LLVM API Documentation

InstrEmitter.cpp
Go to the documentation of this file.
00001 //==--- InstrEmitter.cpp - Emit MachineInstrs for the SelectionDAG class ---==//
00002 //
00003 //                     The LLVM Compiler Infrastructure
00004 //
00005 // This file is distributed under the University of Illinois Open Source
00006 // License. See LICENSE.TXT for details.
00007 //
00008 //===----------------------------------------------------------------------===//
00009 //
00010 // This implements the Emit routines for the SelectionDAG class, which creates
00011 // MachineInstrs based on the decisions of the SelectionDAG instruction
00012 // selection.
00013 //
00014 //===----------------------------------------------------------------------===//
00015 
00016 #include "InstrEmitter.h"
00017 #include "SDNodeDbgValue.h"
00018 #include "llvm/ADT/Statistic.h"
00019 #include "llvm/CodeGen/MachineConstantPool.h"
00020 #include "llvm/CodeGen/MachineFunction.h"
00021 #include "llvm/CodeGen/MachineInstrBuilder.h"
00022 #include "llvm/CodeGen/MachineRegisterInfo.h"
00023 #include "llvm/CodeGen/StackMaps.h"
00024 #include "llvm/IR/DataLayout.h"
00025 #include "llvm/Support/Debug.h"
00026 #include "llvm/Support/ErrorHandling.h"
00027 #include "llvm/Support/MathExtras.h"
00028 #include "llvm/Target/TargetInstrInfo.h"
00029 #include "llvm/Target/TargetLowering.h"
00030 #include "llvm/Target/TargetMachine.h"
00031 #include "llvm/Target/TargetSubtargetInfo.h"
00032 using namespace llvm;
00033 
00034 #define DEBUG_TYPE "instr-emitter"
00035 
00036 /// MinRCSize - Smallest register class we allow when constraining virtual
00037 /// registers.  If satisfying all register class constraints would require
00038 /// using a smaller register class, emit a COPY to a new virtual register
00039 /// instead.
00040 const unsigned MinRCSize = 4;
00041 
00042 /// CountResults - The results of target nodes have register or immediate
00043 /// operands first, then an optional chain, and optional glue operands (which do
00044 /// not go into the resulting MachineInstr).
00045 unsigned InstrEmitter::CountResults(SDNode *Node) {
00046   unsigned N = Node->getNumValues();
00047   while (N && Node->getValueType(N - 1) == MVT::Glue)
00048     --N;
00049   if (N && Node->getValueType(N - 1) == MVT::Other)
00050     --N;    // Skip over chain result.
00051   return N;
00052 }
00053 
00054 /// countOperands - The inputs to target nodes have any actual inputs first,
00055 /// followed by an optional chain operand, then an optional glue operand.
00056 /// Compute the number of actual operands that will go into the resulting
00057 /// MachineInstr.
00058 ///
00059 /// Also count physreg RegisterSDNode and RegisterMaskSDNode operands preceding
00060 /// the chain and glue. These operands may be implicit on the machine instr.
00061 static unsigned countOperands(SDNode *Node, unsigned NumExpUses,
00062                               unsigned &NumImpUses) {
00063   unsigned N = Node->getNumOperands();
00064   while (N && Node->getOperand(N - 1).getValueType() == MVT::Glue)
00065     --N;
00066   if (N && Node->getOperand(N - 1).getValueType() == MVT::Other)
00067     --N; // Ignore chain if it exists.
00068 
00069   // Count RegisterSDNode and RegisterMaskSDNode operands for NumImpUses.
00070   NumImpUses = N - NumExpUses;
00071   for (unsigned I = N; I > NumExpUses; --I) {
00072     if (isa<RegisterMaskSDNode>(Node->getOperand(I - 1)))
00073       continue;
00074     if (RegisterSDNode *RN = dyn_cast<RegisterSDNode>(Node->getOperand(I - 1)))
00075       if (TargetRegisterInfo::isPhysicalRegister(RN->getReg()))
00076         continue;
00077     NumImpUses = N - I;
00078     break;
00079   }
00080 
00081   return N;
00082 }
00083 
00084 /// EmitCopyFromReg - Generate machine code for an CopyFromReg node or an
00085 /// implicit physical register output.
00086 void InstrEmitter::
00087 EmitCopyFromReg(SDNode *Node, unsigned ResNo, bool IsClone, bool IsCloned,
00088                 unsigned SrcReg, DenseMap<SDValue, unsigned> &VRBaseMap) {
00089   unsigned VRBase = 0;
00090   if (TargetRegisterInfo::isVirtualRegister(SrcReg)) {
00091     // Just use the input register directly!
00092     SDValue Op(Node, ResNo);
00093     if (IsClone)
00094       VRBaseMap.erase(Op);
00095     bool isNew = VRBaseMap.insert(std::make_pair(Op, SrcReg)).second;
00096     (void)isNew; // Silence compiler warning.
00097     assert(isNew && "Node emitted out of order - early");
00098     return;
00099   }
00100 
00101   // If the node is only used by a CopyToReg and the dest reg is a vreg, use
00102   // the CopyToReg'd destination register instead of creating a new vreg.
00103   bool MatchReg = true;
00104   const TargetRegisterClass *UseRC = nullptr;
00105   MVT VT = Node->getSimpleValueType(ResNo);
00106 
00107   // Stick to the preferred register classes for legal types.
00108   if (TLI->isTypeLegal(VT))
00109     UseRC = TLI->getRegClassFor(VT);
00110 
00111   if (!IsClone && !IsCloned)
00112     for (SDNode *User : Node->uses()) {
00113       bool Match = true;
00114       if (User->getOpcode() == ISD::CopyToReg &&
00115           User->getOperand(2).getNode() == Node &&
00116           User->getOperand(2).getResNo() == ResNo) {
00117         unsigned DestReg = cast<RegisterSDNode>(User->getOperand(1))->getReg();
00118         if (TargetRegisterInfo::isVirtualRegister(DestReg)) {
00119           VRBase = DestReg;
00120           Match = false;
00121         } else if (DestReg != SrcReg)
00122           Match = false;
00123       } else {
00124         for (unsigned i = 0, e = User->getNumOperands(); i != e; ++i) {
00125           SDValue Op = User->getOperand(i);
00126           if (Op.getNode() != Node || Op.getResNo() != ResNo)
00127             continue;
00128           MVT VT = Node->getSimpleValueType(Op.getResNo());
00129           if (VT == MVT::Other || VT == MVT::Glue)
00130             continue;
00131           Match = false;
00132           if (User->isMachineOpcode()) {
00133             const MCInstrDesc &II = TII->get(User->getMachineOpcode());
00134             const TargetRegisterClass *RC = nullptr;
00135             if (i+II.getNumDefs() < II.getNumOperands()) {
00136               RC = TRI->getAllocatableClass(
00137                 TII->getRegClass(II, i+II.getNumDefs(), TRI, *MF));
00138             }
00139             if (!UseRC)
00140               UseRC = RC;
00141             else if (RC) {
00142               const TargetRegisterClass *ComRC =
00143                 TRI->getCommonSubClass(UseRC, RC);
00144               // If multiple uses expect disjoint register classes, we emit
00145               // copies in AddRegisterOperand.
00146               if (ComRC)
00147                 UseRC = ComRC;
00148             }
00149           }
00150         }
00151       }
00152       MatchReg &= Match;
00153       if (VRBase)
00154         break;
00155     }
00156 
00157   const TargetRegisterClass *SrcRC = nullptr, *DstRC = nullptr;
00158   SrcRC = TRI->getMinimalPhysRegClass(SrcReg, VT);
00159 
00160   // Figure out the register class to create for the destreg.
00161   if (VRBase) {
00162     DstRC = MRI->getRegClass(VRBase);
00163   } else if (UseRC) {
00164     assert(UseRC->hasType(VT) && "Incompatible phys register def and uses!");
00165     DstRC = UseRC;
00166   } else {
00167     DstRC = TLI->getRegClassFor(VT);
00168   }
00169 
00170   // If all uses are reading from the src physical register and copying the
00171   // register is either impossible or very expensive, then don't create a copy.
00172   if (MatchReg && SrcRC->getCopyCost() < 0) {
00173     VRBase = SrcReg;
00174   } else {
00175     // Create the reg, emit the copy.
00176     VRBase = MRI->createVirtualRegister(DstRC);
00177     BuildMI(*MBB, InsertPos, Node->getDebugLoc(), TII->get(TargetOpcode::COPY),
00178             VRBase).addReg(SrcReg);
00179   }
00180 
00181   SDValue Op(Node, ResNo);
00182   if (IsClone)
00183     VRBaseMap.erase(Op);
00184   bool isNew = VRBaseMap.insert(std::make_pair(Op, VRBase)).second;
00185   (void)isNew; // Silence compiler warning.
00186   assert(isNew && "Node emitted out of order - early");
00187 }
00188 
00189 /// getDstOfCopyToRegUse - If the only use of the specified result number of
00190 /// node is a CopyToReg, return its destination register. Return 0 otherwise.
00191 unsigned InstrEmitter::getDstOfOnlyCopyToRegUse(SDNode *Node,
00192                                                 unsigned ResNo) const {
00193   if (!Node->hasOneUse())
00194     return 0;
00195 
00196   SDNode *User = *Node->use_begin();
00197   if (User->getOpcode() == ISD::CopyToReg &&
00198       User->getOperand(2).getNode() == Node &&
00199       User->getOperand(2).getResNo() == ResNo) {
00200     unsigned Reg = cast<RegisterSDNode>(User->getOperand(1))->getReg();
00201     if (TargetRegisterInfo::isVirtualRegister(Reg))
00202       return Reg;
00203   }
00204   return 0;
00205 }
00206 
00207 void InstrEmitter::CreateVirtualRegisters(SDNode *Node,
00208                                        MachineInstrBuilder &MIB,
00209                                        const MCInstrDesc &II,
00210                                        bool IsClone, bool IsCloned,
00211                                        DenseMap<SDValue, unsigned> &VRBaseMap) {
00212   assert(Node->getMachineOpcode() != TargetOpcode::IMPLICIT_DEF &&
00213          "IMPLICIT_DEF should have been handled as a special case elsewhere!");
00214 
00215   unsigned NumResults = CountResults(Node);
00216   for (unsigned i = 0; i < II.getNumDefs(); ++i) {
00217     // If the specific node value is only used by a CopyToReg and the dest reg
00218     // is a vreg in the same register class, use the CopyToReg'd destination
00219     // register instead of creating a new vreg.
00220     unsigned VRBase = 0;
00221     const TargetRegisterClass *RC =
00222       TRI->getAllocatableClass(TII->getRegClass(II, i, TRI, *MF));
00223     // Always let the value type influence the used register class. The
00224     // constraints on the instruction may be too lax to represent the value
00225     // type correctly. For example, a 64-bit float (X86::FR64) can't live in
00226     // the 32-bit float super-class (X86::FR32).
00227     if (i < NumResults && TLI->isTypeLegal(Node->getSimpleValueType(i))) {
00228       const TargetRegisterClass *VTRC =
00229         TLI->getRegClassFor(Node->getSimpleValueType(i));
00230       if (RC)
00231         VTRC = TRI->getCommonSubClass(RC, VTRC);
00232       if (VTRC)
00233         RC = VTRC;
00234     }
00235 
00236     if (II.OpInfo[i].isOptionalDef()) {
00237       // Optional def must be a physical register.
00238       unsigned NumResults = CountResults(Node);
00239       VRBase = cast<RegisterSDNode>(Node->getOperand(i-NumResults))->getReg();
00240       assert(TargetRegisterInfo::isPhysicalRegister(VRBase));
00241       MIB.addReg(VRBase, RegState::Define);
00242     }
00243 
00244     if (!VRBase && !IsClone && !IsCloned)
00245       for (SDNode *User : Node->uses()) {
00246         if (User->getOpcode() == ISD::CopyToReg &&
00247             User->getOperand(2).getNode() == Node &&
00248             User->getOperand(2).getResNo() == i) {
00249           unsigned Reg = cast<RegisterSDNode>(User->getOperand(1))->getReg();
00250           if (TargetRegisterInfo::isVirtualRegister(Reg)) {
00251             const TargetRegisterClass *RegRC = MRI->getRegClass(Reg);
00252             if (RegRC == RC) {
00253               VRBase = Reg;
00254               MIB.addReg(VRBase, RegState::Define);
00255               break;
00256             }
00257           }
00258         }
00259       }
00260 
00261     // Create the result registers for this node and add the result regs to
00262     // the machine instruction.
00263     if (VRBase == 0) {
00264       assert(RC && "Isn't a register operand!");
00265       VRBase = MRI->createVirtualRegister(RC);
00266       MIB.addReg(VRBase, RegState::Define);
00267     }
00268 
00269     // If this def corresponds to a result of the SDNode insert the VRBase into
00270     // the lookup map.
00271     if (i < NumResults) {
00272       SDValue Op(Node, i);
00273       if (IsClone)
00274         VRBaseMap.erase(Op);
00275       bool isNew = VRBaseMap.insert(std::make_pair(Op, VRBase)).second;
00276       (void)isNew; // Silence compiler warning.
00277       assert(isNew && "Node emitted out of order - early");
00278     }
00279   }
00280 }
00281 
00282 /// getVR - Return the virtual register corresponding to the specified result
00283 /// of the specified node.
00284 unsigned InstrEmitter::getVR(SDValue Op,
00285                              DenseMap<SDValue, unsigned> &VRBaseMap) {
00286   if (Op.isMachineOpcode() &&
00287       Op.getMachineOpcode() == TargetOpcode::IMPLICIT_DEF) {
00288     // Add an IMPLICIT_DEF instruction before every use.
00289     unsigned VReg = getDstOfOnlyCopyToRegUse(Op.getNode(), Op.getResNo());
00290     // IMPLICIT_DEF can produce any type of result so its MCInstrDesc
00291     // does not include operand register class info.
00292     if (!VReg) {
00293       const TargetRegisterClass *RC =
00294         TLI->getRegClassFor(Op.getSimpleValueType());
00295       VReg = MRI->createVirtualRegister(RC);
00296     }
00297     BuildMI(*MBB, InsertPos, Op.getDebugLoc(),
00298             TII->get(TargetOpcode::IMPLICIT_DEF), VReg);
00299     return VReg;
00300   }
00301 
00302   DenseMap<SDValue, unsigned>::iterator I = VRBaseMap.find(Op);
00303   assert(I != VRBaseMap.end() && "Node emitted out of order - late");
00304   return I->second;
00305 }
00306 
00307 
00308 /// AddRegisterOperand - Add the specified register as an operand to the
00309 /// specified machine instr. Insert register copies if the register is
00310 /// not in the required register class.
00311 void
00312 InstrEmitter::AddRegisterOperand(MachineInstrBuilder &MIB,
00313                                  SDValue Op,
00314                                  unsigned IIOpNum,
00315                                  const MCInstrDesc *II,
00316                                  DenseMap<SDValue, unsigned> &VRBaseMap,
00317                                  bool IsDebug, bool IsClone, bool IsCloned) {
00318   assert(Op.getValueType() != MVT::Other &&
00319          Op.getValueType() != MVT::Glue &&
00320          "Chain and glue operands should occur at end of operand list!");
00321   // Get/emit the operand.
00322   unsigned VReg = getVR(Op, VRBaseMap);
00323   assert(TargetRegisterInfo::isVirtualRegister(VReg) && "Not a vreg?");
00324 
00325   const MCInstrDesc &MCID = MIB->getDesc();
00326   bool isOptDef = IIOpNum < MCID.getNumOperands() &&
00327     MCID.OpInfo[IIOpNum].isOptionalDef();
00328 
00329   // If the instruction requires a register in a different class, create
00330   // a new virtual register and copy the value into it, but first attempt to
00331   // shrink VReg's register class within reason.  For example, if VReg == GR32
00332   // and II requires a GR32_NOSP, just constrain VReg to GR32_NOSP.
00333   if (II) {
00334     const TargetRegisterClass *DstRC = nullptr;
00335     if (IIOpNum < II->getNumOperands())
00336       DstRC = TRI->getAllocatableClass(TII->getRegClass(*II,IIOpNum,TRI,*MF));
00337     if (DstRC && !MRI->constrainRegClass(VReg, DstRC, MinRCSize)) {
00338       unsigned NewVReg = MRI->createVirtualRegister(DstRC);
00339       BuildMI(*MBB, InsertPos, Op.getNode()->getDebugLoc(),
00340               TII->get(TargetOpcode::COPY), NewVReg).addReg(VReg);
00341       VReg = NewVReg;
00342     }
00343   }
00344 
00345   // If this value has only one use, that use is a kill. This is a
00346   // conservative approximation. InstrEmitter does trivial coalescing
00347   // with CopyFromReg nodes, so don't emit kill flags for them.
00348   // Avoid kill flags on Schedule cloned nodes, since there will be
00349   // multiple uses.
00350   // Tied operands are never killed, so we need to check that. And that
00351   // means we need to determine the index of the operand.
00352   bool isKill = Op.hasOneUse() &&
00353                 Op.getNode()->getOpcode() != ISD::CopyFromReg &&
00354                 !IsDebug &&
00355                 !(IsClone || IsCloned);
00356   if (isKill) {
00357     unsigned Idx = MIB->getNumOperands();
00358     while (Idx > 0 &&
00359            MIB->getOperand(Idx-1).isReg() &&
00360            MIB->getOperand(Idx-1).isImplicit())
00361       --Idx;
00362     bool isTied = MCID.getOperandConstraint(Idx, MCOI::TIED_TO) != -1;
00363     if (isTied)
00364       isKill = false;
00365   }
00366 
00367   MIB.addReg(VReg, getDefRegState(isOptDef) | getKillRegState(isKill) |
00368              getDebugRegState(IsDebug));
00369 }
00370 
00371 /// AddOperand - Add the specified operand to the specified machine instr.  II
00372 /// specifies the instruction information for the node, and IIOpNum is the
00373 /// operand number (in the II) that we are adding.
00374 void InstrEmitter::AddOperand(MachineInstrBuilder &MIB,
00375                               SDValue Op,
00376                               unsigned IIOpNum,
00377                               const MCInstrDesc *II,
00378                               DenseMap<SDValue, unsigned> &VRBaseMap,
00379                               bool IsDebug, bool IsClone, bool IsCloned) {
00380   if (Op.isMachineOpcode()) {
00381     AddRegisterOperand(MIB, Op, IIOpNum, II, VRBaseMap,
00382                        IsDebug, IsClone, IsCloned);
00383   } else if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
00384     MIB.addImm(C->getSExtValue());
00385   } else if (ConstantFPSDNode *F = dyn_cast<ConstantFPSDNode>(Op)) {
00386     MIB.addFPImm(F->getConstantFPValue());
00387   } else if (RegisterSDNode *R = dyn_cast<RegisterSDNode>(Op)) {
00388     // Turn additional physreg operands into implicit uses on non-variadic
00389     // instructions. This is used by call and return instructions passing
00390     // arguments in registers.
00391     bool Imp = II && (IIOpNum >= II->getNumOperands() && !II->isVariadic());
00392     MIB.addReg(R->getReg(), getImplRegState(Imp));
00393   } else if (RegisterMaskSDNode *RM = dyn_cast<RegisterMaskSDNode>(Op)) {
00394     MIB.addRegMask(RM->getRegMask());
00395   } else if (GlobalAddressSDNode *TGA = dyn_cast<GlobalAddressSDNode>(Op)) {
00396     MIB.addGlobalAddress(TGA->getGlobal(), TGA->getOffset(),
00397                          TGA->getTargetFlags());
00398   } else if (BasicBlockSDNode *BBNode = dyn_cast<BasicBlockSDNode>(Op)) {
00399     MIB.addMBB(BBNode->getBasicBlock());
00400   } else if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Op)) {
00401     MIB.addFrameIndex(FI->getIndex());
00402   } else if (JumpTableSDNode *JT = dyn_cast<JumpTableSDNode>(Op)) {
00403     MIB.addJumpTableIndex(JT->getIndex(), JT->getTargetFlags());
00404   } else if (ConstantPoolSDNode *CP = dyn_cast<ConstantPoolSDNode>(Op)) {
00405     int Offset = CP->getOffset();
00406     unsigned Align = CP->getAlignment();
00407     Type *Type = CP->getType();
00408     // MachineConstantPool wants an explicit alignment.
00409     if (Align == 0) {
00410       Align =
00411           TM->getSubtargetImpl()->getDataLayout()->getPrefTypeAlignment(Type);
00412       if (Align == 0) {
00413         // Alignment of vector types.  FIXME!
00414         Align = TM->getSubtargetImpl()->getDataLayout()->getTypeAllocSize(Type);
00415       }
00416     }
00417 
00418     unsigned Idx;
00419     MachineConstantPool *MCP = MF->getConstantPool();
00420     if (CP->isMachineConstantPoolEntry())
00421       Idx = MCP->getConstantPoolIndex(CP->getMachineCPVal(), Align);
00422     else
00423       Idx = MCP->getConstantPoolIndex(CP->getConstVal(), Align);
00424     MIB.addConstantPoolIndex(Idx, Offset, CP->getTargetFlags());
00425   } else if (ExternalSymbolSDNode *ES = dyn_cast<ExternalSymbolSDNode>(Op)) {
00426     MIB.addExternalSymbol(ES->getSymbol(), ES->getTargetFlags());
00427   } else if (BlockAddressSDNode *BA = dyn_cast<BlockAddressSDNode>(Op)) {
00428     MIB.addBlockAddress(BA->getBlockAddress(),
00429                         BA->getOffset(),
00430                         BA->getTargetFlags());
00431   } else if (TargetIndexSDNode *TI = dyn_cast<TargetIndexSDNode>(Op)) {
00432     MIB.addTargetIndex(TI->getIndex(), TI->getOffset(), TI->getTargetFlags());
00433   } else {
00434     assert(Op.getValueType() != MVT::Other &&
00435            Op.getValueType() != MVT::Glue &&
00436            "Chain and glue operands should occur at end of operand list!");
00437     AddRegisterOperand(MIB, Op, IIOpNum, II, VRBaseMap,
00438                        IsDebug, IsClone, IsCloned);
00439   }
00440 }
00441 
00442 unsigned InstrEmitter::ConstrainForSubReg(unsigned VReg, unsigned SubIdx,
00443                                           MVT VT, DebugLoc DL) {
00444   const TargetRegisterClass *VRC = MRI->getRegClass(VReg);
00445   const TargetRegisterClass *RC = TRI->getSubClassWithSubReg(VRC, SubIdx);
00446 
00447   // RC is a sub-class of VRC that supports SubIdx.  Try to constrain VReg
00448   // within reason.
00449   if (RC && RC != VRC)
00450     RC = MRI->constrainRegClass(VReg, RC, MinRCSize);
00451 
00452   // VReg has been adjusted.  It can be used with SubIdx operands now.
00453   if (RC)
00454     return VReg;
00455 
00456   // VReg couldn't be reasonably constrained.  Emit a COPY to a new virtual
00457   // register instead.
00458   RC = TRI->getSubClassWithSubReg(TLI->getRegClassFor(VT), SubIdx);
00459   assert(RC && "No legal register class for VT supports that SubIdx");
00460   unsigned NewReg = MRI->createVirtualRegister(RC);
00461   BuildMI(*MBB, InsertPos, DL, TII->get(TargetOpcode::COPY), NewReg)
00462     .addReg(VReg);
00463   return NewReg;
00464 }
00465 
00466 /// EmitSubregNode - Generate machine code for subreg nodes.
00467 ///
00468 void InstrEmitter::EmitSubregNode(SDNode *Node,
00469                                   DenseMap<SDValue, unsigned> &VRBaseMap,
00470                                   bool IsClone, bool IsCloned) {
00471   unsigned VRBase = 0;
00472   unsigned Opc = Node->getMachineOpcode();
00473 
00474   // If the node is only used by a CopyToReg and the dest reg is a vreg, use
00475   // the CopyToReg'd destination register instead of creating a new vreg.
00476   for (SDNode *User : Node->uses()) {
00477     if (User->getOpcode() == ISD::CopyToReg &&
00478         User->getOperand(2).getNode() == Node) {
00479       unsigned DestReg = cast<RegisterSDNode>(User->getOperand(1))->getReg();
00480       if (TargetRegisterInfo::isVirtualRegister(DestReg)) {
00481         VRBase = DestReg;
00482         break;
00483       }
00484     }
00485   }
00486 
00487   if (Opc == TargetOpcode::EXTRACT_SUBREG) {
00488     // EXTRACT_SUBREG is lowered as %dst = COPY %src:sub.  There are no
00489     // constraints on the %dst register, COPY can target all legal register
00490     // classes.
00491     unsigned SubIdx = cast<ConstantSDNode>(Node->getOperand(1))->getZExtValue();
00492     const TargetRegisterClass *TRC =
00493       TLI->getRegClassFor(Node->getSimpleValueType(0));
00494 
00495     unsigned VReg = getVR(Node->getOperand(0), VRBaseMap);
00496     MachineInstr *DefMI = MRI->getVRegDef(VReg);
00497     unsigned SrcReg, DstReg, DefSubIdx;
00498     if (DefMI &&
00499         TII->isCoalescableExtInstr(*DefMI, SrcReg, DstReg, DefSubIdx) &&
00500         SubIdx == DefSubIdx &&
00501         TRC == MRI->getRegClass(SrcReg)) {
00502       // Optimize these:
00503       // r1025 = s/zext r1024, 4
00504       // r1026 = extract_subreg r1025, 4
00505       // to a copy
00506       // r1026 = copy r1024
00507       VRBase = MRI->createVirtualRegister(TRC);
00508       BuildMI(*MBB, InsertPos, Node->getDebugLoc(),
00509               TII->get(TargetOpcode::COPY), VRBase).addReg(SrcReg);
00510       MRI->clearKillFlags(SrcReg);
00511     } else {
00512       // VReg may not support a SubIdx sub-register, and we may need to
00513       // constrain its register class or issue a COPY to a compatible register
00514       // class.
00515       VReg = ConstrainForSubReg(VReg, SubIdx,
00516                                 Node->getOperand(0).getSimpleValueType(),
00517                                 Node->getDebugLoc());
00518 
00519       // Create the destreg if it is missing.
00520       if (VRBase == 0)
00521         VRBase = MRI->createVirtualRegister(TRC);
00522 
00523       // Create the extract_subreg machine instruction.
00524       BuildMI(*MBB, InsertPos, Node->getDebugLoc(),
00525               TII->get(TargetOpcode::COPY), VRBase).addReg(VReg, 0, SubIdx);
00526     }
00527   } else if (Opc == TargetOpcode::INSERT_SUBREG ||
00528              Opc == TargetOpcode::SUBREG_TO_REG) {
00529     SDValue N0 = Node->getOperand(0);
00530     SDValue N1 = Node->getOperand(1);
00531     SDValue N2 = Node->getOperand(2);
00532     unsigned SubIdx = cast<ConstantSDNode>(N2)->getZExtValue();
00533 
00534     // Figure out the register class to create for the destreg.  It should be
00535     // the largest legal register class supporting SubIdx sub-registers.
00536     // RegisterCoalescer will constrain it further if it decides to eliminate
00537     // the INSERT_SUBREG instruction.
00538     //
00539     //   %dst = INSERT_SUBREG %src, %sub, SubIdx
00540     //
00541     // is lowered by TwoAddressInstructionPass to:
00542     //
00543     //   %dst = COPY %src
00544     //   %dst:SubIdx = COPY %sub
00545     //
00546     // There is no constraint on the %src register class.
00547     //
00548     const TargetRegisterClass *SRC = TLI->getRegClassFor(Node->getSimpleValueType(0));
00549     SRC = TRI->getSubClassWithSubReg(SRC, SubIdx);
00550     assert(SRC && "No register class supports VT and SubIdx for INSERT_SUBREG");
00551 
00552     if (VRBase == 0 || !SRC->hasSubClassEq(MRI->getRegClass(VRBase)))
00553       VRBase = MRI->createVirtualRegister(SRC);
00554 
00555     // Create the insert_subreg or subreg_to_reg machine instruction.
00556     MachineInstrBuilder MIB =
00557       BuildMI(*MF, Node->getDebugLoc(), TII->get(Opc), VRBase);
00558 
00559     // If creating a subreg_to_reg, then the first input operand
00560     // is an implicit value immediate, otherwise it's a register
00561     if (Opc == TargetOpcode::SUBREG_TO_REG) {
00562       const ConstantSDNode *SD = cast<ConstantSDNode>(N0);
00563       MIB.addImm(SD->getZExtValue());
00564     } else
00565       AddOperand(MIB, N0, 0, nullptr, VRBaseMap, /*IsDebug=*/false,
00566                  IsClone, IsCloned);
00567     // Add the subregster being inserted
00568     AddOperand(MIB, N1, 0, nullptr, VRBaseMap, /*IsDebug=*/false,
00569                IsClone, IsCloned);
00570     MIB.addImm(SubIdx);
00571     MBB->insert(InsertPos, MIB);
00572   } else
00573     llvm_unreachable("Node is not insert_subreg, extract_subreg, or subreg_to_reg");
00574 
00575   SDValue Op(Node, 0);
00576   bool isNew = VRBaseMap.insert(std::make_pair(Op, VRBase)).second;
00577   (void)isNew; // Silence compiler warning.
00578   assert(isNew && "Node emitted out of order - early");
00579 }
00580 
00581 /// EmitCopyToRegClassNode - Generate machine code for COPY_TO_REGCLASS nodes.
00582 /// COPY_TO_REGCLASS is just a normal copy, except that the destination
00583 /// register is constrained to be in a particular register class.
00584 ///
00585 void
00586 InstrEmitter::EmitCopyToRegClassNode(SDNode *Node,
00587                                      DenseMap<SDValue, unsigned> &VRBaseMap) {
00588   unsigned VReg = getVR(Node->getOperand(0), VRBaseMap);
00589 
00590   // Create the new VReg in the destination class and emit a copy.
00591   unsigned DstRCIdx = cast<ConstantSDNode>(Node->getOperand(1))->getZExtValue();
00592   const TargetRegisterClass *DstRC =
00593     TRI->getAllocatableClass(TRI->getRegClass(DstRCIdx));
00594   unsigned NewVReg = MRI->createVirtualRegister(DstRC);
00595   BuildMI(*MBB, InsertPos, Node->getDebugLoc(), TII->get(TargetOpcode::COPY),
00596     NewVReg).addReg(VReg);
00597 
00598   SDValue Op(Node, 0);
00599   bool isNew = VRBaseMap.insert(std::make_pair(Op, NewVReg)).second;
00600   (void)isNew; // Silence compiler warning.
00601   assert(isNew && "Node emitted out of order - early");
00602 }
00603 
00604 /// EmitRegSequence - Generate machine code for REG_SEQUENCE nodes.
00605 ///
00606 void InstrEmitter::EmitRegSequence(SDNode *Node,
00607                                   DenseMap<SDValue, unsigned> &VRBaseMap,
00608                                   bool IsClone, bool IsCloned) {
00609   unsigned DstRCIdx = cast<ConstantSDNode>(Node->getOperand(0))->getZExtValue();
00610   const TargetRegisterClass *RC = TRI->getRegClass(DstRCIdx);
00611   unsigned NewVReg = MRI->createVirtualRegister(TRI->getAllocatableClass(RC));
00612   const MCInstrDesc &II = TII->get(TargetOpcode::REG_SEQUENCE);
00613   MachineInstrBuilder MIB = BuildMI(*MF, Node->getDebugLoc(), II, NewVReg);
00614   unsigned NumOps = Node->getNumOperands();
00615   assert((NumOps & 1) == 1 &&
00616          "REG_SEQUENCE must have an odd number of operands!");
00617   for (unsigned i = 1; i != NumOps; ++i) {
00618     SDValue Op = Node->getOperand(i);
00619     if ((i & 1) == 0) {
00620       RegisterSDNode *R = dyn_cast<RegisterSDNode>(Node->getOperand(i-1));
00621       // Skip physical registers as they don't have a vreg to get and we'll
00622       // insert copies for them in TwoAddressInstructionPass anyway.
00623       if (!R || !TargetRegisterInfo::isPhysicalRegister(R->getReg())) {
00624         unsigned SubIdx = cast<ConstantSDNode>(Op)->getZExtValue();
00625         unsigned SubReg = getVR(Node->getOperand(i-1), VRBaseMap);
00626         const TargetRegisterClass *TRC = MRI->getRegClass(SubReg);
00627         const TargetRegisterClass *SRC =
00628         TRI->getMatchingSuperRegClass(RC, TRC, SubIdx);
00629         if (SRC && SRC != RC) {
00630           MRI->setRegClass(NewVReg, SRC);
00631           RC = SRC;
00632         }
00633       }
00634     }
00635     AddOperand(MIB, Op, i+1, &II, VRBaseMap, /*IsDebug=*/false,
00636                IsClone, IsCloned);
00637   }
00638 
00639   MBB->insert(InsertPos, MIB);
00640   SDValue Op(Node, 0);
00641   bool isNew = VRBaseMap.insert(std::make_pair(Op, NewVReg)).second;
00642   (void)isNew; // Silence compiler warning.
00643   assert(isNew && "Node emitted out of order - early");
00644 }
00645 
00646 /// EmitDbgValue - Generate machine instruction for a dbg_value node.
00647 ///
00648 MachineInstr *
00649 InstrEmitter::EmitDbgValue(SDDbgValue *SD,
00650                            DenseMap<SDValue, unsigned> &VRBaseMap) {
00651   uint64_t Offset = SD->getOffset();
00652   MDNode* MDPtr = SD->getMDPtr();
00653   DebugLoc DL = SD->getDebugLoc();
00654 
00655   if (SD->getKind() == SDDbgValue::FRAMEIX) {
00656     // Stack address; this needs to be lowered in target-dependent fashion.
00657     // EmitTargetCodeForFrameDebugValue is responsible for allocation.
00658     return BuildMI(*MF, DL, TII->get(TargetOpcode::DBG_VALUE))
00659         .addFrameIndex(SD->getFrameIx()).addImm(Offset).addMetadata(MDPtr);
00660   }
00661   // Otherwise, we're going to create an instruction here.
00662   const MCInstrDesc &II = TII->get(TargetOpcode::DBG_VALUE);
00663   MachineInstrBuilder MIB = BuildMI(*MF, DL, II);
00664   if (SD->getKind() == SDDbgValue::SDNODE) {
00665     SDNode *Node = SD->getSDNode();
00666     SDValue Op = SDValue(Node, SD->getResNo());
00667     // It's possible we replaced this SDNode with other(s) and therefore
00668     // didn't generate code for it.  It's better to catch these cases where
00669     // they happen and transfer the debug info, but trying to guarantee that
00670     // in all cases would be very fragile; this is a safeguard for any
00671     // that were missed.
00672     DenseMap<SDValue, unsigned>::iterator I = VRBaseMap.find(Op);
00673     if (I==VRBaseMap.end())
00674       MIB.addReg(0U);       // undef
00675     else
00676       AddOperand(MIB, Op, (*MIB).getNumOperands(), &II, VRBaseMap,
00677                  /*IsDebug=*/true, /*IsClone=*/false, /*IsCloned=*/false);
00678   } else if (SD->getKind() == SDDbgValue::CONST) {
00679     const Value *V = SD->getConst();
00680     if (const ConstantInt *CI = dyn_cast<ConstantInt>(V)) {
00681       if (CI->getBitWidth() > 64)
00682         MIB.addCImm(CI);
00683       else
00684         MIB.addImm(CI->getSExtValue());
00685     } else if (const ConstantFP *CF = dyn_cast<ConstantFP>(V)) {
00686       MIB.addFPImm(CF);
00687     } else {
00688       // Could be an Undef.  In any case insert an Undef so we can see what we
00689       // dropped.
00690       MIB.addReg(0U);
00691     }
00692   } else {
00693     // Insert an Undef so we can see what we dropped.
00694     MIB.addReg(0U);
00695   }
00696 
00697   // Indirect addressing is indicated by an Imm as the second parameter.
00698   if (SD->isIndirect())
00699     MIB.addImm(Offset);
00700   else {
00701     assert(Offset == 0 && "direct value cannot have an offset");
00702     MIB.addReg(0U, RegState::Debug);
00703   }
00704 
00705   MIB.addMetadata(MDPtr);
00706 
00707   return &*MIB;
00708 }
00709 
00710 /// EmitMachineNode - Generate machine code for a target-specific node and
00711 /// needed dependencies.
00712 ///
00713 void InstrEmitter::
00714 EmitMachineNode(SDNode *Node, bool IsClone, bool IsCloned,
00715                 DenseMap<SDValue, unsigned> &VRBaseMap) {
00716   unsigned Opc = Node->getMachineOpcode();
00717 
00718   // Handle subreg insert/extract specially
00719   if (Opc == TargetOpcode::EXTRACT_SUBREG ||
00720       Opc == TargetOpcode::INSERT_SUBREG ||
00721       Opc == TargetOpcode::SUBREG_TO_REG) {
00722     EmitSubregNode(Node, VRBaseMap, IsClone, IsCloned);
00723     return;
00724   }
00725 
00726   // Handle COPY_TO_REGCLASS specially.
00727   if (Opc == TargetOpcode::COPY_TO_REGCLASS) {
00728     EmitCopyToRegClassNode(Node, VRBaseMap);
00729     return;
00730   }
00731 
00732   // Handle REG_SEQUENCE specially.
00733   if (Opc == TargetOpcode::REG_SEQUENCE) {
00734     EmitRegSequence(Node, VRBaseMap, IsClone, IsCloned);
00735     return;
00736   }
00737 
00738   if (Opc == TargetOpcode::IMPLICIT_DEF)
00739     // We want a unique VR for each IMPLICIT_DEF use.
00740     return;
00741 
00742   const MCInstrDesc &II = TII->get(Opc);
00743   unsigned NumResults = CountResults(Node);
00744   unsigned NumDefs = II.getNumDefs();
00745   const MCPhysReg *ScratchRegs = nullptr;
00746 
00747   // Handle STACKMAP and PATCHPOINT specially and then use the generic code.
00748   if (Opc == TargetOpcode::STACKMAP || Opc == TargetOpcode::PATCHPOINT) {
00749     // Stackmaps do not have arguments and do not preserve their calling
00750     // convention. However, to simplify runtime support, they clobber the same
00751     // scratch registers as AnyRegCC.
00752     unsigned CC = CallingConv::AnyReg;
00753     if (Opc == TargetOpcode::PATCHPOINT) {
00754       CC = Node->getConstantOperandVal(PatchPointOpers::CCPos);
00755       NumDefs = NumResults;
00756     }
00757     ScratchRegs = TLI->getScratchRegisters((CallingConv::ID) CC);
00758   }
00759 
00760   unsigned NumImpUses = 0;
00761   unsigned NodeOperands =
00762     countOperands(Node, II.getNumOperands() - NumDefs, NumImpUses);
00763   bool HasPhysRegOuts = NumResults > NumDefs && II.getImplicitDefs()!=nullptr;
00764 #ifndef NDEBUG
00765   unsigned NumMIOperands = NodeOperands + NumResults;
00766   if (II.isVariadic())
00767     assert(NumMIOperands >= II.getNumOperands() &&
00768            "Too few operands for a variadic node!");
00769   else
00770     assert(NumMIOperands >= II.getNumOperands() &&
00771            NumMIOperands <= II.getNumOperands() + II.getNumImplicitDefs() +
00772                             NumImpUses &&
00773            "#operands for dag node doesn't match .td file!");
00774 #endif
00775 
00776   // Create the new machine instruction.
00777   MachineInstrBuilder MIB = BuildMI(*MF, Node->getDebugLoc(), II);
00778 
00779   // Add result register values for things that are defined by this
00780   // instruction.
00781   if (NumResults)
00782     CreateVirtualRegisters(Node, MIB, II, IsClone, IsCloned, VRBaseMap);
00783 
00784   // Emit all of the actual operands of this instruction, adding them to the
00785   // instruction as appropriate.
00786   bool HasOptPRefs = NumDefs > NumResults;
00787   assert((!HasOptPRefs || !HasPhysRegOuts) &&
00788          "Unable to cope with optional defs and phys regs defs!");
00789   unsigned NumSkip = HasOptPRefs ? NumDefs - NumResults : 0;
00790   for (unsigned i = NumSkip; i != NodeOperands; ++i)
00791     AddOperand(MIB, Node->getOperand(i), i-NumSkip+NumDefs, &II,
00792                VRBaseMap, /*IsDebug=*/false, IsClone, IsCloned);
00793 
00794   // Add scratch registers as implicit def and early clobber
00795   if (ScratchRegs)
00796     for (unsigned i = 0; ScratchRegs[i]; ++i)
00797       MIB.addReg(ScratchRegs[i], RegState::ImplicitDefine |
00798                                  RegState::EarlyClobber);
00799 
00800   // Transfer all of the memory reference descriptions of this instruction.
00801   MIB.setMemRefs(cast<MachineSDNode>(Node)->memoperands_begin(),
00802                  cast<MachineSDNode>(Node)->memoperands_end());
00803 
00804   // Insert the instruction into position in the block. This needs to
00805   // happen before any custom inserter hook is called so that the
00806   // hook knows where in the block to insert the replacement code.
00807   MBB->insert(InsertPos, MIB);
00808 
00809   // The MachineInstr may also define physregs instead of virtregs.  These
00810   // physreg values can reach other instructions in different ways:
00811   //
00812   // 1. When there is a use of a Node value beyond the explicitly defined
00813   //    virtual registers, we emit a CopyFromReg for one of the implicitly
00814   //    defined physregs.  This only happens when HasPhysRegOuts is true.
00815   //
00816   // 2. A CopyFromReg reading a physreg may be glued to this instruction.
00817   //
00818   // 3. A glued instruction may implicitly use a physreg.
00819   //
00820   // 4. A glued instruction may use a RegisterSDNode operand.
00821   //
00822   // Collect all the used physreg defs, and make sure that any unused physreg
00823   // defs are marked as dead.
00824   SmallVector<unsigned, 8> UsedRegs;
00825 
00826   // Additional results must be physical register defs.
00827   if (HasPhysRegOuts) {
00828     for (unsigned i = NumDefs; i < NumResults; ++i) {
00829       unsigned Reg = II.getImplicitDefs()[i - NumDefs];
00830       if (!Node->hasAnyUseOfValue(i))
00831         continue;
00832       // This implicitly defined physreg has a use.
00833       UsedRegs.push_back(Reg);
00834       EmitCopyFromReg(Node, i, IsClone, IsCloned, Reg, VRBaseMap);
00835     }
00836   }
00837 
00838   // Scan the glue chain for any used physregs.
00839   if (Node->getValueType(Node->getNumValues()-1) == MVT::Glue) {
00840     for (SDNode *F = Node->getGluedUser(); F; F = F->getGluedUser()) {
00841       if (F->getOpcode() == ISD::CopyFromReg) {
00842         UsedRegs.push_back(cast<RegisterSDNode>(F->getOperand(1))->getReg());
00843         continue;
00844       } else if (F->getOpcode() == ISD::CopyToReg) {
00845         // Skip CopyToReg nodes that are internal to the glue chain.
00846         continue;
00847       }
00848       // Collect declared implicit uses.
00849       const MCInstrDesc &MCID = TII->get(F->getMachineOpcode());
00850       UsedRegs.append(MCID.getImplicitUses(),
00851                       MCID.getImplicitUses() + MCID.getNumImplicitUses());
00852       // In addition to declared implicit uses, we must also check for
00853       // direct RegisterSDNode operands.
00854       for (unsigned i = 0, e = F->getNumOperands(); i != e; ++i)
00855         if (RegisterSDNode *R = dyn_cast<RegisterSDNode>(F->getOperand(i))) {
00856           unsigned Reg = R->getReg();
00857           if (TargetRegisterInfo::isPhysicalRegister(Reg))
00858             UsedRegs.push_back(Reg);
00859         }
00860     }
00861   }
00862 
00863   // Finally mark unused registers as dead.
00864   if (!UsedRegs.empty() || II.getImplicitDefs())
00865     MIB->setPhysRegsDeadExcept(UsedRegs, *TRI);
00866 
00867   // Run post-isel target hook to adjust this instruction if needed.
00868 #ifdef NDEBUG
00869   if (II.hasPostISelHook())
00870 #endif
00871     TLI->AdjustInstrPostInstrSelection(MIB, Node);
00872 }
00873 
00874 /// EmitSpecialNode - Generate machine code for a target-independent node and
00875 /// needed dependencies.
00876 void InstrEmitter::
00877 EmitSpecialNode(SDNode *Node, bool IsClone, bool IsCloned,
00878                 DenseMap<SDValue, unsigned> &VRBaseMap) {
00879   switch (Node->getOpcode()) {
00880   default:
00881 #ifndef NDEBUG
00882     Node->dump();
00883 #endif
00884     llvm_unreachable("This target-independent node should have been selected!");
00885   case ISD::EntryToken:
00886     llvm_unreachable("EntryToken should have been excluded from the schedule!");
00887   case ISD::MERGE_VALUES:
00888   case ISD::TokenFactor: // fall thru
00889     break;
00890   case ISD::CopyToReg: {
00891     unsigned SrcReg;
00892     SDValue SrcVal = Node->getOperand(2);
00893     if (RegisterSDNode *R = dyn_cast<RegisterSDNode>(SrcVal))
00894       SrcReg = R->getReg();
00895     else
00896       SrcReg = getVR(SrcVal, VRBaseMap);
00897 
00898     unsigned DestReg = cast<RegisterSDNode>(Node->getOperand(1))->getReg();
00899     if (SrcReg == DestReg) // Coalesced away the copy? Ignore.
00900       break;
00901 
00902     BuildMI(*MBB, InsertPos, Node->getDebugLoc(), TII->get(TargetOpcode::COPY),
00903             DestReg).addReg(SrcReg);
00904     break;
00905   }
00906   case ISD::CopyFromReg: {
00907     unsigned SrcReg = cast<RegisterSDNode>(Node->getOperand(1))->getReg();
00908     EmitCopyFromReg(Node, 0, IsClone, IsCloned, SrcReg, VRBaseMap);
00909     break;
00910   }
00911   case ISD::EH_LABEL: {
00912     MCSymbol *S = cast<EHLabelSDNode>(Node)->getLabel();
00913     BuildMI(*MBB, InsertPos, Node->getDebugLoc(),
00914             TII->get(TargetOpcode::EH_LABEL)).addSym(S);
00915     break;
00916   }
00917 
00918   case ISD::LIFETIME_START:
00919   case ISD::LIFETIME_END: {
00920     unsigned TarOp = (Node->getOpcode() == ISD::LIFETIME_START) ?
00921     TargetOpcode::LIFETIME_START : TargetOpcode::LIFETIME_END;
00922 
00923     FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Node->getOperand(1));
00924     BuildMI(*MBB, InsertPos, Node->getDebugLoc(), TII->get(TarOp))
00925     .addFrameIndex(FI->getIndex());
00926     break;
00927   }
00928 
00929   case ISD::INLINEASM: {
00930     unsigned NumOps = Node->getNumOperands();
00931     if (Node->getOperand(NumOps-1).getValueType() == MVT::Glue)
00932       --NumOps;  // Ignore the glue operand.
00933 
00934     // Create the inline asm machine instruction.
00935     MachineInstrBuilder MIB = BuildMI(*MF, Node->getDebugLoc(),
00936                                       TII->get(TargetOpcode::INLINEASM));
00937 
00938     // Add the asm string as an external symbol operand.
00939     SDValue AsmStrV = Node->getOperand(InlineAsm::Op_AsmString);
00940     const char *AsmStr = cast<ExternalSymbolSDNode>(AsmStrV)->getSymbol();
00941     MIB.addExternalSymbol(AsmStr);
00942 
00943     // Add the HasSideEffect, isAlignStack, AsmDialect, MayLoad and MayStore
00944     // bits.
00945     int64_t ExtraInfo =
00946       cast<ConstantSDNode>(Node->getOperand(InlineAsm::Op_ExtraInfo))->
00947                           getZExtValue();
00948     MIB.addImm(ExtraInfo);
00949 
00950     // Remember to operand index of the group flags.
00951     SmallVector<unsigned, 8> GroupIdx;
00952 
00953     // Add all of the operand registers to the instruction.
00954     for (unsigned i = InlineAsm::Op_FirstOperand; i != NumOps;) {
00955       unsigned Flags =
00956         cast<ConstantSDNode>(Node->getOperand(i))->getZExtValue();
00957       const unsigned NumVals = InlineAsm::getNumOperandRegisters(Flags);
00958 
00959       GroupIdx.push_back(MIB->getNumOperands());
00960       MIB.addImm(Flags);
00961       ++i;  // Skip the ID value.
00962 
00963       switch (InlineAsm::getKind(Flags)) {
00964       default: llvm_unreachable("Bad flags!");
00965         case InlineAsm::Kind_RegDef:
00966         for (unsigned j = 0; j != NumVals; ++j, ++i) {
00967           unsigned Reg = cast<RegisterSDNode>(Node->getOperand(i))->getReg();
00968           // FIXME: Add dead flags for physical and virtual registers defined.
00969           // For now, mark physical register defs as implicit to help fast
00970           // regalloc. This makes inline asm look a lot like calls.
00971           MIB.addReg(Reg, RegState::Define |
00972                   getImplRegState(TargetRegisterInfo::isPhysicalRegister(Reg)));
00973         }
00974         break;
00975       case InlineAsm::Kind_RegDefEarlyClobber:
00976       case InlineAsm::Kind_Clobber:
00977         for (unsigned j = 0; j != NumVals; ++j, ++i) {
00978           unsigned Reg = cast<RegisterSDNode>(Node->getOperand(i))->getReg();
00979           MIB.addReg(Reg, RegState::Define | RegState::EarlyClobber |
00980                   getImplRegState(TargetRegisterInfo::isPhysicalRegister(Reg)));
00981         }
00982         break;
00983       case InlineAsm::Kind_RegUse:  // Use of register.
00984       case InlineAsm::Kind_Imm:  // Immediate.
00985       case InlineAsm::Kind_Mem:  // Addressing mode.
00986         // The addressing mode has been selected, just add all of the
00987         // operands to the machine instruction.
00988         for (unsigned j = 0; j != NumVals; ++j, ++i)
00989           AddOperand(MIB, Node->getOperand(i), 0, nullptr, VRBaseMap,
00990                      /*IsDebug=*/false, IsClone, IsCloned);
00991 
00992         // Manually set isTied bits.
00993         if (InlineAsm::getKind(Flags) == InlineAsm::Kind_RegUse) {
00994           unsigned DefGroup = 0;
00995           if (InlineAsm::isUseOperandTiedToDef(Flags, DefGroup)) {
00996             unsigned DefIdx = GroupIdx[DefGroup] + 1;
00997             unsigned UseIdx = GroupIdx.back() + 1;
00998             for (unsigned j = 0; j != NumVals; ++j)
00999               MIB->tieOperands(DefIdx + j, UseIdx + j);
01000           }
01001         }
01002         break;
01003       }
01004     }
01005 
01006     // Get the mdnode from the asm if it exists and add it to the instruction.
01007     SDValue MDV = Node->getOperand(InlineAsm::Op_MDNode);
01008     const MDNode *MD = cast<MDNodeSDNode>(MDV)->getMD();
01009     if (MD)
01010       MIB.addMetadata(MD);
01011 
01012     MBB->insert(InsertPos, MIB);
01013     break;
01014   }
01015   }
01016 }
01017 
01018 /// InstrEmitter - Construct an InstrEmitter and set it to start inserting
01019 /// at the given position in the given block.
01020 InstrEmitter::InstrEmitter(MachineBasicBlock *mbb,
01021                            MachineBasicBlock::iterator insertpos)
01022     : MF(mbb->getParent()), MRI(&MF->getRegInfo()), TM(&MF->getTarget()),
01023       TII(TM->getSubtargetImpl()->getInstrInfo()),
01024       TRI(TM->getSubtargetImpl()->getRegisterInfo()),
01025       TLI(TM->getSubtargetImpl()->getTargetLowering()), MBB(mbb),
01026       InsertPos(insertpos) {}