> 32));
2515  skge_write32(hw, Q_ADDR(q, Q_DA_L), (u32)base);
2516 }
2517 
2518 static int skge_up(struct net_device *dev)
2519 {
2520  struct skge_port *skge = netdev_priv(dev);
2521  struct skge_hw *hw = skge->hw;
2522  int port = skge->port;
2523  u32 chunk, ram_addr;
2524  size_t rx_size, tx_size;
2525  int err;
2526 
2527  if (!is_valid_ether_addr(dev->dev_addr))
2528  return -EINVAL;
2529 
2530  netif_info(skge, ifup, skge->netdev, "enabling interface\n");
2531 
2532  if (dev->mtu > RX_BUF_SIZE)
2533  skge->rx_buf_size = dev->mtu + ETH_HLEN;
2534  else
2535  skge->rx_buf_size = RX_BUF_SIZE;
2536 
2537 
2538  rx_size = skge->rx_ring.count * sizeof(struct skge_rx_desc);
2539  tx_size = skge->tx_ring.count * sizeof(struct skge_tx_desc);
2540  skge->mem_size = tx_size + rx_size;
2541  skge->mem = pci_alloc_consistent(hw->pdev, skge->mem_size, &skge->dma);
2542  if (!skge->mem)
2543  return -ENOMEM;
2544 
2545  BUG_ON(skge->dma & 7);
2546 
2547  if ((u64)skge->dma >> 32 != ((u64) skge->dma + skge->mem_size) >> 32) {
2548  dev_err(&hw->pdev->dev, "pci_alloc_consistent region crosses 4G boundary\n");
2549  err = -EINVAL;
2550  goto free_pci_mem;
2551  }
2552 
2553  memset(skge->mem, 0, skge->mem_size);
2554 
2555  err = skge_ring_alloc(&skge->rx_ring, skge->mem, skge->dma);
2556  if (err)
2557  goto free_pci_mem;
2558 
2559  err = skge_rx_fill(dev);
2560  if (err)
2561  goto free_rx_ring;
2562 
2563  err = skge_ring_alloc(&skge->tx_ring, skge->mem + rx_size,
2564  skge->dma + rx_size);
2565  if (err)
2566  goto free_rx_ring;
2567 
2568  if (hw->ports == 1) {
2569  err = request_irq(hw->pdev->irq, skge_intr, IRQF_SHARED,
2570  dev->name, hw);
2571  if (err) {
2572  netdev_err(dev, "Unable to allocate interrupt %d error: %d\n",
2573  hw->pdev->irq, err);
2574  goto free_tx_ring;
2575  }
2576  }
2577 
2578  /* Initialize MAC */
2579  netif_carrier_off(dev);
2580  spin_lock_bh(&hw->phy_lock);
2581  if (is_genesis(hw))
2582  genesis_mac_init(hw, port);
2583  else
2584  yukon_mac_init(hw, port);
2585  spin_unlock_bh(&hw->phy_lock);
2586 
2587  /* Configure RAMbuffers - equally between ports and tx/rx */
2588  chunk = (hw->ram_size - hw->ram_offset) / (hw->ports * 2);
2589  ram_addr = hw->ram_offset + 2 * chunk * port;
2590 
2591  skge_ramset(hw, rxqaddr[port], ram_addr, chunk);
2592  skge_qset(skge, rxqaddr[port], skge->rx_ring.to_clean);
2593 
2594  BUG_ON(skge->tx_ring.to_use != skge->tx_ring.to_clean);
2595  skge_ramset(hw, txqaddr[port], ram_addr+chunk, chunk);
2596  skge_qset(skge, txqaddr[port], skge->tx_ring.to_use);
2597 
2598  /* Start receiver BMU */
2599  wmb();
2600  skge_write8(hw, Q_ADDR(rxqaddr[port], Q_CSR), CSR_START | CSR_IRQ_CL_F);
2601  skge_led(skge, LED_MODE_ON);
2602 
2603  spin_lock_irq(&hw->hw_lock);
2604  hw->intr_mask |= portmask[port];
2605  skge_write32(hw, B0_IMSK, hw->intr_mask);
2606  skge_read32(hw, B0_IMSK);
2607  spin_unlock_irq(&hw->hw_lock);
2608 
2609  napi_enable(&skge->napi);
2610 
2611  skge_set_multicast(dev);
2612 
2613  return 0;
2614 
2615  free_tx_ring:
2616  kfree(skge->tx_ring.start);
2617  free_rx_ring:
2618  skge_rx_clean(skge);
2619  kfree(skge->rx_ring.start);
2620  free_pci_mem:
2621  pci_free_consistent(hw->pdev, skge->mem_size, skge->mem, skge->dma);
2622  skge->mem = NULL;
2623 
2624  return err;
2625 }
2626 
2627 /* stop receiver */
2628 static void skge_rx_stop(struct skge_hw *hw, int port)
2629 {
2630  skge_write8(hw, Q_ADDR(rxqaddr[port], Q_CSR), CSR_STOP);
2631  skge_write32(hw, RB_ADDR(port ? Q_R2 : Q_R1, RB_CTRL),
2633  skge_write32(hw, Q_ADDR(rxqaddr[port], Q_CSR), CSR_SET_RESET);
2634 }
2635 
2636 static int skge_down(struct net_device *dev)
2637 {
2638  struct skge_port *skge = netdev_priv(dev);
2639  struct skge_hw *hw = skge->hw;
2640  int port = skge->port;
2641 
2642  if (skge->mem == NULL)
2643  return 0;
2644 
2645  netif_info(skge, ifdown, skge->netdev, "disabling interface\n");
2646 
2647  netif_tx_disable(dev);
2648 
2649  if (is_genesis(hw) && hw->phy_type == SK_PHY_XMAC)
2650  del_timer_sync(&skge->link_timer);
2651 
2652  napi_disable(&skge->napi);
2653  netif_carrier_off(dev);
2654 
2655  spin_lock_irq(&hw->hw_lock);
2656  hw->intr_mask &= ~portmask[port];
2657  skge_write32(hw, B0_IMSK, (hw->ports == 1) ? 0 : hw->intr_mask);
2658  skge_read32(hw, B0_IMSK);
2659  spin_unlock_irq(&hw->hw_lock);
2660 
2661  if (hw->ports == 1)
2662  free_irq(hw->pdev->irq, hw);
2663 
2664  skge_write8(skge->hw, SK_REG(skge->port, LNK_LED_REG), LED_OFF);
2665  if (is_genesis(hw))
2666  genesis_stop(skge);
2667  else
2668  yukon_stop(skge);
2669 
2670  /* Stop transmitter */
2671  skge_write8(hw, Q_ADDR(txqaddr[port], Q_CSR), CSR_STOP);
2672  skge_write32(hw, RB_ADDR(txqaddr[port], RB_CTRL),
2674 
2675 
2676  /* Disable Force Sync bit and Enable Alloc bit */
2677  skge_write8(hw, SK_REG(port, TXA_CTRL),
2679 
2680  /* Stop Interval Timer and Limit Counter of Tx Arbiter */
2681  skge_write32(hw, SK_REG(port, TXA_ITI_INI), 0L);
2682  skge_write32(hw, SK_REG(port, TXA_LIM_INI), 0L);
2683 
2684  /* Reset PCI FIFO */
2685  skge_write32(hw, Q_ADDR(txqaddr[port], Q_CSR), CSR_SET_RESET);
2686  skge_write32(hw, RB_ADDR(txqaddr[port], RB_CTRL), RB_RST_SET);
2687 
2688  /* Reset the RAM Buffer async Tx queue */
2689  skge_write8(hw, RB_ADDR(port == 0 ? Q_XA1 : Q_XA2, RB_CTRL), RB_RST_SET);
2690 
2691  skge_rx_stop(hw, port);
2692 
2693  if (is_genesis(hw)) {
2694  skge_write8(hw, SK_REG(port, TX_MFF_CTRL2), MFF_RST_SET);
2695  skge_write8(hw, SK_REG(port, RX_MFF_CTRL2), MFF_RST_SET);
2696  } else {
2697  skge_write8(hw, SK_REG(port, RX_GMF_CTRL_T), GMF_RST_SET);
2698  skge_write8(hw, SK_REG(port, TX_GMF_CTRL_T), GMF_RST_SET);
2699  }
2700 
2701  skge_led(skge, LED_MODE_OFF);
2702 
2703  netif_tx_lock_bh(dev);
2704  skge_tx_clean(dev);
2705  netif_tx_unlock_bh(dev);
2706 
2707  skge_rx_clean(skge);
2708 
2709  kfree(skge->rx_ring.start);
2710  kfree(skge->tx_ring.start);
2711  pci_free_consistent(hw->pdev, skge->mem_size, skge->mem, skge->dma);
2712  skge->mem = NULL;
2713  return 0;
2714 }
2715 
2716 static inline int skge_avail(const struct skge_ring *ring)
2717 {
2718  smp_mb();
2719  return ((ring->to_clean > ring->to_use) ? 0 : ring->count)
2720  + (ring->to_clean - ring->to_use) - 1;
2721 }
2722 
2723 static netdev_tx_t skge_xmit_frame(struct sk_buff *skb,
2724  struct net_device *dev)
2725 {
2726  struct skge_port *skge = netdev_priv(dev);
2727  struct skge_hw *hw = skge->hw;
2728  struct skge_element *e;
2729  struct skge_tx_desc *td;
2730  int i;
2731  u32 control, len;
2732  u64 map;
2733 
2734  if (skb_padto(skb, ETH_ZLEN))
2735  return NETDEV_TX_OK;
2736 
2737  if (unlikely(skge_avail(&skge->tx_ring) < skb_shinfo(skb)->nr_frags + 1))
2738  return NETDEV_TX_BUSY;
2739 
2740  e = skge->tx_ring.to_use;
2741  td = e->desc;
2742  BUG_ON(td->control & BMU_OWN);
2743  e->skb = skb;
2744  len = skb_headlen(skb);
2745  map = pci_map_single(hw->pdev, skb->data, len, PCI_DMA_TODEVICE);
2746  dma_unmap_addr_set(e, mapaddr, map);
2747  dma_unmap_len_set(e, maplen, len);
2748 
2749  td->dma_lo = map;
2750  td->dma_hi = map >> 32;
2751 
2752  if (skb->ip_summed == CHECKSUM_PARTIAL) {
2753  const int offset = skb_checksum_start_offset(skb);
2754 
2755  /* This seems backwards, but it is what the sk98lin
2756  * does. Looks like hardware is wrong?
2757  */
2758  if (ipip_hdr(skb)->protocol == IPPROTO_UDP &&
2759  hw->chip_rev == 0 && hw->chip_id == CHIP_ID_YUKON)
2760  control = BMU_TCP_CHECK;
2761  else
2762  control = BMU_UDP_CHECK;
2763 
2764  td->csum_offs = 0;
2765  td->csum_start = offset;
2766  td->csum_write = offset + skb->csum_offset;
2767  } else
2768  control = BMU_CHECK;
2769 
2770  if (!skb_shinfo(skb)->nr_frags) /* single buffer i.e. no fragments */
2771  control |= BMU_EOF | BMU_IRQ_EOF;
2772  else {
2773  struct skge_tx_desc *tf = td;
2774 
2775  control |= BMU_STFWD;
2776  for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2777  const skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2778 
2779  map = skb_frag_dma_map(&hw->pdev->dev, frag, 0,
2780  skb_frag_size(frag), DMA_TO_DEVICE);
2781 
2782  e = e->next;
2783  e->skb = skb;
2784  tf = e->desc;
2785  BUG_ON(tf->control & BMU_OWN);
2786 
2787  tf->dma_lo = map;
2788  tf->dma_hi = (u64) map >> 32;
2789  dma_unmap_addr_set(e, mapaddr, map);
2790  dma_unmap_len_set(e, maplen, skb_frag_size(frag));
2791 
2792  tf->control = BMU_OWN | BMU_SW | control | skb_frag_size(frag);
2793  }
2794  tf->control |= BMU_EOF | BMU_IRQ_EOF;
2795  }
2796  /* Make sure all the descriptors written */
2797  wmb();
2798  td->control = BMU_OWN | BMU_SW | BMU_STF | control | len;
2799  wmb();
2800 
2801  netdev_sent_queue(dev, skb->len);
2802 
2803  skge_write8(hw, Q_ADDR(txqaddr[skge->port], Q_CSR), CSR_START);
2804 
2805  netif_printk(skge, tx_queued, KERN_DEBUG, skge->netdev,
2806  "tx queued, slot %td, len %d\n",
2807  e - skge->tx_ring.start, skb->len);
2808 
2809  skge->tx_ring.to_use = e->next;
2810  smp_wmb();
2811 
2812  if (skge_avail(&skge->tx_ring) <= TX_LOW_WATER) {
2813  netdev_dbg(dev, "transmit queue full\n");
2814  netif_stop_queue(dev);
2815  }
2816 
2817  return NETDEV_TX_OK;
2818 }
2819 
2820 
2821 /* Free resources associated with this reing element */
2822 static inline void skge_tx_unmap(struct pci_dev *pdev, struct skge_element *e,
2823  u32 control)
2824 {
2825  /* skb header vs. fragment */
2826  if (control & BMU_STF)
2827  pci_unmap_single(pdev, dma_unmap_addr(e, mapaddr),
2828  dma_unmap_len(e, maplen),
2830  else
2831  pci_unmap_page(pdev, dma_unmap_addr(e, mapaddr),
2832  dma_unmap_len(e, maplen),
2834 }
2835 
2836 /* Free all buffers in transmit ring */
2837 static void skge_tx_clean(struct net_device *dev)
2838 {
2839  struct skge_port *skge = netdev_priv(dev);
2840  struct skge_element *e;
2841 
2842  for (e = skge->tx_ring.to_clean; e != skge->tx_ring.to_use; e = e->next) {
2843  struct skge_tx_desc *td = e->desc;
2844 
2845  skge_tx_unmap(skge->hw->pdev, e, td->control);
2846 
2847  if (td->control & BMU_EOF)
2848  dev_kfree_skb(e->skb);
2849  td->control = 0;
2850  }
2851 
2852  netdev_reset_queue(dev);
2853  skge->tx_ring.to_clean = e;
2854 }
2855 
2856 static void skge_tx_timeout(struct net_device *dev)
2857 {
2858  struct skge_port *skge = netdev_priv(dev);
2859 
2860  netif_printk(skge, timer, KERN_DEBUG, skge->netdev, "tx timeout\n");
2861 
2862  skge_write8(skge->hw, Q_ADDR(txqaddr[skge->port], Q_CSR), CSR_STOP);
2863  skge_tx_clean(dev);
2864  netif_wake_queue(dev);
2865 }
2866 
2867 static int skge_change_mtu(struct net_device *dev, int new_mtu)
2868 {
2869  int err;
2870 
2871  if (new_mtu < ETH_ZLEN || new_mtu > ETH_JUMBO_MTU)
2872  return -EINVAL;
2873 
2874  if (!netif_running(dev)) {
2875  dev->mtu = new_mtu;
2876  return 0;
2877  }
2878 
2879  skge_down(dev);
2880 
2881  dev->mtu = new_mtu;
2882 
2883  err = skge_up(dev);
2884  if (err)
2885  dev_close(dev);
2886 
2887  return err;
2888 }
2889 
2890 static const u8 pause_mc_addr[ETH_ALEN] = { 0x1, 0x80, 0xc2, 0x0, 0x0, 0x1 };
2891 
2892 static void genesis_add_filter(u8 filter[8], const u8 *addr)
2893 {
2894  u32 crc, bit;
2895 
2896  crc = ether_crc_le(ETH_ALEN, addr);
2897  bit = ~crc & 0x3f;
2898  filter[bit/8] |= 1 << (bit%8);
2899 }
2900 
2901 static void genesis_set_multicast(struct net_device *dev)
2902 {
2903  struct skge_port *skge = netdev_priv(dev);
2904  struct skge_hw *hw = skge->hw;
2905  int port = skge->port;
2906  struct netdev_hw_addr *ha;
2907  u32 mode;
2908  u8 filter[8];
2909 
2910  mode = xm_read32(hw, port, XM_MODE);
2911  mode |= XM_MD_ENA_HASH;
2912  if (dev->flags & IFF_PROMISC)
2913  mode |= XM_MD_ENA_PROM;
2914  else
2915  mode &= ~XM_MD_ENA_PROM;
2916 
2917  if (dev->flags & IFF_ALLMULTI)
2918  memset(filter, 0xff, sizeof(filter));
2919  else {
2920  memset(filter, 0, sizeof(filter));
2921 
2922  if (skge->flow_status == FLOW_STAT_REM_SEND ||
2924  genesis_add_filter(filter, pause_mc_addr);
2925 
2926  netdev_for_each_mc_addr(ha, dev)
2927  genesis_add_filter(filter, ha->addr);
2928  }
2929 
2930  xm_write32(hw, port, XM_MODE, mode);
2931  xm_outhash(hw, port, XM_HSM, filter);
2932 }
2933 
2934 static void yukon_add_filter(u8 filter[8], const u8 *addr)
2935 {
2936  u32 bit = ether_crc(ETH_ALEN, addr) & 0x3f;
2937  filter[bit/8] |= 1 << (bit%8);
2938 }
2939 
2940 static void yukon_set_multicast(struct net_device *dev)
2941 {
2942  struct skge_port *skge = netdev_priv(dev);
2943  struct skge_hw *hw = skge->hw;
2944  int port = skge->port;
2945  struct netdev_hw_addr *ha;
2946  int rx_pause = (skge->flow_status == FLOW_STAT_REM_SEND ||
2947  skge->flow_status == FLOW_STAT_SYMMETRIC);
2948  u16 reg;
2949  u8 filter[8];
2950 
2951  memset(filter, 0, sizeof(filter));
2952 
2953  reg = gma_read16(hw, port, GM_RX_CTRL);
2954  reg |= GM_RXCR_UCF_ENA;
2955 
2956  if (dev->flags & IFF_PROMISC) /* promiscuous */
2957  reg &= ~(GM_RXCR_UCF_ENA | GM_RXCR_MCF_ENA);
2958  else if (dev->flags & IFF_ALLMULTI) /* all multicast */
2959  memset(filter, 0xff, sizeof(filter));
2960  else if (netdev_mc_empty(dev) && !rx_pause)/* no multicast */
2961  reg &= ~GM_RXCR_MCF_ENA;
2962  else {
2963  reg |= GM_RXCR_MCF_ENA;
2964 
2965  if (rx_pause)
2966  yukon_add_filter(filter, pause_mc_addr);
2967 
2968  netdev_for_each_mc_addr(ha, dev)
2969  yukon_add_filter(filter, ha->addr);
2970  }
2971 
2972 
2973  gma_write16(hw, port, GM_MC_ADDR_H1,
2974  (u16)filter[0] | ((u16)filter[1] << 8));
2975  gma_write16(hw, port, GM_MC_ADDR_H2,
2976  (u16)filter[2] | ((u16)filter[3] << 8));
2977  gma_write16(hw, port, GM_MC_ADDR_H3,
2978  (u16)filter[4] | ((u16)filter[5] << 8));
2979  gma_write16(hw, port, GM_MC_ADDR_H4,
2980  (u16)filter[6] | ((u16)filter[7] << 8));
2981 
2982  gma_write16(hw, port, GM_RX_CTRL, reg);
2983 }
2984 
2985 static inline u16 phy_length(const struct skge_hw *hw, u32 status)
2986 {
2987  if (is_genesis(hw))
2988  return status >> XMR_FS_LEN_SHIFT;
2989  else
2990  return status >> GMR_FS_LEN_SHIFT;
2991 }
2992 
2993 static inline int bad_phy_status(const struct skge_hw *hw, u32 status)
2994 {
2995  if (is_genesis(hw))
2996  return (status & (XMR_FS_ERR | XMR_FS_2L_VLAN)) != 0;
2997  else
2998  return (status & GMR_FS_ANY_ERR) ||
2999  (status & GMR_FS_RX_OK) == 0;
3000 }
3001 
3002 static void skge_set_multicast(struct net_device *dev)
3003 {
3004  struct skge_port *skge = netdev_priv(dev);
3005 
3006  if (is_genesis(skge->hw))
3007  genesis_set_multicast(dev);
3008  else
3009  yukon_set_multicast(dev);
3010 
3011 }
3012 
3013 
3014 /* Get receive buffer from descriptor.
3015  * Handles copy of small buffers and reallocation failures
3016  */
3017 static struct sk_buff *skge_rx_get(struct net_device *dev,
3018  struct skge_element *e,
3019  u32 control, u32 status, u16 csum)
3020 {
3021  struct skge_port *skge = netdev_priv(dev);
3022  struct sk_buff *skb;
3023  u16 len = control & BMU_BBC;
3024 
3025  netif_printk(skge, rx_status, KERN_DEBUG, skge->netdev,
3026  "rx slot %td status 0x%x len %d\n",
3027  e - skge->rx_ring.start, status, len);
3028 
3029  if (len > skge->rx_buf_size)
3030  goto error;
3031 
3032  if ((control & (BMU_EOF|BMU_STF)) != (BMU_STF|BMU_EOF))
3033  goto error;
3034 
3035  if (bad_phy_status(skge->hw, status))
3036  goto error;
3037 
3038  if (phy_length(skge->hw, status) != len)
3039  goto error;
3040 
3041  if (len < RX_COPY_THRESHOLD) {
3042  skb = netdev_alloc_skb_ip_align(dev, len);
3043  if (!skb)
3044  goto resubmit;
3045 
3046  pci_dma_sync_single_for_cpu(skge->hw->pdev,
3047  dma_unmap_addr(e, mapaddr),
3048  len, PCI_DMA_FROMDEVICE);
3049  skb_copy_from_linear_data(e->skb, skb->data, len);
3050  pci_dma_sync_single_for_device(skge->hw->pdev,
3051  dma_unmap_addr(e, mapaddr),
3052  len, PCI_DMA_FROMDEVICE);
3053  skge_rx_reuse(e, skge->rx_buf_size);
3054  } else {
3055  struct sk_buff *nskb;
3056 
3057  nskb = netdev_alloc_skb_ip_align(dev, skge->rx_buf_size);
3058  if (!nskb)
3059  goto resubmit;
3060 
3061  pci_unmap_single(skge->hw->pdev,
3062  dma_unmap_addr(e, mapaddr),
3063  dma_unmap_len(e, maplen),
3065  skb = e->skb;
3066  prefetch(skb->data);
3067  skge_rx_setup(skge, e, nskb, skge->rx_buf_size);
3068  }
3069 
3070  skb_put(skb, len);
3071 
3072  if (dev->features & NETIF_F_RXCSUM) {
3073  skb->csum = csum;
3075  }
3076 
3077  skb->protocol = eth_type_trans(skb, dev);
3078 
3079  return skb;
3080 error:
3081 
3082  netif_printk(skge, rx_err, KERN_DEBUG, skge->netdev,
3083  "rx err, slot %td control 0x%x status 0x%x\n",
3084  e - skge->rx_ring.start, control, status);
3085 
3086  if (is_genesis(skge->hw)) {
3087  if (status & (XMR_FS_RUNT|XMR_FS_LNG_ERR))
3088  dev->stats.rx_length_errors++;
3089  if (status & XMR_FS_FRA_ERR)
3090  dev->stats.rx_frame_errors++;
3091  if (status & XMR_FS_FCS_ERR)
3092  dev->stats.rx_crc_errors++;
3093  } else {
3094  if (status & (GMR_FS_LONG_ERR|GMR_FS_UN_SIZE))
3095  dev->stats.rx_length_errors++;
3096  if (status & GMR_FS_FRAGMENT)
3097  dev->stats.rx_frame_errors++;
3098  if (status & GMR_FS_CRC_ERR)
3099  dev->stats.rx_crc_errors++;
3100  }
3101 
3102 resubmit:
3103  skge_rx_reuse(e, skge->rx_buf_size);
3104  return NULL;
3105 }
3106 
3107 /* Free all buffers in Tx ring which are no longer owned by device */
3108 static void skge_tx_done(struct net_device *dev)
3109 {
3110  struct skge_port *skge = netdev_priv(dev);
3111  struct skge_ring *ring = &skge->tx_ring;
3112  struct skge_element *e;
3113  unsigned int bytes_compl = 0, pkts_compl = 0;
3114 
3115  skge_write8(skge->hw, Q_ADDR(txqaddr[skge->port], Q_CSR), CSR_IRQ_CL_F);
3116 
3117  for (e = ring->to_clean; e != ring->to_use; e = e->next) {
3118  u32 control = ((const struct skge_tx_desc *) e->desc)->control;
3119 
3120  if (control & BMU_OWN)
3121  break;
3122 
3123  skge_tx_unmap(skge->hw->pdev, e, control);
3124 
3125  if (control & BMU_EOF) {
3126  netif_printk(skge, tx_done, KERN_DEBUG, skge->netdev,
3127  "tx done slot %td\n",
3128  e - skge->tx_ring.start);
3129 
3130  pkts_compl++;
3131  bytes_compl += e->skb->len;
3132 
3133  dev_kfree_skb(e->skb);
3134  }
3135  }
3136  netdev_completed_queue(dev, pkts_compl, bytes_compl);
3137  skge->tx_ring.to_clean = e;
3138 
3139  /* Can run lockless until we need to synchronize to restart queue. */
3140  smp_mb();
3141 
3142  if (unlikely(netif_queue_stopped(dev) &&
3143  skge_avail(&skge->tx_ring) > TX_LOW_WATER)) {
3144  netif_tx_lock(dev);
3145  if (unlikely(netif_queue_stopped(dev) &&
3146  skge_avail(&skge->tx_ring) > TX_LOW_WATER)) {
3147  netif_wake_queue(dev);
3148 
3149  }
3150  netif_tx_unlock(dev);
3151  }
3152 }
3153 
3154 static int skge_poll(struct napi_struct *napi, int to_do)
3155 {
3156  struct skge_port *skge = container_of(napi, struct skge_port, napi);
3157  struct net_device *dev = skge->netdev;
3158  struct skge_hw *hw = skge->hw;
3159  struct skge_ring *ring = &skge->rx_ring;
3160  struct skge_element *e;
3161  int work_done = 0;
3162 
3163  skge_tx_done(dev);
3164 
3165  skge_write8(hw, Q_ADDR(rxqaddr[skge->port], Q_CSR), CSR_IRQ_CL_F);
3166 
3167  for (e = ring->to_clean; prefetch(e->next), work_done < to_do; e = e->next) {
3168  struct skge_rx_desc *rd = e->desc;
3169  struct sk_buff *skb;
3170  u32 control;
3171 
3172  rmb();
3173  control = rd->control;
3174  if (control & BMU_OWN)
3175  break;
3176 
3177  skb = skge_rx_get(dev, e, control, rd->status, rd->csum2);
3178  if (likely(skb)) {
3179  napi_gro_receive(napi, skb);
3180  ++work_done;
3181  }
3182  }
3183  ring->to_clean = e;
3184 
3185  /* restart receiver */
3186  wmb();
3187  skge_write8(hw, Q_ADDR(rxqaddr[skge->port], Q_CSR), CSR_START);
3188 
3189  if (work_done < to_do) {
3190  unsigned long flags;
3191 
3192  napi_gro_flush(napi, false);
3193  spin_lock_irqsave(&hw->hw_lock, flags);
3194  __napi_complete(napi);
3195  hw->intr_mask |= napimask[skge->port];
3196  skge_write32(hw, B0_IMSK, hw->intr_mask);
3197  skge_read32(hw, B0_IMSK);
3198  spin_unlock_irqrestore(&hw->hw_lock, flags);
3199  }
3200 
3201  return work_done;
3202 }
3203 
3204 /* Parity errors seem to happen when Genesis is connected to a switch
3205  * with no other ports present. Heartbeat error??
3206  */
3207 static void skge_mac_parity(struct skge_hw *hw, int port)
3208 {
3209  struct net_device *dev = hw->dev[port];
3210 
3211  ++dev->stats.tx_heartbeat_errors;
3212 
3213  if (is_genesis(hw))
3214  skge_write16(hw, SK_REG(port, TX_MFF_CTRL1),
3215  MFF_CLR_PERR);
3216  else
3217  /* HW-Bug #8: cleared by GMF_CLI_TX_FC instead of GMF_CLI_TX_PE */
3218  skge_write8(hw, SK_REG(port, TX_GMF_CTRL_T),
3219  (hw->chip_id == CHIP_ID_YUKON && hw->chip_rev == 0)
3221 }
3222 
3223 static void skge_mac_intr(struct skge_hw *hw, int port)
3224 {
3225  if (is_genesis(hw))
3226  genesis_mac_intr(hw, port);
3227  else
3228  yukon_mac_intr(hw, port);
3229 }
3230 
3231 /* Handle device specific framing and timeout interrupts */
3232 static void skge_error_irq(struct skge_hw *hw)
3233 {
3234  struct pci_dev *pdev = hw->pdev;
3235  u32 hwstatus = skge_read32(hw, B0_HWE_ISRC);
3236 
3237  if (is_genesis(hw)) {
3238  /* clear xmac errors */
3239  if (hwstatus & (IS_NO_STAT_M1|IS_NO_TIST_M1))
3240  skge_write16(hw, RX_MFF_CTRL1, MFF_CLR_INSTAT);
3241  if (hwstatus & (IS_NO_STAT_M2|IS_NO_TIST_M2))
3242  skge_write16(hw, RX_MFF_CTRL2, MFF_CLR_INSTAT);
3243  } else {
3244  /* Timestamp (unused) overflow */
3245  if (hwstatus & IS_IRQ_TIST_OV)
3246  skge_write8(hw, GMAC_TI_ST_CTRL, GMT_ST_CLR_IRQ);
3247  }
3248 
3249  if (hwstatus & IS_RAM_RD_PAR) {
3250  dev_err(&pdev->dev, "Ram read data parity error\n");
3251  skge_write16(hw, B3_RI_CTRL, RI_CLR_RD_PERR);
3252  }
3253 
3254  if (hwstatus & IS_RAM_WR_PAR) {
3255  dev_err(&pdev->dev, "Ram write data parity error\n");
3256  skge_write16(hw, B3_RI_CTRL, RI_CLR_WR_PERR);
3257  }
3258 
3259  if (hwstatus & IS_M1_PAR_ERR)
3260  skge_mac_parity(hw, 0);
3261 
3262  if (hwstatus & IS_M2_PAR_ERR)
3263  skge_mac_parity(hw, 1);
3264 
3265  if (hwstatus & IS_R1_PAR_ERR) {
3266  dev_err(&pdev->dev, "%s: receive queue parity error\n",
3267  hw->dev[0]->name);
3268  skge_write32(hw, B0_R1_CSR, CSR_IRQ_CL_P);
3269  }
3270 
3271  if (hwstatus & IS_R2_PAR_ERR) {
3272  dev_err(&pdev->dev, "%s: receive queue parity error\n",
3273  hw->dev[1]->name);
3274  skge_write32(hw, B0_R2_CSR, CSR_IRQ_CL_P);
3275  }
3276 
3277  if (hwstatus & (IS_IRQ_MST_ERR|IS_IRQ_STAT)) {
3278  u16 pci_status, pci_cmd;
3279 
3280  pci_read_config_word(pdev, PCI_COMMAND, &pci_cmd);
3281  pci_read_config_word(pdev, PCI_STATUS, &pci_status);
3282 
3283  dev_err(&pdev->dev, "PCI error cmd=%#x status=%#x\n",
3284  pci_cmd, pci_status);
3285 
3286  /* Write the error bits back to clear them. */
3287  pci_status &= PCI_STATUS_ERROR_BITS;
3288  skge_write8(hw, B2_TST_CTRL1, TST_CFG_WRITE_ON);
3289  pci_write_config_word(pdev, PCI_COMMAND,
3290  pci_cmd | PCI_COMMAND_SERR | PCI_COMMAND_PARITY);
3291  pci_write_config_word(pdev, PCI_STATUS, pci_status);
3292  skge_write8(hw, B2_TST_CTRL1, TST_CFG_WRITE_OFF);
3293 
3294  /* if error still set then just ignore it */
3295  hwstatus = skge_read32(hw, B0_HWE_ISRC);
3296  if (hwstatus & IS_IRQ_STAT) {
3297  dev_warn(&hw->pdev->dev, "unable to clear error (so ignoring them)\n");
3298  hw->intr_mask &= ~IS_HW_ERR;
3299  }
3300  }
3301 }
3302 
3303 /*
3304  * Interrupt from PHY are handled in tasklet (softirq)
3305  * because accessing phy registers requires spin wait which might
3306  * cause excess interrupt latency.
3307  */
3308 static void skge_extirq(unsigned long arg)
3309 {
3310  struct skge_hw *hw = (struct skge_hw *) arg;
3311  int port;
3312 
3313  for (port = 0; port < hw->ports; port++) {
3314  struct net_device *dev = hw->dev[port];
3315 
3316  if (netif_running(dev)) {
3317  struct skge_port *skge = netdev_priv(dev);
3318 
3319  spin_lock(&hw->phy_lock);
3320  if (!is_genesis(hw))
3321  yukon_phy_intr(skge);
3322  else if (hw->phy_type == SK_PHY_BCOM)
3323  bcom_phy_intr(skge);
3324  spin_unlock(&hw->phy_lock);
3325  }
3326  }
3327 
3328  spin_lock_irq(&hw->hw_lock);
3329  hw->intr_mask |= IS_EXT_REG;
3330  skge_write32(hw, B0_IMSK, hw->intr_mask);
3331  skge_read32(hw, B0_IMSK);
3332  spin_unlock_irq(&hw->hw_lock);
3333 }
3334 
3335 static irqreturn_t skge_intr(int irq, void *dev_id)
3336 {
3337  struct skge_hw *hw = dev_id;
3338  u32 status;
3339  int handled = 0;
3340 
3341  spin_lock(&hw->hw_lock);
3342  /* Reading this register masks IRQ */
3343  status = skge_read32(hw, B0_SP_ISRC);
3344  if (status == 0 || status == ~0)
3345  goto out;
3346 
3347  handled = 1;
3348  status &= hw->intr_mask;
3349  if (status & IS_EXT_REG) {
3350  hw->intr_mask &= ~IS_EXT_REG;
3351  tasklet_schedule(&hw->phy_task);
3352  }
3353 
3354  if (status & (IS_XA1_F|IS_R1_F)) {
3355  struct skge_port *skge = netdev_priv(hw->dev[0]);
3356  hw->intr_mask &= ~(IS_XA1_F|IS_R1_F);
3357  napi_schedule(&skge->napi);
3358  }
3359 
3360  if (status & IS_PA_TO_TX1)
3361  skge_write16(hw, B3_PA_CTRL, PA_CLR_TO_TX1);
3362 
3363  if (status & IS_PA_TO_RX1) {
3364  ++hw->dev[0]->stats.rx_over_errors;
3365  skge_write16(hw, B3_PA_CTRL, PA_CLR_TO_RX1);
3366  }
3367 
3368 
3369  if (status & IS_MAC1)
3370  skge_mac_intr(hw, 0);
3371 
3372  if (hw->dev[1]) {
3373  struct skge_port *skge = netdev_priv(hw->dev[1]);
3374 
3375  if (status & (IS_XA2_F|IS_R2_F)) {
3376  hw->intr_mask &= ~(IS_XA2_F|IS_R2_F);
3377  napi_schedule(&skge->napi);
3378  }
3379 
3380  if (status & IS_PA_TO_RX2) {
3381  ++hw->dev[1]->stats.rx_over_errors;
3382  skge_write16(hw, B3_PA_CTRL, PA_CLR_TO_RX2);
3383  }
3384 
3385  if (status & IS_PA_TO_TX2)
3386  skge_write16(hw, B3_PA_CTRL, PA_CLR_TO_TX2);
3387 
3388  if (status & IS_MAC2)
3389  skge_mac_intr(hw, 1);
3390  }
3391 
3392  if (status & IS_HW_ERR)
3393  skge_error_irq(hw);
3394 
3395  skge_write32(hw, B0_IMSK, hw->intr_mask);
3396  skge_read32(hw, B0_IMSK);
3397 out:
3398  spin_unlock(&hw->hw_lock);
3399 
3400  return IRQ_RETVAL(handled);
3401 }
3402 
3403 #ifdef CONFIG_NET_POLL_CONTROLLER
3404 static void skge_netpoll(struct net_device *dev)
3405 {
3406  struct skge_port *skge = netdev_priv(dev);
3407 
3408  disable_irq(dev->irq);
3409  skge_intr(dev->irq, skge->hw);
3410  enable_irq(dev->irq);
3411 }
3412 #endif
3413 
3414 static int skge_set_mac_address(struct net_device *dev, void *p)
3415 {
3416  struct skge_port *skge = netdev_priv(dev);
3417  struct skge_hw *hw = skge->hw;
3418  unsigned port = skge->port;
3419  const struct sockaddr *addr = p;
3420  u16 ctrl;
3421 
3422  if (!is_valid_ether_addr(addr->sa_data))
3423  return -EADDRNOTAVAIL;
3424 
3425  memcpy(dev->dev_addr, addr->sa_data, ETH_ALEN);
3426 
3427  if (!netif_running(dev)) {
3428  memcpy_toio(hw->regs + B2_MAC_1 + port*8, dev->dev_addr, ETH_ALEN);
3429  memcpy_toio(hw->regs + B2_MAC_2 + port*8, dev->dev_addr, ETH_ALEN);
3430  } else {
3431  /* disable Rx */
3432  spin_lock_bh(&hw->phy_lock);
3433  ctrl = gma_read16(hw, port, GM_GP_CTRL);
3434  gma_write16(hw, port, GM_GP_CTRL, ctrl & ~GM_GPCR_RX_ENA);
3435 
3436  memcpy_toio(hw->regs + B2_MAC_1 + port*8, dev->dev_addr, ETH_ALEN);
3437  memcpy_toio(hw->regs + B2_MAC_2 + port*8, dev->dev_addr, ETH_ALEN);
3438 
3439  if (is_genesis(hw))
3440  xm_outaddr(hw, port, XM_SA, dev->dev_addr);
3441  else {
3442  gma_set_addr(hw, port, GM_SRC_ADDR_1L, dev->dev_addr);
3443  gma_set_addr(hw, port, GM_SRC_ADDR_2L, dev->dev_addr);
3444  }
3445 
3446  gma_write16(hw, port, GM_GP_CTRL, ctrl);
3447  spin_unlock_bh(&hw->phy_lock);
3448  }
3449 
3450  return 0;
3451 }
3452 
3453 static const struct {
3455  const char *name;
3456 } skge_chips[] = {
3457  { CHIP_ID_GENESIS, "Genesis" },
3458  { CHIP_ID_YUKON, "Yukon" },
3459  { CHIP_ID_YUKON_LITE, "Yukon-Lite"},
3460  { CHIP_ID_YUKON_LP, "Yukon-LP"},
3461 };
3462 
3463 static const char *skge_board_name(const struct skge_hw *hw)
3464 {
3465  int i;
3466  static char buf[16];
3467 
3468  for (i = 0; i < ARRAY_SIZE(skge_chips); i++)
3469  if (skge_chips[i].id == hw->chip_id)
3470  return skge_chips[i].name;
3471 
3472  snprintf(buf, sizeof buf, "chipid 0x%x", hw->chip_id);
3473  return buf;
3474 }
3475 
3476 
3477 /*
3478  * Setup the board data structure, but don't bring up
3479  * the port(s)
3480  */
3481 static int skge_reset(struct skge_hw *hw)
3482 {
3483  u32 reg;
3484  u16 ctst, pci_status;
3485  u8 t8, mac_cfg, pmd_type;
3486  int i;
3487 
3488  ctst = skge_read16(hw, B0_CTST);
3489 
3490  /* do a SW reset */
3491  skge_write8(hw, B0_CTST, CS_RST_SET);
3492  skge_write8(hw, B0_CTST, CS_RST_CLR);
3493 
3494  /* clear PCI errors, if any */
3495  skge_write8(hw, B2_TST_CTRL1, TST_CFG_WRITE_ON);
3496  skge_write8(hw, B2_TST_CTRL2, 0);
3497 
3498  pci_read_config_word(hw->pdev, PCI_STATUS, &pci_status);
3499  pci_write_config_word(hw->pdev, PCI_STATUS,
3500  pci_status | PCI_STATUS_ERROR_BITS);
3501  skge_write8(hw, B2_TST_CTRL1, TST_CFG_WRITE_OFF);
3502  skge_write8(hw, B0_CTST, CS_MRST_CLR);
3503 
3504  /* restore CLK_RUN bits (for Yukon-Lite) */
3505  skge_write16(hw, B0_CTST,
3507 
3508  hw->chip_id = skge_read8(hw, B2_CHIP_ID);
3509  hw->phy_type = skge_read8(hw, B2_E_1) & 0xf;
3510  pmd_type = skge_read8(hw, B2_PMD_TYP);
3511  hw->copper = (pmd_type == 'T' || pmd_type == '1');
3512 
3513  switch (hw->chip_id) {
3514  case CHIP_ID_GENESIS:
3515 #ifdef CONFIG_SKGE_GENESIS
3516  switch (hw->phy_type) {
3517  case SK_PHY_XMAC:
3518  hw->phy_addr = PHY_ADDR_XMAC;
3519  break;
3520  case SK_PHY_BCOM:
3521  hw->phy_addr = PHY_ADDR_BCOM;
3522  break;
3523  default:
3524  dev_err(&hw->pdev->dev, "unsupported phy type 0x%x\n",
3525  hw->phy_type);
3526  return -EOPNOTSUPP;
3527  }
3528  break;
3529 #else
3530  dev_err(&hw->pdev->dev, "Genesis chip detected but not configured\n");
3531  return -EOPNOTSUPP;
3532 #endif
3533 
3534  case CHIP_ID_YUKON:
3535  case CHIP_ID_YUKON_LITE:
3536  case CHIP_ID_YUKON_LP:
3537  if (hw->phy_type < SK_PHY_MARV_COPPER && pmd_type != 'S')
3538  hw->copper = 1;
3539 
3540  hw->phy_addr = PHY_ADDR_MARV;
3541  break;
3542 
3543  default:
3544  dev_err(&hw->pdev->dev, "unsupported chip type 0x%x\n",
3545  hw->chip_id);
3546  return -EOPNOTSUPP;
3547  }
3548 
3549  mac_cfg = skge_read8(hw, B2_MAC_CFG);
3550  hw->ports = (mac_cfg & CFG_SNG_MAC) ? 1 : 2;
3551  hw->chip_rev = (mac_cfg & CFG_CHIP_R_MSK) >> 4;
3552 
3553  /* read the adapters RAM size */
3554  t8 = skge_read8(hw, B2_E_0);
3555  if (is_genesis(hw)) {
3556  if (t8 == 3) {
3557  /* special case: 4 x 64k x 36, offset = 0x80000 */
3558  hw->ram_size = 0x100000;
3559  hw->ram_offset = 0x80000;
3560  } else
3561  hw->ram_size = t8 * 512;
3562  } else if (t8 == 0)
3563  hw->ram_size = 0x20000;
3564  else
3565  hw->ram_size = t8 * 4096;
3566 
3567  hw->intr_mask = IS_HW_ERR;
3568 
3569  /* Use PHY IRQ for all but fiber based Genesis board */
3570  if (!(is_genesis(hw) && hw->phy_type == SK_PHY_XMAC))
3571  hw->intr_mask |= IS_EXT_REG;
3572 
3573  if (is_genesis(hw))
3574  genesis_init(hw);
3575  else {
3576  /* switch power to VCC (WA for VAUX problem) */
3577  skge_write8(hw, B0_POWER_CTRL,
3579 
3580  /* avoid boards with stuck Hardware error bits */
3581  if ((skge_read32(hw, B0_ISRC) & IS_HW_ERR) &&
3582  (skge_read32(hw, B0_HWE_ISRC) & IS_IRQ_SENSOR)) {
3583  dev_warn(&hw->pdev->dev, "stuck hardware sensor bit\n");
3584  hw->intr_mask &= ~IS_HW_ERR;
3585  }
3586 
3587  /* Clear PHY COMA */
3588  skge_write8(hw, B2_TST_CTRL1, TST_CFG_WRITE_ON);
3589  pci_read_config_dword(hw->pdev, PCI_DEV_REG1, &reg);
3590  reg &= ~PCI_PHY_COMA;
3591  pci_write_config_dword(hw->pdev, PCI_DEV_REG1, reg);
3592  skge_write8(hw, B2_TST_CTRL1, TST_CFG_WRITE_OFF);
3593 
3594 
3595  for (i = 0; i < hw->ports; i++) {
3596  skge_write16(hw, SK_REG(i, GMAC_LINK_CTRL), GMLC_RST_SET);
3597  skge_write16(hw, SK_REG(i, GMAC_LINK_CTRL), GMLC_RST_CLR);
3598  }
3599  }
3600 
3601  /* turn off hardware timer (unused) */
3602  skge_write8(hw, B2_TI_CTRL, TIM_STOP);
3603  skge_write8(hw, B2_TI_CTRL, TIM_CLR_IRQ);
3604  skge_write8(hw, B0_LED, LED_STAT_ON);
3605 
3606  /* enable the Tx Arbiters */
3607  for (i = 0; i < hw->ports; i++)
3608  skge_write8(hw, SK_REG(i, TXA_CTRL), TXA_ENA_ARB);
3609 
3610  /* Initialize ram interface */
3611  skge_write16(hw, B3_RI_CTRL, RI_RST_CLR);
3612 
3613  skge_write8(hw, B3_RI_WTO_R1, SK_RI_TO_53);
3614  skge_write8(hw, B3_RI_WTO_XA1, SK_RI_TO_53);
3615  skge_write8(hw, B3_RI_WTO_XS1, SK_RI_TO_53);
3616  skge_write8(hw, B3_RI_RTO_R1, SK_RI_TO_53);
3617  skge_write8(hw, B3_RI_RTO_XA1, SK_RI_TO_53);
3618  skge_write8(hw, B3_RI_RTO_XS1, SK_RI_TO_53);
3619  skge_write8(hw, B3_RI_WTO_R2, SK_RI_TO_53);
3620  skge_write8(hw, B3_RI_WTO_XA2, SK_RI_TO_53);
3621  skge_write8(hw, B3_RI_WTO_XS2, SK_RI_TO_53);
3622  skge_write8(hw, B3_RI_RTO_R2, SK_RI_TO_53);
3623  skge_write8(hw, B3_RI_RTO_XA2, SK_RI_TO_53);
3624  skge_write8(hw, B3_RI_RTO_XS2, SK_RI_TO_53);
3625 
3626  skge_write32(hw, B0_HWE_IMSK, IS_ERR_MSK);
3627 
3628  /* Set interrupt moderation for Transmit only
3629  * Receive interrupts avoided by NAPI
3630  */
3631  skge_write32(hw, B2_IRQM_MSK, IS_XA1_F|IS_XA2_F);
3632  skge_write32(hw, B2_IRQM_INI, skge_usecs2clk(hw, 100));
3633  skge_write32(hw, B2_IRQM_CTRL, TIM_START);
3634 
3635  /* Leave irq disabled until first port is brought up. */
3636  skge_write32(hw, B0_IMSK, 0);
3637 
3638  for (i = 0; i < hw->ports; i++) {
3639  if (is_genesis(hw))
3640  genesis_reset(hw, i);
3641  else
3642  yukon_reset(hw, i);
3643  }
3644 
3645  return 0;
3646 }
3647 
3648 
3649 #ifdef CONFIG_SKGE_DEBUG
3650 
3651 static struct dentry *skge_debug;
3652 
3653 static int skge_debug_show(struct seq_file *seq, void *v)
3654 {
3655  struct net_device *dev = seq->private;
3656  const struct skge_port *skge = netdev_priv(dev);
3657  const struct skge_hw *hw = skge->hw;
3658  const struct skge_element *e;
3659 
3660  if (!netif_running(dev))
3661  return -ENETDOWN;
3662 
3663  seq_printf(seq, "IRQ src=%x mask=%x\n", skge_read32(hw, B0_ISRC),
3664  skge_read32(hw, B0_IMSK));
3665 
3666  seq_printf(seq, "Tx Ring: (%d)\n", skge_avail(&skge->tx_ring));
3667  for (e = skge->tx_ring.to_clean; e != skge->tx_ring.to_use; e = e->next) {
3668  const struct skge_tx_desc *t = e->desc;
3669  seq_printf(seq, "%#x dma=%#x%08x %#x csum=%#x/%x/%x\n",
3670  t->control, t->dma_hi, t->dma_lo, t->status,
3671  t->csum_offs, t->csum_write, t->csum_start);
3672  }
3673 
3674  seq_printf(seq, "\nRx Ring:\n");
3675  for (e = skge->rx_ring.to_clean; ; e = e->next) {
3676  const struct skge_rx_desc *r = e->desc;
3677 
3678  if (r->control & BMU_OWN)
3679  break;
3680 
3681  seq_printf(seq, "%#x dma=%#x%08x %#x %#x csum=%#x/%x\n",
3682  r->control, r->dma_hi, r->dma_lo, r->status,
3683  r->timestamp, r->csum1, r->csum1_start);
3684  }
3685 
3686  return 0;
3687 }
3688 
3689 static int skge_debug_open(struct inode *inode, struct file *file)
3690 {
3691  return single_open(file, skge_debug_show, inode->i_private);
3692 }
3693 
3694 static const struct file_operations skge_debug_fops = {
3695  .owner = THIS_MODULE,
3696  .open = skge_debug_open,
3697  .read = seq_read,
3698  .llseek = seq_lseek,
3699  .release = single_release,
3700 };
3701 
3702 /*
3703  * Use network device events to create/remove/rename
3704  * debugfs file entries
3705  */
3706 static int skge_device_event(struct notifier_block *unused,
3707  unsigned long event, void *ptr)
3708 {
3709  struct net_device *dev = ptr;
3710  struct skge_port *skge;
3711  struct dentry *d;
3712 
3713  if (dev->netdev_ops->ndo_open != &skge_up || !skge_debug)
3714  goto done;
3715 
3716  skge = netdev_priv(dev);
3717  switch (event) {
3718  case NETDEV_CHANGENAME:
3719  if (skge->debugfs) {
3720  d = debugfs_rename(skge_debug, skge->debugfs,
3721  skge_debug, dev->name);
3722  if (d)
3723  skge->debugfs = d;
3724  else {
3725  netdev_info(dev, "rename failed\n");
3726  debugfs_remove(skge->debugfs);
3727  }
3728  }
3729  break;
3730 
3731  case NETDEV_GOING_DOWN:
3732  if (skge->debugfs) {
3733  debugfs_remove(skge->debugfs);
3734  skge->debugfs = NULL;
3735  }
3736  break;
3737 
3738  case NETDEV_UP:
3739  d = debugfs_create_file(dev->name, S_IRUGO,
3740  skge_debug, dev,
3741  &skge_debug_fops);
3742  if (!d || IS_ERR(d))
3743  netdev_info(dev, "debugfs create failed\n");
3744  else
3745  skge->debugfs = d;
3746  break;
3747  }
3748 
3749 done:
3750  return NOTIFY_DONE;
3751 }
3752 
3753 static struct notifier_block skge_notifier = {
3754  .notifier_call = skge_device_event,
3755 };
3756 
3757 
3758 static __init void skge_debug_init(void)
3759 {
3760  struct dentry *ent;
3761 
3762  ent = debugfs_create_dir("skge", NULL);
3763  if (!ent || IS_ERR(ent)) {
3764  pr_info("debugfs create directory failed\n");
3765  return;
3766  }
3767 
3768  skge_debug = ent;
3769  register_netdevice_notifier(&skge_notifier);
3770 }
3771 
3772 static __exit void skge_debug_cleanup(void)
3773 {
3774  if (skge_debug) {
3775  unregister_netdevice_notifier(&skge_notifier);
3776  debugfs_remove(skge_debug);
3777  skge_debug = NULL;
3778  }
3779 }
3780 
3781 #else
3782 #define skge_debug_init()
3783 #define skge_debug_cleanup()
3784 #endif
3785 
3786 static const struct net_device_ops skge_netdev_ops = {
3787  .ndo_open = skge_up,
3788  .ndo_stop = skge_down,
3789  .ndo_start_xmit = skge_xmit_frame,
3790  .ndo_do_ioctl = skge_ioctl,
3791  .ndo_get_stats = skge_get_stats,
3792  .ndo_tx_timeout = skge_tx_timeout,
3793  .ndo_change_mtu = skge_change_mtu,
3794  .ndo_validate_addr = eth_validate_addr,
3795  .ndo_set_rx_mode = skge_set_multicast,
3796  .ndo_set_mac_address = skge_set_mac_address,
3797 #ifdef CONFIG_NET_POLL_CONTROLLER
3798  .ndo_poll_controller = skge_netpoll,
3799 #endif
3800 };
3801 
3802 
3803 /* Initialize network device */
3804 static struct net_device *skge_devinit(struct skge_hw *hw, int port,
3805  int highmem)
3806 {
3807  struct skge_port *skge;
3808  struct net_device *dev = alloc_etherdev(sizeof(*skge));
3809 
3810  if (!dev)
3811  return NULL;
3812 
3813  SET_NETDEV_DEV(dev, &hw->pdev->dev);
3814  dev->netdev_ops = &skge_netdev_ops;
3815  dev->ethtool_ops = &skge_ethtool_ops;
3816  dev->watchdog_timeo = TX_WATCHDOG;
3817  dev->irq = hw->pdev->irq;
3818 
3819  if (highmem)
3820  dev->features |= NETIF_F_HIGHDMA;
3821 
3822  skge = netdev_priv(dev);
3823  netif_napi_add(dev, &skge->napi, skge_poll, NAPI_WEIGHT);
3824  skge->netdev = dev;
3825  skge->hw = hw;
3826  skge->msg_enable = netif_msg_init(debug, default_msg);
3827 
3828  skge->tx_ring.count = DEFAULT_TX_RING_SIZE;
3829  skge->rx_ring.count = DEFAULT_RX_RING_SIZE;
3830 
3831  /* Auto speed and flow control */
3832  skge->autoneg = AUTONEG_ENABLE;
3834  skge->duplex = -1;
3835  skge->speed = -1;
3836  skge->advertising = skge_supported_modes(hw);
3837 
3838  if (device_can_wakeup(&hw->pdev->dev)) {
3839  skge->wol = wol_supported(hw) & WAKE_MAGIC;
3840  device_set_wakeup_enable(&hw->pdev->dev, skge->wol);
3841  }
3842 
3843  hw->dev[port] = dev;
3844 
3845  skge->port = port;
3846 
3847  /* Only used for Genesis XMAC */
3848  if (is_genesis(hw))
3849  setup_timer(&skge->link_timer, xm_link_timer, (unsigned long) skge);
3850  else {
3853  dev->features |= dev->hw_features;
3854  }
3855 
3856  /* read the mac address */
3857  memcpy_fromio(dev->dev_addr, hw->regs + B2_MAC_1 + port*8, ETH_ALEN);
3858  memcpy(dev->perm_addr, dev->dev_addr, dev->addr_len);
3859 
3860  return dev;
3861 }
3862 
3863 static void __devinit skge_show_addr(struct net_device *dev)
3864 {
3865  const struct skge_port *skge = netdev_priv(dev);
3866 
3867  netif_info(skge, probe, skge->netdev, "addr %pM\n", dev->dev_addr);
3868 }
3869 
3870 static int only_32bit_dma;
3871 
3872 static int __devinit skge_probe(struct pci_dev *pdev,
3873  const struct pci_device_id *ent)
3874 {
3875  struct net_device *dev, *dev1;
3876  struct skge_hw *hw;
3877  int err, using_dac = 0;
3878 
3879  err = pci_enable_device(pdev);
3880  if (err) {
3881  dev_err(&pdev->dev, "cannot enable PCI device\n");
3882  goto err_out;
3883  }
3884 
3885  err = pci_request_regions(pdev, DRV_NAME);
3886  if (err) {
3887  dev_err(&pdev->dev, "cannot obtain PCI resources\n");
3888  goto err_out_disable_pdev;
3889  }
3890 
3891  pci_set_master(pdev);
3892 
3893  if (!only_32bit_dma && !pci_set_dma_mask(pdev, DMA_BIT_MASK(64))) {
3894  using_dac = 1;
3895  err = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(64));
3896  } else if (!(err = pci_set_dma_mask(pdev, DMA_BIT_MASK(32)))) {
3897  using_dac = 0;
3898  err = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(32));
3899  }
3900 
3901  if (err) {
3902  dev_err(&pdev->dev, "no usable DMA configuration\n");
3903  goto err_out_free_regions;
3904  }
3905 
3906 #ifdef __BIG_ENDIAN
3907  /* byte swap descriptors in hardware */
3908  {
3909  u32 reg;
3910 
3911  pci_read_config_dword(pdev, PCI_DEV_REG2, &reg);
3912  reg |= PCI_REV_DESC;
3913  pci_write_config_dword(pdev, PCI_DEV_REG2, reg);
3914  }
3915 #endif
3916 
3917  err = -ENOMEM;
3918  /* space for skge@pci:0000:04:00.0 */
3919  hw = kzalloc(sizeof(*hw) + strlen(DRV_NAME "@pci:")
3920  + strlen(pci_name(pdev)) + 1, GFP_KERNEL);
3921  if (!hw) {
3922  dev_err(&pdev->dev, "cannot allocate hardware struct\n");
3923  goto err_out_free_regions;
3924  }
3925  sprintf(hw->irq_name, DRV_NAME "@pci:%s", pci_name(pdev));
3926 
3927  hw->pdev = pdev;
3928  spin_lock_init(&hw->hw_lock);
3929  spin_lock_init(&hw->phy_lock);
3930  tasklet_init(&hw->phy_task, skge_extirq, (unsigned long) hw);
3931 
3932  hw->regs = ioremap_nocache(pci_resource_start(pdev, 0), 0x4000);
3933  if (!hw->regs) {
3934  dev_err(&pdev->dev, "cannot map device registers\n");
3935  goto err_out_free_hw;
3936  }
3937 
3938  err = skge_reset(hw);
3939  if (err)
3940  goto err_out_iounmap;
3941 
3942  pr_info("%s addr 0x%llx irq %d chip %s rev %d\n",
3943  DRV_VERSION,
3944  (unsigned long long)pci_resource_start(pdev, 0), pdev->irq,
3945  skge_board_name(hw), hw->chip_rev);
3946 
3947  dev = skge_devinit(hw, 0, using_dac);
3948  if (!dev) {
3949  err = -ENOMEM;
3950  goto err_out_led_off;
3951  }
3952 
3953  /* Some motherboards are broken and has zero in ROM. */
3954  if (!is_valid_ether_addr(dev->dev_addr))
3955  dev_warn(&pdev->dev, "bad (zero?) ethernet address in rom\n");
3956 
3957  err = register_netdev(dev);
3958  if (err) {
3959  dev_err(&pdev->dev, "cannot register net device\n");
3960  goto err_out_free_netdev;
3961  }
3962 
3963  skge_show_addr(dev);
3964 
3965  if (hw->ports > 1) {
3966  dev1 = skge_devinit(hw, 1, using_dac);
3967  if (!dev1) {
3968  err = -ENOMEM;
3969  goto err_out_unregister;
3970  }
3971 
3972  err = register_netdev(dev1);
3973  if (err) {
3974  dev_err(&pdev->dev, "cannot register second net device\n");
3975  goto err_out_free_dev1;
3976  }
3977 
3978  err = request_irq(pdev->irq, skge_intr, IRQF_SHARED,
3979  hw->irq_name, hw);
3980  if (err) {
3981  dev_err(&pdev->dev, "cannot assign irq %d\n",
3982  pdev->irq);
3983  goto err_out_unregister_dev1;
3984  }
3985 
3986  skge_show_addr(dev1);
3987  }
3988  pci_set_drvdata(pdev, hw);
3989 
3990  return 0;
3991 
3992 err_out_unregister_dev1:
3993  unregister_netdev(dev1);
3994 err_out_free_dev1:
3995  free_netdev(dev1);
3996 err_out_unregister:
3997  unregister_netdev(dev);
3998 err_out_free_netdev:
3999  free_netdev(dev);
4000 err_out_led_off:
4001  skge_write16(hw, B0_LED, LED_STAT_OFF);
4002 err_out_iounmap:
4003  iounmap(hw->regs);
4004 err_out_free_hw:
4005  kfree(hw);
4006 err_out_free_regions:
4007  pci_release_regions(pdev);
4008 err_out_disable_pdev:
4009  pci_disable_device(pdev);
4010  pci_set_drvdata(pdev, NULL);
4011 err_out:
4012  return err;
4013 }
4014 
4015 static void __devexit skge_remove(struct pci_dev *pdev)
4016 {
4017  struct skge_hw *hw = pci_get_drvdata(pdev);
4018  struct net_device *dev0, *dev1;
4019 
4020  if (!hw)
4021  return;
4022 
4023  dev1 = hw->dev[1];
4024  if (dev1)
4025  unregister_netdev(dev1);
4026  dev0 = hw->dev[0];
4027  unregister_netdev(dev0);
4028 
4029  tasklet_kill(&hw->phy_task);
4030 
4031  spin_lock_irq(&hw->hw_lock);
4032  hw->intr_mask = 0;
4033 
4034  if (hw->ports > 1) {
4035  skge_write32(hw, B0_IMSK, 0);
4036  skge_read32(hw, B0_IMSK);
4037  free_irq(pdev->irq, hw);
4038  }
4039  spin_unlock_irq(&hw->hw_lock);
4040 
4041  skge_write16(hw, B0_LED, LED_STAT_OFF);
4042  skge_write8(hw, B0_CTST, CS_RST_SET);
4043 
4044  if (hw->ports > 1)
4045  free_irq(pdev->irq, hw);
4046  pci_release_regions(pdev);
4047  pci_disable_device(pdev);
4048  if (dev1)
4049  free_netdev(dev1);
4050  free_netdev(dev0);
4051 
4052  iounmap(hw->regs);
4053  kfree(hw);
4054  pci_set_drvdata(pdev, NULL);
4055 }
4056 
4057 #ifdef CONFIG_PM_SLEEP
4058 static int skge_suspend(struct device *dev)
4059 {
4060  struct pci_dev *pdev = to_pci_dev(dev);
4061  struct skge_hw *hw = pci_get_drvdata(pdev);
4062  int i;
4063 
4064  if (!hw)
4065  return 0;
4066 
4067  for (i = 0; i < hw->ports; i++) {
4068  struct net_device *dev = hw->dev[i];
4069  struct skge_port *skge = netdev_priv(dev);
4070 
4071  if (netif_running(dev))
4072  skge_down(dev);
4073 
4074  if (skge->wol)
4075  skge_wol_init(skge);
4076  }
4077 
4078  skge_write32(hw, B0_IMSK, 0);
4079 
4080  return 0;
4081 }
4082 
4083 static int skge_resume(struct device *dev)
4084 {
4085  struct pci_dev *pdev = to_pci_dev(dev);
4086  struct skge_hw *hw = pci_get_drvdata(pdev);
4087  int i, err;
4088 
4089  if (!hw)
4090  return 0;
4091 
4092  err = skge_reset(hw);
4093  if (err)
4094  goto out;
4095 
4096  for (i = 0; i < hw->ports; i++) {
4097  struct net_device *dev = hw->dev[i];
4098 
4099  if (netif_running(dev)) {
4100  err = skge_up(dev);
4101 
4102  if (err) {
4103  netdev_err(dev, "could not up: %d\n", err);
4104  dev_close(dev);
4105  goto out;
4106  }
4107  }
4108  }
4109 out:
4110  return err;
4111 }
4112 
4113 static SIMPLE_DEV_PM_OPS(skge_pm_ops, skge_suspend, skge_resume);
4114 #define SKGE_PM_OPS (&skge_pm_ops)
4115 
4116 #else
4117 
4118 #define SKGE_PM_OPS NULL
4119 #endif /* CONFIG_PM_SLEEP */
4120 
4121 static void skge_shutdown(struct pci_dev *pdev)
4122 {
4123  struct skge_hw *hw = pci_get_drvdata(pdev);
4124  int i;
4125 
4126  if (!hw)
4127  return;
4128 
4129  for (i = 0; i < hw->ports; i++) {
4130  struct net_device *dev = hw->dev[i];
4131  struct skge_port *skge = netdev_priv(dev);
4132 
4133  if (skge->wol)
4134  skge_wol_init(skge);
4135  }
4136 
4137  pci_wake_from_d3(pdev, device_may_wakeup(&pdev->dev));
4139 }
4140 
4141 static struct pci_driver skge_driver = {
4142  .name = DRV_NAME,
4143  .id_table = skge_id_table,
4144  .probe = skge_probe,
4145  .remove = __devexit_p(skge_remove),
4146  .shutdown = skge_shutdown,
4147  .driver.pm = SKGE_PM_OPS,
4148 };
4149 
4150 static struct dmi_system_id skge_32bit_dma_boards[] = {
4151  {
4152  .ident = "Gigabyte nForce boards",
4153  .matches = {
4154  DMI_MATCH(DMI_BOARD_VENDOR, "Gigabyte Technology Co"),
4155  DMI_MATCH(DMI_BOARD_NAME, "nForce"),
4156  },
4157  },
4158  {
4159  .ident = "ASUS P5NSLI",
4160  .matches = {
4161  DMI_MATCH(DMI_BOARD_VENDOR, "ASUSTeK Computer INC."),
4162  DMI_MATCH(DMI_BOARD_NAME, "P5NSLI")
4163  },
4164  },
4165  {}
4166 };
4167 
4168 static int __init skge_init_module(void)
4169 {
4170  if (dmi_check_system(skge_32bit_dma_boards))
4171  only_32bit_dma = 1;
4172  skge_debug_init();
4173  return pci_register_driver(&skge_driver);
4174 }
4175 
4176 static void __exit skge_cleanup_module(void)
4177 {
4178  pci_unregister_driver(&skge_driver);
4180 }
4181 
4182 module_init(skge_init_module);
4183 module_exit(skge_cleanup_module);