#include "access/sdir.h"
#include "access/skey.h"
#include "nodes/primnodes.h"
#include "storage/bufpage.h"
#include "storage/lock.h"
#include "utils/relcache.h"
#include "utils/snapshot.h"
Go to the source code of this file.
#define heap_close | ( | r, | ||
l | ||||
) | relation_close(r,l) |
Definition at line 95 of file heapam.h.
Referenced by acquire_inherited_sample_rows(), AcquireRewriteLocks(), AddEnumLabel(), AddNewAttributeTuples(), addRangeTableEntry(), AddRoleMems(), afterTriggerInvokeEvents(), AfterTriggerSetState(), AggregateCreate(), AlterConstraintNamespaces(), AlterDatabase(), AlterDatabaseOwner(), AlterDomainAddConstraint(), AlterDomainDefault(), AlterDomainDropConstraint(), AlterDomainNotNull(), AlterDomainValidateConstraint(), AlterEventTrigger(), AlterEventTriggerOwner(), AlterEventTriggerOwner_oid(), AlterExtensionNamespace(), AlterForeignDataWrapper(), AlterForeignDataWrapperOwner(), AlterForeignDataWrapperOwner_oid(), AlterForeignServer(), AlterForeignServerOwner(), AlterForeignServerOwner_oid(), AlterFunction(), AlterObjectNamespace_oid(), AlterRole(), AlterSchemaOwner(), AlterSchemaOwner_oid(), AlterSetting(), AlterTableCreateToastTable(), AlterTableNamespaceInternal(), AlterTableSpaceOptions(), AlterTSConfiguration(), AlterTSDictionary(), AlterTypeNamespaceInternal(), AlterTypeOwner(), AlterTypeOwnerInternal(), AlterUserMapping(), AppendAttributeTuples(), ApplyExtensionUpdates(), AssignTypeArrayOid(), ATAddCheckConstraint(), ATAddForeignKeyConstraint(), ATExecAddColumn(), ATExecAddInherit(), ATExecAddOf(), ATExecAlterColumnGenericOptions(), ATExecAlterColumnType(), ATExecChangeOwner(), ATExecDropColumn(), ATExecDropConstraint(), ATExecDropInherit(), ATExecDropNotNull(), ATExecDropOf(), ATExecGenericOptions(), ATExecSetNotNull(), ATExecSetOptions(), ATExecSetRelOptions(), ATExecSetStatistics(), ATExecSetStorage(), ATExecSetTableSpace(), ATExecValidateConstraint(), ATRewriteTable(), ATRewriteTables(), AttrDefaultFetch(), boot_openrel(), BootstrapToastTable(), build_indices(), build_physical_tlist(), CatalogCacheInitializeCache(), change_owner_fix_column_acls(), changeDependencyFor(), changeDependencyOnOwner(), check_db_file_conflict(), check_functional_grouping(), check_selective_binary_conversion(), CheckConstraintFetch(), checkSharedDependencies(), ChooseConstraintName(), close_lo_relation(), closerel(), cluster(), CollationCreate(), ConstraintNameIsUsed(), ConversionCreate(), copy_heap_data(), copyTemplateDependencies(), create_proc_lang(), create_toast_table(), CreateCast(), CreateComments(), CreateConstraintEntry(), createdb(), CreateForeignDataWrapper(), CreateForeignServer(), CreateForeignTable(), CreateOpFamily(), CreateRole(), CreateSharedComments(), CreateTableSpace(), CreateTrigger(), CreateUserMapping(), currtid_byrelname(), currtid_byreloid(), currtid_for_view(), database_to_xmlschema_internal(), DefineIndex(), DefineOpClass(), DefineQueryRewrite(), DefineSequence(), DefineTSConfiguration(), DefineTSDictionary(), DefineTSParser(), DefineTSTemplate(), DeleteAttributeTuples(), DeleteComments(), deleteDependencyRecordsFor(), deleteDependencyRecordsForClass(), deleteOneObject(), DeleteRelationTuple(), DeleteSecurityLabel(), DeleteSharedComments(), deleteSharedDependencyRecordsFor(), DeleteSharedSecurityLabel(), DeleteSystemAttributeTuples(), deleteWhatDependsOn(), DelRoleMems(), deparseSelectSql(), do_autovacuum(), DoCopy(), drop_parent_dependency(), DropCastById(), dropDatabaseDependencies(), dropdb(), DropProceduralLanguageById(), DropRole(), DropSetting(), DropTableSpace(), EnableDisableRule(), EnableDisableTrigger(), enum_endpoint(), enum_range_internal(), EnumValuesCreate(), EnumValuesDelete(), EvalPlanQualEnd(), EventTriggerSQLDropAddObject(), exec_object_restorecon(), ExecAlterExtensionStmt(), ExecAlterObjectSchemaStmt(), ExecAlterOwnerStmt(), ExecCloseScanRelation(), ExecEndPlan(), ExecGrant_Database(), ExecGrant_Fdw(), ExecGrant_ForeignServer(), ExecGrant_Function(), ExecGrant_Language(), ExecGrant_Largeobject(), ExecGrant_Namespace(), ExecGrant_Relation(), ExecGrant_Tablespace(), ExecGrant_Type(), ExecRefreshMatView(), ExecRenameStmt(), ExecuteTruncate(), expand_inherited_rtentry(), expand_targetlist(), extension_config_remove(), find_inheritance_children(), find_language_template(), find_typed_table_dependencies(), fireRIRrules(), free_parsestate(), get_actual_variable_range(), get_constraint_index(), get_database_list(), get_database_oid(), get_db_info(), get_domain_constraint_oid(), get_extension_name(), get_extension_oid(), get_extension_schema(), get_file_fdw_attribute_options(), get_index_constraint(), get_object_address_relobject(), get_pkey_attnames(), get_rel_oids(), get_relation_constraint_oid(), get_relation_constraints(), get_relation_data_width(), get_relation_info(), get_rewrite_oid_without_relid(), get_tablespace_name(), get_tablespace_oid(), get_trigger_oid(), GetComment(), getConstraintTypeDescription(), GetDatabaseTuple(), GetDatabaseTupleByOid(), GetDefaultOpClass(), GetDomainConstraints(), getExtensionOfObject(), getObjectDescription(), getObjectIdentity(), getOwnedSequences(), getRelationsInNamespace(), GetSecurityLabel(), GetSharedSecurityLabel(), gettype(), GrantRole(), heap_create_with_catalog(), heap_drop_with_catalog(), heap_sync(), heap_truncate(), heap_truncate_find_FKs(), heap_truncate_one_rel(), index_build(), index_constraint_create(), index_create(), index_drop(), index_set_state_flags(), index_update_stats(), insert_event_trigger_tuple(), InsertExtensionTuple(), InsertRule(), intorel_shutdown(), isQueryUsingTempRelation_walker(), LargeObjectCreate(), LargeObjectDrop(), LargeObjectExists(), load_enum_cache_data(), lookup_ts_config_cache(), LookupOpclassInfo(), make_new_heap(), make_viewdef(), makeArrayTypeName(), mark_index_clustered(), MergeAttributes(), MergeAttributesIntoExisting(), MergeConstraintsIntoExisting(), MergeWithExistingConstraint(), movedb(), myLargeObjectExists(), NamespaceCreate(), objectsInSchemaToOids(), OperatorCreate(), OperatorShellMake(), OperatorUpd(), performDeletion(), performMultipleDeletions(), pg_extension_config_dump(), pg_extension_ownercheck(), pg_get_serial_sequence(), pg_get_triggerdef_worker(), pg_identify_object(), pg_largeobject_aclmask_snapshot(), pg_largeobject_ownercheck(), pgrowlocks(), pgstat_collect_oids(), postgresPlanForeignModify(), ProcedureCreate(), process_settings(), RangeCreate(), RangeDelete(), rebuild_relation(), recordMultipleDependencies(), recordSharedDependencyOn(), regclassin(), regoperin(), regprocin(), regtypein(), reindex_index(), reindex_relation(), ReindexDatabase(), RelationBuildRuleLock(), RelationBuildTriggers(), RelationBuildTupleDesc(), RelationGetExclusionInfo(), RelationGetIndexList(), RelationRemoveInheritance(), RelationSetNewRelfilenode(), remove_dbtablespaces(), RemoveAmOpEntryById(), RemoveAmProcEntryById(), RemoveAttrDefault(), RemoveAttrDefaultById(), RemoveAttributeById(), RemoveCollationById(), RemoveConstraintById(), RemoveConversionById(), RemoveDefaultACLById(), RemoveEventTriggerById(), RemoveExtensionById(), RemoveForeignDataWrapperById(), RemoveForeignServerById(), RemoveFunctionById(), RemoveObjects(), RemoveOpClassById(), RemoveOperatorById(), RemoveOpFamilyById(), RemoveRewriteRuleById(), RemoveRoleFromObjectACL(), RemoveSchemaById(), RemoveStatistics(), RemoveTriggerById(), RemoveTSConfigurationById(), RemoveTSDictionaryById(), RemoveTSParserById(), RemoveTSTemplateById(), RemoveTypeById(), RemoveUserMappingById(), renameatt_internal(), RenameConstraint(), RenameConstraintById(), RenameDatabase(), RenameRelationInternal(), RenameRewriteRule(), RenameRole(), RenameSchema(), RenameTableSpace(), renametrig(), RenameType(), RenameTypeInternal(), RewriteQuery(), rewriteTargetView(), RI_FKey_cascade_del(), RI_FKey_cascade_upd(), RI_FKey_check(), RI_FKey_setdefault_del(), RI_FKey_setdefault_upd(), RI_FKey_setnull_del(), RI_FKey_setnull_upd(), ri_restrict_del(), ri_restrict_upd(), ScanPgRelation(), schema_to_xmlschema_internal(), SearchCatCache(), SearchCatCacheList(), sepgsql_attribute_post_create(), sepgsql_database_post_create(), sepgsql_index_modify(), sepgsql_proc_post_create(), sepgsql_proc_setattr(), sepgsql_relation_post_create(), sepgsql_relation_setattr(), sepgsql_schema_post_create(), sequenceIsOwned(), SetDefaultACL(), SetFunctionArgType(), SetFunctionReturnType(), SetRelationHasSubclass(), SetRelationNumChecks(), SetRelationRuleStatus(), SetSecurityLabel(), SetSharedSecurityLabel(), setTargetTable(), shdepDropOwned(), shdepReassignOwned(), StoreAttrDefault(), StoreCatalogInheritance(), storeOperators(), storeProcedures(), swap_relation_files(), table_to_xml_and_xmlschema(), table_to_xmlschema(), ThereIsAtLeastOneRole(), toast_delete_datum(), toast_fetch_datum(), toast_fetch_datum_slice(), toast_save_datum(), toastid_valueid_exists(), transformIndexConstraint(), transformIndexStmt(), transformRuleStmt(), transformTableLikeClause(), transientrel_shutdown(), TypeCreate(), typeInheritsFrom(), TypeShellMake(), update_attstats(), updateAclDependencies(), UpdateIndexRelation(), vac_truncate_clog(), vac_update_datfrozenxid(), vac_update_relstats(), validate_index(), and validateDomainConstraint().
#define HEAP_INSERT_FROZEN 0x0004 |
Definition at line 29 of file heapam.h.
Referenced by heap_prepare_insert().
#define HEAP_INSERT_SKIP_FSM 0x0002 |
Definition at line 28 of file heapam.h.
Referenced by intorel_startup(), raw_heap_insert(), and transientrel_startup().
#define HEAP_INSERT_SKIP_WAL 0x0001 |
Definition at line 27 of file heapam.h.
Referenced by ATRewriteTable(), CopyFrom(), heap_insert(), intorel_shutdown(), raw_heap_insert(), and transientrel_shutdown().
typedef struct BulkInsertStateData* BulkInsertState |
typedef struct HeapScanDescData* HeapScanDesc |
typedef struct HeapUpdateFailureData HeapUpdateFailureData |
typedef enum LockTupleMode LockTupleMode |
enum LockTupleMode |
Definition at line 36 of file heapam.h.
{ /* SELECT FOR KEY SHARE */ LockTupleKeyShare, /* SELECT FOR SHARE */ LockTupleShare, /* SELECT FOR NO KEY UPDATE, and UPDATEs that don't modify key columns */ LockTupleNoKeyExclusive, /* SELECT FOR UPDATE, UPDATEs that modify key columns, and DELETE */ LockTupleExclusive } LockTupleMode;
void FreeBulkInsertState | ( | BulkInsertState | ) |
Definition at line 1969 of file heapam.c.
References BulkInsertStateData::current_buf, FreeAccessStrategy(), InvalidBuffer, pfree(), ReleaseBuffer(), and BulkInsertStateData::strategy.
Referenced by ATRewriteTable(), CopyFrom(), intorel_shutdown(), and transientrel_shutdown().
{ if (bistate->current_buf != InvalidBuffer) ReleaseBuffer(bistate->current_buf); FreeAccessStrategy(bistate->strategy); pfree(bistate); }
BulkInsertState GetBulkInsertState | ( | void | ) |
Definition at line 1955 of file heapam.c.
References BAS_BULKWRITE, BulkInsertStateData::current_buf, GetAccessStrategy(), palloc(), and BulkInsertStateData::strategy.
Referenced by ATRewriteTable(), CopyFrom(), intorel_startup(), and transientrel_startup().
{ BulkInsertState bistate; bistate = (BulkInsertState) palloc(sizeof(BulkInsertStateData)); bistate->strategy = GetAccessStrategy(BAS_BULKWRITE); bistate->current_buf = InvalidBuffer; return bistate; }
HeapScanDesc heap_beginscan | ( | Relation | relation, | |
Snapshot | snapshot, | |||
int | nkeys, | |||
ScanKey | key | |||
) |
Definition at line 1280 of file heapam.c.
References heap_beginscan_internal().
Referenced by AlterDomainNotNull(), AlterTableSpaceOptions(), ATRewriteTable(), boot_openrel(), check_db_file_conflict(), copy_heap_data(), CopyTo(), createdb(), DefineQueryRewrite(), do_autovacuum(), DropSetting(), DropTableSpace(), find_typed_table_dependencies(), get_database_list(), get_rel_oids(), get_rewrite_oid_without_relid(), get_tables_to_cluster(), get_tablespace_name(), get_tablespace_oid(), getRelationsInNamespace(), gettype(), index_update_stats(), InitScanRelation(), objectsInSchemaToOids(), pgrowlocks(), pgstat_collect_oids(), ReindexDatabase(), remove_dbtablespaces(), RemoveConversionById(), RenameTableSpace(), ThereIsAtLeastOneRole(), vac_truncate_clog(), validateCheckConstraint(), validateDomainConstraint(), and validateForeignKeyConstraint().
{ return heap_beginscan_internal(relation, snapshot, nkeys, key, true, true, false); }
HeapScanDesc heap_beginscan_bm | ( | Relation | relation, | |
Snapshot | snapshot, | |||
int | nkeys, | |||
ScanKey | key | |||
) |
Definition at line 1297 of file heapam.c.
References heap_beginscan_internal().
Referenced by ExecInitBitmapHeapScan().
{ return heap_beginscan_internal(relation, snapshot, nkeys, key, false, false, true); }
HeapScanDesc heap_beginscan_strat | ( | Relation | relation, | |
Snapshot | snapshot, | |||
int | nkeys, | |||
ScanKey | key, | |||
bool | allow_strat, | |||
bool | allow_sync | |||
) |
Definition at line 1288 of file heapam.c.
References heap_beginscan_internal().
Referenced by IndexBuildHeapScan(), IndexCheckExclusion(), pgstat_heap(), systable_beginscan(), and validate_index_heapscan().
{ return heap_beginscan_internal(relation, snapshot, nkeys, key, allow_strat, allow_sync, false); }
HTSU_Result heap_delete | ( | Relation | relation, | |
ItemPointer | tid, | |||
CommandId | cid, | |||
Snapshot | crosscheck, | |||
bool | wait, | |||
HeapUpdateFailureData * | hufd | |||
) |
Definition at line 2523 of file heapam.c.
References xl_heap_delete::all_visible_cleared, Assert, XLogRecData::buffer, BUFFER_LOCK_EXCLUSIVE, BUFFER_LOCK_UNLOCK, XLogRecData::buffer_std, BufferGetBlockNumber(), BufferGetPage, CacheInvalidateHeapTuple(), CheckForSerializableConflictIn(), HeapUpdateFailureData::cmax, compute_infobits(), compute_new_xmax_infomask(), HeapUpdateFailureData::ctid, XLogRecData::data, elog, END_CRIT_SECTION, ERROR, GetCurrentTransactionId(), HEAP_XMAX_BITS, HEAP_XMAX_INVALID, HEAP_XMAX_IS_LOCKED_ONLY, HEAP_XMAX_IS_MULTI, HeapTupleBeingUpdated, HeapTupleHasExternal, HeapTupleHeaderAdjustCmax(), HeapTupleHeaderClearHotUpdated, HeapTupleHeaderGetCmax(), HeapTupleHeaderGetRawXmax, HeapTupleHeaderGetUpdateXid, HeapTupleHeaderIsOnlyLocked(), HeapTupleHeaderSetCmax, HeapTupleHeaderSetXmax, HeapTupleInvisible, HeapTupleMayBeUpdated, HeapTupleSatisfiesUpdate(), HeapTupleSatisfiesVisibility, HeapTupleSelfUpdated, HeapTupleUpdated, xl_heap_delete::infobits_set, InvalidBuffer, InvalidSnapshot, ItemIdGetLength, ItemIdIsNormal, ItemPointerGetBlockNumber, ItemPointerGetOffsetNumber, ItemPointerIsValid, XLogRecData::len, LockBuffer(), LockTupleExclusive, LockTupleTuplock, MarkBufferDirty(), MultiXactIdSetOldestMember(), MultiXactIdWait(), MultiXactStatusUpdate, XLogRecData::next, xl_heaptid::node, PageClearAllVisible, PageGetItem, PageGetItemId, PageIsAllVisible, PageSetLSN, PageSetPrunable, pgstat_count_heap_delete(), RelationData::rd_node, RelationData::rd_rel, ReadBuffer(), RelationNeedsWAL, ReleaseBuffer(), RELKIND_MATVIEW, RELKIND_RELATION, START_CRIT_SECTION, HeapTupleHeaderData::t_ctid, HeapTupleData::t_data, HeapTupleHeaderData::t_infomask, HeapTupleHeaderData::t_infomask2, HeapTupleData::t_len, HeapTupleData::t_self, xl_heap_delete::target, xl_heaptid::tid, toast_delete(), TransactionIdEquals, UnlockReleaseBuffer(), UnlockTupleTuplock, UpdateXmaxHintBits(), visibilitymap_clear(), visibilitymap_pin(), XactLockTableWait(), XLOG_HEAP_DELETE, XLogInsert(), xl_heap_delete::xmax, and HeapUpdateFailureData::xmax.
Referenced by ExecDelete(), and simple_heap_delete().
{ HTSU_Result result; TransactionId xid = GetCurrentTransactionId(); ItemId lp; HeapTupleData tp; Page page; BlockNumber block; Buffer buffer; Buffer vmbuffer = InvalidBuffer; TransactionId new_xmax; uint16 new_infomask, new_infomask2; bool have_tuple_lock = false; bool iscombo; bool all_visible_cleared = false; Assert(ItemPointerIsValid(tid)); block = ItemPointerGetBlockNumber(tid); buffer = ReadBuffer(relation, block); page = BufferGetPage(buffer); /* * Before locking the buffer, pin the visibility map page if it appears to * be necessary. Since we haven't got the lock yet, someone else might be * in the middle of changing this, so we'll need to recheck after we have * the lock. */ if (PageIsAllVisible(page)) visibilitymap_pin(relation, block, &vmbuffer); LockBuffer(buffer, BUFFER_LOCK_EXCLUSIVE); /* * If we didn't pin the visibility map page and the page has become all * visible while we were busy locking the buffer, we'll have to unlock and * re-lock, to avoid holding the buffer lock across an I/O. That's a bit * unfortunate, but hopefully shouldn't happen often. */ if (vmbuffer == InvalidBuffer && PageIsAllVisible(page)) { LockBuffer(buffer, BUFFER_LOCK_UNLOCK); visibilitymap_pin(relation, block, &vmbuffer); LockBuffer(buffer, BUFFER_LOCK_EXCLUSIVE); } lp = PageGetItemId(page, ItemPointerGetOffsetNumber(tid)); Assert(ItemIdIsNormal(lp)); tp.t_data = (HeapTupleHeader) PageGetItem(page, lp); tp.t_len = ItemIdGetLength(lp); tp.t_self = *tid; l1: result = HeapTupleSatisfiesUpdate(tp.t_data, cid, buffer); if (result == HeapTupleInvisible) { UnlockReleaseBuffer(buffer); elog(ERROR, "attempted to delete invisible tuple"); } else if (result == HeapTupleBeingUpdated && wait) { TransactionId xwait; uint16 infomask; /* must copy state data before unlocking buffer */ xwait = HeapTupleHeaderGetRawXmax(tp.t_data); infomask = tp.t_data->t_infomask; LockBuffer(buffer, BUFFER_LOCK_UNLOCK); /* * Acquire tuple lock to establish our priority for the tuple (see * heap_lock_tuple). LockTuple will release us when we are * next-in-line for the tuple. * * If we are forced to "start over" below, we keep the tuple lock; * this arranges that we stay at the head of the line while rechecking * tuple state. */ if (!have_tuple_lock) { LockTupleTuplock(relation, &(tp.t_self), LockTupleExclusive); have_tuple_lock = true; } /* * Sleep until concurrent transaction ends. Note that we don't care * which lock mode the locker has, because we need the strongest one. */ if (infomask & HEAP_XMAX_IS_MULTI) { /* wait for multixact */ MultiXactIdWait((MultiXactId) xwait, MultiXactStatusUpdate, NULL, infomask); LockBuffer(buffer, BUFFER_LOCK_EXCLUSIVE); /* * If xwait had just locked the tuple then some other xact could * update this tuple before we get to this point. Check for xmax * change, and start over if so. */ if (!(tp.t_data->t_infomask & HEAP_XMAX_IS_MULTI) || !TransactionIdEquals(HeapTupleHeaderGetRawXmax(tp.t_data), xwait)) goto l1; /* * You might think the multixact is necessarily done here, but not * so: it could have surviving members, namely our own xact or * other subxacts of this backend. It is legal for us to delete * the tuple in either case, however (the latter case is * essentially a situation of upgrading our former shared lock to * exclusive). We don't bother changing the on-disk hint bits * since we are about to overwrite the xmax altogether. */ } else { /* wait for regular transaction to end */ XactLockTableWait(xwait); LockBuffer(buffer, BUFFER_LOCK_EXCLUSIVE); /* * xwait is done, but if xwait had just locked the tuple then some * other xact could update this tuple before we get to this point. * Check for xmax change, and start over if so. */ if ((tp.t_data->t_infomask & HEAP_XMAX_IS_MULTI) || !TransactionIdEquals(HeapTupleHeaderGetRawXmax(tp.t_data), xwait)) goto l1; /* Otherwise check if it committed or aborted */ UpdateXmaxHintBits(tp.t_data, buffer, xwait); } /* * We may overwrite if previous xmax aborted, or if it committed but * only locked the tuple without updating it. */ if ((tp.t_data->t_infomask & HEAP_XMAX_INVALID) || HEAP_XMAX_IS_LOCKED_ONLY(tp.t_data->t_infomask) || HeapTupleHeaderIsOnlyLocked(tp.t_data)) result = HeapTupleMayBeUpdated; else result = HeapTupleUpdated; } if (crosscheck != InvalidSnapshot && result == HeapTupleMayBeUpdated) { /* Perform additional check for transaction-snapshot mode RI updates */ if (!HeapTupleSatisfiesVisibility(&tp, crosscheck, buffer)) result = HeapTupleUpdated; } if (result != HeapTupleMayBeUpdated) { Assert(result == HeapTupleSelfUpdated || result == HeapTupleUpdated || result == HeapTupleBeingUpdated); Assert(!(tp.t_data->t_infomask & HEAP_XMAX_INVALID)); hufd->ctid = tp.t_data->t_ctid; hufd->xmax = HeapTupleHeaderGetUpdateXid(tp.t_data); if (result == HeapTupleSelfUpdated) hufd->cmax = HeapTupleHeaderGetCmax(tp.t_data); else hufd->cmax = 0; /* for lack of an InvalidCommandId value */ UnlockReleaseBuffer(buffer); if (have_tuple_lock) UnlockTupleTuplock(relation, &(tp.t_self), LockTupleExclusive); if (vmbuffer != InvalidBuffer) ReleaseBuffer(vmbuffer); return result; } /* * We're about to do the actual delete -- check for conflict first, to * avoid possibly having to roll back work we've just done. */ CheckForSerializableConflictIn(relation, &tp, buffer); /* replace cid with a combo cid if necessary */ HeapTupleHeaderAdjustCmax(tp.t_data, &cid, &iscombo); START_CRIT_SECTION(); /* * If this transaction commits, the tuple will become DEAD sooner or * later. Set flag that this page is a candidate for pruning once our xid * falls below the OldestXmin horizon. If the transaction finally aborts, * the subsequent page pruning will be a no-op and the hint will be * cleared. */ PageSetPrunable(page, xid); if (PageIsAllVisible(page)) { all_visible_cleared = true; PageClearAllVisible(page); visibilitymap_clear(relation, BufferGetBlockNumber(buffer), vmbuffer); } /* * If this is the first possibly-multixact-able operation in the * current transaction, set my per-backend OldestMemberMXactId setting. * We can be certain that the transaction will never become a member of * any older MultiXactIds than that. (We have to do this even if we * end up just using our own TransactionId below, since some other * backend could incorporate our XID into a MultiXact immediately * afterwards.) */ MultiXactIdSetOldestMember(); compute_new_xmax_infomask(HeapTupleHeaderGetRawXmax(tp.t_data), tp.t_data->t_infomask, tp.t_data->t_infomask2, xid, LockTupleExclusive, true, &new_xmax, &new_infomask, &new_infomask2); /* store transaction information of xact deleting the tuple */ tp.t_data->t_infomask &= ~(HEAP_XMAX_BITS | HEAP_MOVED); tp.t_data->t_infomask2 &= ~HEAP_KEYS_UPDATED; tp.t_data->t_infomask |= new_infomask; tp.t_data->t_infomask2 |= new_infomask2; HeapTupleHeaderClearHotUpdated(tp.t_data); HeapTupleHeaderSetXmax(tp.t_data, new_xmax); HeapTupleHeaderSetCmax(tp.t_data, cid, iscombo); /* Make sure there is no forward chain link in t_ctid */ tp.t_data->t_ctid = tp.t_self; MarkBufferDirty(buffer); /* XLOG stuff */ if (RelationNeedsWAL(relation)) { xl_heap_delete xlrec; XLogRecPtr recptr; XLogRecData rdata[2]; xlrec.all_visible_cleared = all_visible_cleared; xlrec.infobits_set = compute_infobits(tp.t_data->t_infomask, tp.t_data->t_infomask2); xlrec.target.node = relation->rd_node; xlrec.target.tid = tp.t_self; xlrec.xmax = new_xmax; rdata[0].data = (char *) &xlrec; rdata[0].len = SizeOfHeapDelete; rdata[0].buffer = InvalidBuffer; rdata[0].next = &(rdata[1]); rdata[1].data = NULL; rdata[1].len = 0; rdata[1].buffer = buffer; rdata[1].buffer_std = true; rdata[1].next = NULL; recptr = XLogInsert(RM_HEAP_ID, XLOG_HEAP_DELETE, rdata); PageSetLSN(page, recptr); } END_CRIT_SECTION(); LockBuffer(buffer, BUFFER_LOCK_UNLOCK); if (vmbuffer != InvalidBuffer) ReleaseBuffer(vmbuffer); /* * If the tuple has toasted out-of-line attributes, we need to delete * those items too. We have to do this before releasing the buffer * because we need to look at the contents of the tuple, but it's OK to * release the content lock on the buffer first. */ if (relation->rd_rel->relkind != RELKIND_RELATION && relation->rd_rel->relkind != RELKIND_MATVIEW) { /* toast table entries should never be recursively toasted */ Assert(!HeapTupleHasExternal(&tp)); } else if (HeapTupleHasExternal(&tp)) toast_delete(relation, &tp); /* * Mark tuple for invalidation from system caches at next command * boundary. We have to do this before releasing the buffer because we * need to look at the contents of the tuple. */ CacheInvalidateHeapTuple(relation, &tp, NULL); /* Now we can release the buffer */ ReleaseBuffer(buffer); /* * Release the lmgr tuple lock, if we had it. */ if (have_tuple_lock) UnlockTupleTuplock(relation, &(tp.t_self), LockTupleExclusive); pgstat_count_heap_delete(relation); return HeapTupleMayBeUpdated; }
void heap_endscan | ( | HeapScanDesc | scan | ) |
Definition at line 1398 of file heapam.c.
References BufferIsValid, FreeAccessStrategy(), pfree(), RelationDecrementReferenceCount(), ReleaseBuffer(), HeapScanDescData::rs_cbuf, HeapScanDescData::rs_key, HeapScanDescData::rs_rd, and HeapScanDescData::rs_strategy.
Referenced by AlterDomainNotNull(), AlterTableSpaceOptions(), ATRewriteTable(), boot_openrel(), check_db_file_conflict(), copy_heap_data(), CopyTo(), createdb(), DefineQueryRewrite(), do_autovacuum(), DropSetting(), DropTableSpace(), ExecEndBitmapHeapScan(), ExecEndSeqScan(), find_typed_table_dependencies(), get_database_list(), get_rel_oids(), get_rewrite_oid_without_relid(), get_tables_to_cluster(), get_tablespace_name(), get_tablespace_oid(), getRelationsInNamespace(), gettype(), index_update_stats(), IndexBuildHeapScan(), IndexCheckExclusion(), objectsInSchemaToOids(), pgrowlocks(), pgstat_collect_oids(), pgstat_heap(), ReindexDatabase(), remove_dbtablespaces(), RemoveConversionById(), RenameTableSpace(), systable_endscan(), ThereIsAtLeastOneRole(), vac_truncate_clog(), validate_index_heapscan(), validateCheckConstraint(), validateDomainConstraint(), and validateForeignKeyConstraint().
{ /* Note: no locking manipulations needed */ /* * unpin scan buffers */ if (BufferIsValid(scan->rs_cbuf)) ReleaseBuffer(scan->rs_cbuf); /* * decrement relation reference count and free scan descriptor storage */ RelationDecrementReferenceCount(scan->rs_rd); if (scan->rs_key) pfree(scan->rs_key); if (scan->rs_strategy != NULL) FreeAccessStrategy(scan->rs_strategy); pfree(scan); }
bool heap_fetch | ( | Relation | relation, | |
Snapshot | snapshot, | |||
HeapTuple | tuple, | |||
Buffer * | userbuf, | |||
bool | keep_buf, | |||
Relation | stats_relation | |||
) |
Definition at line 1515 of file heapam.c.
References BUFFER_LOCK_SHARE, BUFFER_LOCK_UNLOCK, BufferGetPage, CheckForSerializableConflictOut(), HeapTupleSatisfiesVisibility, ItemIdGetLength, ItemIdIsNormal, ItemPointerGetBlockNumber, ItemPointerGetOffsetNumber, LockBuffer(), PageGetItem, PageGetItemId, PageGetMaxOffsetNumber, pgstat_count_heap_fetch, PredicateLockTuple(), ReadBuffer(), RelationGetRelid, ReleaseBuffer(), HeapTupleData::t_data, HeapTupleData::t_len, HeapTupleData::t_self, and HeapTupleData::t_tableOid.
Referenced by AfterTriggerExecute(), EvalPlanQualFetch(), EvalPlanQualFetchRowMarks(), ExecDelete(), ExecLockRows(), heap_lock_updated_tuple_rec(), and TidNext().
{ ItemPointer tid = &(tuple->t_self); ItemId lp; Buffer buffer; Page page; OffsetNumber offnum; bool valid; /* * Fetch and pin the appropriate page of the relation. */ buffer = ReadBuffer(relation, ItemPointerGetBlockNumber(tid)); /* * Need share lock on buffer to examine tuple commit status. */ LockBuffer(buffer, BUFFER_LOCK_SHARE); page = BufferGetPage(buffer); /* * We'd better check for out-of-range offnum in case of VACUUM since the * TID was obtained. */ offnum = ItemPointerGetOffsetNumber(tid); if (offnum < FirstOffsetNumber || offnum > PageGetMaxOffsetNumber(page)) { LockBuffer(buffer, BUFFER_LOCK_UNLOCK); if (keep_buf) *userbuf = buffer; else { ReleaseBuffer(buffer); *userbuf = InvalidBuffer; } tuple->t_data = NULL; return false; } /* * get the item line pointer corresponding to the requested tid */ lp = PageGetItemId(page, offnum); /* * Must check for deleted tuple. */ if (!ItemIdIsNormal(lp)) { LockBuffer(buffer, BUFFER_LOCK_UNLOCK); if (keep_buf) *userbuf = buffer; else { ReleaseBuffer(buffer); *userbuf = InvalidBuffer; } tuple->t_data = NULL; return false; } /* * fill in *tuple fields */ tuple->t_data = (HeapTupleHeader) PageGetItem(page, lp); tuple->t_len = ItemIdGetLength(lp); tuple->t_tableOid = RelationGetRelid(relation); /* * check time qualification of tuple, then release lock */ valid = HeapTupleSatisfiesVisibility(tuple, snapshot, buffer); if (valid) PredicateLockTuple(relation, tuple, snapshot); CheckForSerializableConflictOut(valid, relation, tuple, buffer, snapshot); LockBuffer(buffer, BUFFER_LOCK_UNLOCK); if (valid) { /* * All checks passed, so return the tuple as valid. Caller is now * responsible for releasing the buffer. */ *userbuf = buffer; /* Count the successful fetch against appropriate rel, if any */ if (stats_relation != NULL) pgstat_count_heap_fetch(stats_relation); return true; } /* Tuple failed time qual, but maybe caller wants to see it anyway. */ if (keep_buf) *userbuf = buffer; else { ReleaseBuffer(buffer); *userbuf = InvalidBuffer; } return false; }
bool heap_freeze_tuple | ( | HeapTupleHeader | tuple, | |
TransactionId | cutoff_xid, | |||
TransactionId | cutoff_multi | |||
) |
void heap_get_latest_tid | ( | Relation | relation, | |
Snapshot | snapshot, | |||
ItemPointer | tid | |||
) |
Definition at line 1805 of file heapam.c.
References BUFFER_LOCK_SHARE, BufferGetPage, CheckForSerializableConflictOut(), elog, ERROR, HEAP_XMAX_INVALID, HeapTupleHeaderGetUpdateXid, HeapTupleHeaderGetXmin, HeapTupleHeaderIsOnlyLocked(), HeapTupleSatisfiesVisibility, ItemIdGetLength, ItemIdIsNormal, ItemPointerEquals(), ItemPointerGetBlockNumber, ItemPointerGetOffsetNumber, ItemPointerIsValid, LockBuffer(), PageGetItem, PageGetItemId, PageGetMaxOffsetNumber, ReadBuffer(), RelationGetNumberOfBlocks, RelationGetRelationName, HeapTupleHeaderData::t_ctid, HeapTupleData::t_data, HeapTupleHeaderData::t_infomask, HeapTupleData::t_len, HeapTupleData::t_self, TransactionIdEquals, TransactionIdIsValid, and UnlockReleaseBuffer().
Referenced by currtid_byrelname(), currtid_byreloid(), and TidNext().
{ BlockNumber blk; ItemPointerData ctid; TransactionId priorXmax; /* this is to avoid Assert failures on bad input */ if (!ItemPointerIsValid(tid)) return; /* * Since this can be called with user-supplied TID, don't trust the input * too much. (RelationGetNumberOfBlocks is an expensive check, so we * don't check t_ctid links again this way. Note that it would not do to * call it just once and save the result, either.) */ blk = ItemPointerGetBlockNumber(tid); if (blk >= RelationGetNumberOfBlocks(relation)) elog(ERROR, "block number %u is out of range for relation \"%s\"", blk, RelationGetRelationName(relation)); /* * Loop to chase down t_ctid links. At top of loop, ctid is the tuple we * need to examine, and *tid is the TID we will return if ctid turns out * to be bogus. * * Note that we will loop until we reach the end of the t_ctid chain. * Depending on the snapshot passed, there might be at most one visible * version of the row, but we don't try to optimize for that. */ ctid = *tid; priorXmax = InvalidTransactionId; /* cannot check first XMIN */ for (;;) { Buffer buffer; Page page; OffsetNumber offnum; ItemId lp; HeapTupleData tp; bool valid; /* * Read, pin, and lock the page. */ buffer = ReadBuffer(relation, ItemPointerGetBlockNumber(&ctid)); LockBuffer(buffer, BUFFER_LOCK_SHARE); page = BufferGetPage(buffer); /* * Check for bogus item number. This is not treated as an error * condition because it can happen while following a t_ctid link. We * just assume that the prior tid is OK and return it unchanged. */ offnum = ItemPointerGetOffsetNumber(&ctid); if (offnum < FirstOffsetNumber || offnum > PageGetMaxOffsetNumber(page)) { UnlockReleaseBuffer(buffer); break; } lp = PageGetItemId(page, offnum); if (!ItemIdIsNormal(lp)) { UnlockReleaseBuffer(buffer); break; } /* OK to access the tuple */ tp.t_self = ctid; tp.t_data = (HeapTupleHeader) PageGetItem(page, lp); tp.t_len = ItemIdGetLength(lp); /* * After following a t_ctid link, we might arrive at an unrelated * tuple. Check for XMIN match. */ if (TransactionIdIsValid(priorXmax) && !TransactionIdEquals(priorXmax, HeapTupleHeaderGetXmin(tp.t_data))) { UnlockReleaseBuffer(buffer); break; } /* * Check time qualification of tuple; if visible, set it as the new * result candidate. */ valid = HeapTupleSatisfiesVisibility(&tp, snapshot, buffer); CheckForSerializableConflictOut(valid, relation, &tp, buffer, snapshot); if (valid) *tid = ctid; /* * If there's a valid t_ctid link, follow it, else we're done. */ if ((tp.t_data->t_infomask & HEAP_XMAX_INVALID) || HeapTupleHeaderIsOnlyLocked(tp.t_data) || ItemPointerEquals(&tp.t_self, &tp.t_data->t_ctid)) { UnlockReleaseBuffer(buffer); break; } ctid = tp.t_data->t_ctid; priorXmax = HeapTupleHeaderGetUpdateXid(tp.t_data); UnlockReleaseBuffer(buffer); } /* end of loop */ }
void heap_get_root_tuples | ( | Page | page, | |
OffsetNumber * | root_offsets | |||
) |
Definition at line 705 of file pruneheap.c.
References Assert, FirstOffsetNumber, HeapTupleHeaderGetUpdateXid, HeapTupleHeaderGetXmin, HeapTupleHeaderIsHeapOnly, HeapTupleHeaderIsHotUpdated, ItemIdGetRedirect, ItemIdIsDead, ItemIdIsNormal, ItemIdIsRedirected, ItemIdIsUsed, ItemPointerGetOffsetNumber, MaxHeapTuplesPerPage, MemSet, OffsetNumberNext, PageGetItem, PageGetItemId, PageGetMaxOffsetNumber, HeapTupleHeaderData::t_ctid, TransactionIdEquals, and TransactionIdIsValid.
Referenced by IndexBuildHeapScan(), and validate_index_heapscan().
{ OffsetNumber offnum, maxoff; MemSet(root_offsets, 0, MaxHeapTuplesPerPage * sizeof(OffsetNumber)); maxoff = PageGetMaxOffsetNumber(page); for (offnum = FirstOffsetNumber; offnum <= maxoff; offnum = OffsetNumberNext(offnum)) { ItemId lp = PageGetItemId(page, offnum); HeapTupleHeader htup; OffsetNumber nextoffnum; TransactionId priorXmax; /* skip unused and dead items */ if (!ItemIdIsUsed(lp) || ItemIdIsDead(lp)) continue; if (ItemIdIsNormal(lp)) { htup = (HeapTupleHeader) PageGetItem(page, lp); /* * Check if this tuple is part of a HOT-chain rooted at some other * tuple. If so, skip it for now; we'll process it when we find * its root. */ if (HeapTupleHeaderIsHeapOnly(htup)) continue; /* * This is either a plain tuple or the root of a HOT-chain. * Remember it in the mapping. */ root_offsets[offnum - 1] = offnum; /* If it's not the start of a HOT-chain, we're done with it */ if (!HeapTupleHeaderIsHotUpdated(htup)) continue; /* Set up to scan the HOT-chain */ nextoffnum = ItemPointerGetOffsetNumber(&htup->t_ctid); priorXmax = HeapTupleHeaderGetUpdateXid(htup); } else { /* Must be a redirect item. We do not set its root_offsets entry */ Assert(ItemIdIsRedirected(lp)); /* Set up to scan the HOT-chain */ nextoffnum = ItemIdGetRedirect(lp); priorXmax = InvalidTransactionId; } /* * Now follow the HOT-chain and collect other tuples in the chain. * * Note: Even though this is a nested loop, the complexity of the * function is O(N) because a tuple in the page should be visited not * more than twice, once in the outer loop and once in HOT-chain * chases. */ for (;;) { lp = PageGetItemId(page, nextoffnum); /* Check for broken chains */ if (!ItemIdIsNormal(lp)) break; htup = (HeapTupleHeader) PageGetItem(page, lp); if (TransactionIdIsValid(priorXmax) && !TransactionIdEquals(priorXmax, HeapTupleHeaderGetXmin(htup))) break; /* Remember the root line pointer for this item */ root_offsets[nextoffnum - 1] = offnum; /* Advance to next chain member, if any */ if (!HeapTupleHeaderIsHotUpdated(htup)) break; nextoffnum = ItemPointerGetOffsetNumber(&htup->t_ctid); priorXmax = HeapTupleHeaderGetUpdateXid(htup); } } }
HeapTuple heap_getnext | ( | HeapScanDesc | scan, | |
ScanDirection | direction | |||
) |
Definition at line 1447 of file heapam.c.
References heapgettup(), heapgettup_pagemode(), pgstat_count_heap_getnext, HeapScanDescData::rs_ctup, HeapScanDescData::rs_key, HeapScanDescData::rs_nkeys, HeapScanDescData::rs_pageatatime, HeapScanDescData::rs_rd, and HeapTupleData::t_data.
Referenced by AlterDomainNotNull(), AlterTableSpaceOptions(), ATRewriteTable(), boot_openrel(), check_db_file_conflict(), copy_heap_data(), CopyTo(), createdb(), DefineQueryRewrite(), do_autovacuum(), DropSetting(), DropTableSpace(), find_typed_table_dependencies(), get_database_list(), get_rel_oids(), get_rewrite_oid_without_relid(), get_tables_to_cluster(), get_tablespace_name(), get_tablespace_oid(), getRelationsInNamespace(), gettype(), index_update_stats(), IndexBuildHeapScan(), IndexCheckExclusion(), objectsInSchemaToOids(), pgrowlocks(), pgstat_collect_oids(), pgstat_heap(), ReindexDatabase(), remove_dbtablespaces(), RemoveConversionById(), RenameTableSpace(), SeqNext(), systable_getnext(), ThereIsAtLeastOneRole(), vac_truncate_clog(), validate_index_heapscan(), validateCheckConstraint(), validateDomainConstraint(), and validateForeignKeyConstraint().
{ /* Note: no locking manipulations needed */ HEAPDEBUG_1; /* heap_getnext( info ) */ if (scan->rs_pageatatime) heapgettup_pagemode(scan, direction, scan->rs_nkeys, scan->rs_key); else heapgettup(scan, direction, scan->rs_nkeys, scan->rs_key); if (scan->rs_ctup.t_data == NULL) { HEAPDEBUG_2; /* heap_getnext returning EOS */ return NULL; } /* * if we get here it means we have a new current scan tuple, so point to * the proper return buffer and return the tuple. */ HEAPDEBUG_3; /* heap_getnext returning tuple */ pgstat_count_heap_getnext(scan->rs_rd); return &(scan->rs_ctup); }
bool heap_hot_search | ( | ItemPointer | tid, | |
Relation | relation, | |||
Snapshot | snapshot, | |||
bool * | all_dead | |||
) |
Definition at line 1777 of file heapam.c.
References BUFFER_LOCK_SHARE, BUFFER_LOCK_UNLOCK, heap_hot_search_buffer(), ItemPointerGetBlockNumber, LockBuffer(), ReadBuffer(), and ReleaseBuffer().
Referenced by _bt_check_unique().
{ bool result; Buffer buffer; HeapTupleData heapTuple; buffer = ReadBuffer(relation, ItemPointerGetBlockNumber(tid)); LockBuffer(buffer, BUFFER_LOCK_SHARE); result = heap_hot_search_buffer(tid, relation, buffer, snapshot, &heapTuple, all_dead, true); LockBuffer(buffer, BUFFER_LOCK_UNLOCK); ReleaseBuffer(buffer); return result; }
bool heap_hot_search_buffer | ( | ItemPointer | tid, | |
Relation | relation, | |||
Buffer | buffer, | |||
Snapshot | snapshot, | |||
HeapTuple | heapTuple, | |||
bool * | all_dead, | |||
bool | first_call | |||
) |
Definition at line 1649 of file heapam.c.
References Assert, BufferGetBlockNumber(), BufferGetPage, CheckForSerializableConflictOut(), HeapTupleHeaderGetUpdateXid, HeapTupleHeaderGetXmin, HeapTupleIsHeapOnly, HeapTupleIsHotUpdated, HeapTupleIsSurelyDead(), HeapTupleSatisfiesVisibility, ItemIdGetLength, ItemIdGetRedirect, ItemIdIsNormal, ItemIdIsRedirected, ItemPointerGetBlockNumber, ItemPointerGetOffsetNumber, ItemPointerSetOffsetNumber, PageGetItem, PageGetItemId, PageGetMaxOffsetNumber, PredicateLockTuple(), RelationData::rd_id, RecentGlobalXmin, HeapTupleHeaderData::t_ctid, HeapTupleData::t_data, HeapTupleData::t_len, HeapTupleData::t_self, HeapTupleData::t_tableOid, TransactionIdEquals, and TransactionIdIsValid.
Referenced by bitgetpage(), heap_hot_search(), and index_fetch_heap().
{ Page dp = (Page) BufferGetPage(buffer); TransactionId prev_xmax = InvalidTransactionId; OffsetNumber offnum; bool at_chain_start; bool valid; bool skip; /* If this is not the first call, previous call returned a (live!) tuple */ if (all_dead) *all_dead = first_call; Assert(TransactionIdIsValid(RecentGlobalXmin)); Assert(ItemPointerGetBlockNumber(tid) == BufferGetBlockNumber(buffer)); offnum = ItemPointerGetOffsetNumber(tid); at_chain_start = first_call; skip = !first_call; /* Scan through possible multiple members of HOT-chain */ for (;;) { ItemId lp; /* check for bogus TID */ if (offnum < FirstOffsetNumber || offnum > PageGetMaxOffsetNumber(dp)) break; lp = PageGetItemId(dp, offnum); /* check for unused, dead, or redirected items */ if (!ItemIdIsNormal(lp)) { /* We should only see a redirect at start of chain */ if (ItemIdIsRedirected(lp) && at_chain_start) { /* Follow the redirect */ offnum = ItemIdGetRedirect(lp); at_chain_start = false; continue; } /* else must be end of chain */ break; } heapTuple->t_data = (HeapTupleHeader) PageGetItem(dp, lp); heapTuple->t_len = ItemIdGetLength(lp); heapTuple->t_tableOid = relation->rd_id; heapTuple->t_self = *tid; /* * Shouldn't see a HEAP_ONLY tuple at chain start. */ if (at_chain_start && HeapTupleIsHeapOnly(heapTuple)) break; /* * The xmin should match the previous xmax value, else chain is * broken. */ if (TransactionIdIsValid(prev_xmax) && !TransactionIdEquals(prev_xmax, HeapTupleHeaderGetXmin(heapTuple->t_data))) break; /* * When first_call is true (and thus, skip is initially false) we'll * return the first tuple we find. But on later passes, heapTuple * will initially be pointing to the tuple we returned last time. * Returning it again would be incorrect (and would loop forever), so * we skip it and return the next match we find. */ if (!skip) { /* If it's visible per the snapshot, we must return it */ valid = HeapTupleSatisfiesVisibility(heapTuple, snapshot, buffer); CheckForSerializableConflictOut(valid, relation, heapTuple, buffer, snapshot); if (valid) { ItemPointerSetOffsetNumber(tid, offnum); PredicateLockTuple(relation, heapTuple, snapshot); if (all_dead) *all_dead = false; return true; } } skip = false; /* * If we can't see it, maybe no one else can either. At caller * request, check whether all chain members are dead to all * transactions. */ if (all_dead && *all_dead && !HeapTupleIsSurelyDead(heapTuple->t_data, RecentGlobalXmin)) *all_dead = false; /* * Check to see if HOT chain continues past this tuple; if so fetch * the next offnum and loop around. */ if (HeapTupleIsHotUpdated(heapTuple)) { Assert(ItemPointerGetBlockNumber(&heapTuple->t_data->t_ctid) == ItemPointerGetBlockNumber(tid)); offnum = ItemPointerGetOffsetNumber(&heapTuple->t_data->t_ctid); at_chain_start = false; prev_xmax = HeapTupleHeaderGetUpdateXid(heapTuple->t_data); } else break; /* end of chain */ } return false; }
Definition at line 4968 of file heapam.c.
References XLogRecData::buffer, BUFFER_LOCK_EXCLUSIVE, XLogRecData::buffer_std, BufferGetPage, CacheInvalidateHeapTuple(), XLogRecData::data, elog, END_CRIT_SECTION, ERROR, IsBootstrapProcessingMode, ItemIdGetLength, ItemIdIsNormal, ItemPointerGetBlockNumber, ItemPointerGetOffsetNumber, XLogRecData::len, LockBuffer(), MarkBufferDirty(), XLogRecData::next, xl_heaptid::node, PageGetItem, PageGetItemId, PageGetMaxOffsetNumber, PageSetLSN, RelationData::rd_node, ReadBuffer(), RelationNeedsWAL, START_CRIT_SECTION, HeapTupleData::t_data, HeapTupleHeaderData::t_hoff, HeapTupleData::t_len, HeapTupleData::t_self, xl_heap_inplace::target, xl_heaptid::tid, UnlockReleaseBuffer(), XLOG_HEAP_INPLACE, and XLogInsert().
Referenced by create_toast_table(), index_set_state_flags(), index_update_stats(), vac_update_datfrozenxid(), and vac_update_relstats().
{ Buffer buffer; Page page; OffsetNumber offnum; ItemId lp = NULL; HeapTupleHeader htup; uint32 oldlen; uint32 newlen; buffer = ReadBuffer(relation, ItemPointerGetBlockNumber(&(tuple->t_self))); LockBuffer(buffer, BUFFER_LOCK_EXCLUSIVE); page = (Page) BufferGetPage(buffer); offnum = ItemPointerGetOffsetNumber(&(tuple->t_self)); if (PageGetMaxOffsetNumber(page) >= offnum) lp = PageGetItemId(page, offnum); if (PageGetMaxOffsetNumber(page) < offnum || !ItemIdIsNormal(lp)) elog(ERROR, "heap_inplace_update: invalid lp"); htup = (HeapTupleHeader) PageGetItem(page, lp); oldlen = ItemIdGetLength(lp) - htup->t_hoff; newlen = tuple->t_len - tuple->t_data->t_hoff; if (oldlen != newlen || htup->t_hoff != tuple->t_data->t_hoff) elog(ERROR, "heap_inplace_update: wrong tuple length"); /* NO EREPORT(ERROR) from here till changes are logged */ START_CRIT_SECTION(); memcpy((char *) htup + htup->t_hoff, (char *) tuple->t_data + tuple->t_data->t_hoff, newlen); MarkBufferDirty(buffer); /* XLOG stuff */ if (RelationNeedsWAL(relation)) { xl_heap_inplace xlrec; XLogRecPtr recptr; XLogRecData rdata[2]; xlrec.target.node = relation->rd_node; xlrec.target.tid = tuple->t_self; rdata[0].data = (char *) &xlrec; rdata[0].len = SizeOfHeapInplace; rdata[0].buffer = InvalidBuffer; rdata[0].next = &(rdata[1]); rdata[1].data = (char *) htup + htup->t_hoff; rdata[1].len = newlen; rdata[1].buffer = buffer; rdata[1].buffer_std = true; rdata[1].next = NULL; recptr = XLogInsert(RM_HEAP_ID, XLOG_HEAP_INPLACE, rdata); PageSetLSN(page, recptr); } END_CRIT_SECTION(); UnlockReleaseBuffer(buffer); /* * Send out shared cache inval if necessary. Note that because we only * pass the new version of the tuple, this mustn't be used for any * operations that could change catcache lookup keys. But we aren't * bothering with index updates either, so that's true a fortiori. */ if (!IsBootstrapProcessingMode()) CacheInvalidateHeapTuple(relation, tuple, NULL); }
Oid heap_insert | ( | Relation | relation, | |
HeapTuple | tup, | |||
CommandId | cid, | |||
int | options, | |||
BulkInsertState | bistate | |||
) |
Definition at line 2012 of file heapam.c.
References xl_heap_insert::all_visible_cleared, XLogRecData::buffer, XLogRecData::buffer_std, BufferGetPage, CacheInvalidateHeapTuple(), CheckForSerializableConflictIn(), XLogRecData::data, END_CRIT_SECTION, FirstOffsetNumber, GetCurrentTransactionId(), heap_freetuple(), HEAP_INSERT_SKIP_WAL, heap_prepare_insert(), HeapTupleGetOid, InvalidBuffer, ItemPointerGetBlockNumber, ItemPointerGetOffsetNumber, XLogRecData::len, MarkBufferDirty(), XLogRecData::next, xl_heaptid::node, offsetof, PageClearAllVisible, PageGetMaxOffsetNumber, PageIsAllVisible, PageSetLSN, pgstat_count_heap_insert(), RelationData::rd_node, RelationGetBufferForTuple(), RelationNeedsWAL, RelationPutHeapTuple(), ReleaseBuffer(), START_CRIT_SECTION, HeapTupleData::t_data, HeapTupleHeaderData::t_hoff, xl_heap_header::t_hoff, HeapTupleHeaderData::t_infomask, xl_heap_header::t_infomask, HeapTupleHeaderData::t_infomask2, xl_heap_header::t_infomask2, HeapTupleData::t_len, HeapTupleData::t_self, xl_heap_insert::target, xl_heaptid::tid, UnlockReleaseBuffer(), visibilitymap_clear(), and XLogInsert().
Referenced by ATRewriteTable(), CopyFrom(), ExecInsert(), intorel_receive(), simple_heap_insert(), toast_save_datum(), and transientrel_receive().
{ TransactionId xid = GetCurrentTransactionId(); HeapTuple heaptup; Buffer buffer; Buffer vmbuffer = InvalidBuffer; bool all_visible_cleared = false; /* * Fill in tuple header fields, assign an OID, and toast the tuple if * necessary. * * Note: below this point, heaptup is the data we actually intend to store * into the relation; tup is the caller's original untoasted data. */ heaptup = heap_prepare_insert(relation, tup, xid, cid, options); /* * We're about to do the actual insert -- but check for conflict first, to * avoid possibly having to roll back work we've just done. * * For a heap insert, we only need to check for table-level SSI locks. Our * new tuple can't possibly conflict with existing tuple locks, and heap * page locks are only consolidated versions of tuple locks; they do not * lock "gaps" as index page locks do. So we don't need to identify a * buffer before making the call. */ CheckForSerializableConflictIn(relation, NULL, InvalidBuffer); /* * Find buffer to insert this tuple into. If the page is all visible, * this will also pin the requisite visibility map page. */ buffer = RelationGetBufferForTuple(relation, heaptup->t_len, InvalidBuffer, options, bistate, &vmbuffer, NULL); /* NO EREPORT(ERROR) from here till changes are logged */ START_CRIT_SECTION(); RelationPutHeapTuple(relation, buffer, heaptup); if (PageIsAllVisible(BufferGetPage(buffer))) { all_visible_cleared = true; PageClearAllVisible(BufferGetPage(buffer)); visibilitymap_clear(relation, ItemPointerGetBlockNumber(&(heaptup->t_self)), vmbuffer); } /* * XXX Should we set PageSetPrunable on this page ? * * The inserting transaction may eventually abort thus making this tuple * DEAD and hence available for pruning. Though we don't want to optimize * for aborts, if no other tuple in this page is UPDATEd/DELETEd, the * aborted tuple will never be pruned until next vacuum is triggered. * * If you do add PageSetPrunable here, add it in heap_xlog_insert too. */ MarkBufferDirty(buffer); /* XLOG stuff */ if (!(options & HEAP_INSERT_SKIP_WAL) && RelationNeedsWAL(relation)) { xl_heap_insert xlrec; xl_heap_header xlhdr; XLogRecPtr recptr; XLogRecData rdata[3]; Page page = BufferGetPage(buffer); uint8 info = XLOG_HEAP_INSERT; xlrec.all_visible_cleared = all_visible_cleared; xlrec.target.node = relation->rd_node; xlrec.target.tid = heaptup->t_self; rdata[0].data = (char *) &xlrec; rdata[0].len = SizeOfHeapInsert; rdata[0].buffer = InvalidBuffer; rdata[0].next = &(rdata[1]); xlhdr.t_infomask2 = heaptup->t_data->t_infomask2; xlhdr.t_infomask = heaptup->t_data->t_infomask; xlhdr.t_hoff = heaptup->t_data->t_hoff; /* * note we mark rdata[1] as belonging to buffer; if XLogInsert decides * to write the whole page to the xlog, we don't need to store * xl_heap_header in the xlog. */ rdata[1].data = (char *) &xlhdr; rdata[1].len = SizeOfHeapHeader; rdata[1].buffer = buffer; rdata[1].buffer_std = true; rdata[1].next = &(rdata[2]); /* PG73FORMAT: write bitmap [+ padding] [+ oid] + data */ rdata[2].data = (char *) heaptup->t_data + offsetof(HeapTupleHeaderData, t_bits); rdata[2].len = heaptup->t_len - offsetof(HeapTupleHeaderData, t_bits); rdata[2].buffer = buffer; rdata[2].buffer_std = true; rdata[2].next = NULL; /* * If this is the single and first tuple on page, we can reinit the * page instead of restoring the whole thing. Set flag, and hide * buffer references from XLogInsert. */ if (ItemPointerGetOffsetNumber(&(heaptup->t_self)) == FirstOffsetNumber && PageGetMaxOffsetNumber(page) == FirstOffsetNumber) { info |= XLOG_HEAP_INIT_PAGE; rdata[1].buffer = rdata[2].buffer = InvalidBuffer; } recptr = XLogInsert(RM_HEAP_ID, info, rdata); PageSetLSN(page, recptr); } END_CRIT_SECTION(); UnlockReleaseBuffer(buffer); if (vmbuffer != InvalidBuffer) ReleaseBuffer(vmbuffer); /* * If tuple is cachable, mark it for invalidation from the caches in case * we abort. Note it is OK to do this after releasing the buffer, because * the heaptup data structure is all in local memory, not in the shared * buffer. */ CacheInvalidateHeapTuple(relation, heaptup, NULL); pgstat_count_heap_insert(relation, 1); /* * If heaptup is a private copy, release it. Don't forget to copy t_self * back to the caller's image, too. */ if (heaptup != tup) { tup->t_self = heaptup->t_self; heap_freetuple(heaptup); } return HeapTupleGetOid(tup); }
HTSU_Result heap_lock_tuple | ( | Relation | relation, | |
HeapTuple | tuple, | |||
CommandId | cid, | |||
LockTupleMode | mode, | |||
bool | nowait, | |||
bool | follow_update, | |||
Buffer * | buffer, | |||
HeapUpdateFailureData * | hufd | |||
) |
Definition at line 3895 of file heapam.c.
References Assert, XLogRecData::buffer, BUFFER_LOCK_EXCLUSIVE, BUFFER_LOCK_UNLOCK, XLogRecData::buffer_std, BufferGetPage, HeapUpdateFailureData::cmax, compute_infobits(), compute_new_xmax_infomask(), ConditionalLockTupleTuplock, ConditionalMultiXactIdWait(), ConditionalXactLockTableWait(), HeapUpdateFailureData::ctid, XLogRecData::data, elog, END_CRIT_SECTION, ereport, errcode(), errmsg(), ERROR, get_mxact_status_for_lock(), GetCurrentTransactionId(), GetMultiXactIdMembers(), HEAP_KEYS_UPDATED, heap_lock_updated_tuple(), HEAP_XMAX_COMMITTED, HEAP_XMAX_INVALID, HEAP_XMAX_IS_EXCL_LOCKED, HEAP_XMAX_IS_KEYSHR_LOCKED, HEAP_XMAX_IS_LOCKED_ONLY, HEAP_XMAX_IS_MULTI, HEAP_XMAX_IS_SHR_LOCKED, HeapTupleBeingUpdated, HeapTupleHeaderClearHotUpdated, HeapTupleHeaderGetCmax(), HeapTupleHeaderGetRawXmax, HeapTupleHeaderGetUpdateXid, HeapTupleHeaderIsOnlyLocked(), HeapTupleHeaderSetXmax, HeapTupleInvisible, HeapTupleMayBeUpdated, HeapTupleSatisfiesUpdate(), HeapTupleSelfUpdated, HeapTupleUpdated, i, xl_heap_lock::infobits_set, ItemIdGetLength, ItemIdIsNormal, ItemPointerCopy, ItemPointerGetBlockNumber, ItemPointerGetOffsetNumber, XLogRecData::len, LockBuffer(), xl_heap_lock::locking_xid, LockTupleKeyShare, LockTupleNoKeyExclusive, LockTupleShare, LockTupleTuplock, MarkBufferDirty(), MultiXactIdSetOldestMember(), MultiXactIdWait(), MultiXactStatusForKeyShare, MultiXactStatusNoKeyUpdate, XLogRecData::next, xl_heaptid::node, PageGetItem, PageGetItemId, PageSetLSN, pfree(), RelationData::rd_node, ReadBuffer(), RelationGetRelationName, RelationGetRelid, RelationNeedsWAL, START_CRIT_SECTION, status(), HeapTupleHeaderData::t_ctid, HeapTupleData::t_data, HeapTupleHeaderData::t_infomask, HeapTupleHeaderData::t_infomask2, HeapTupleData::t_len, HeapTupleData::t_self, HeapTupleData::t_tableOid, xl_heap_lock::target, xl_heaptid::tid, TransactionIdEquals, TransactionIdIsCurrentTransactionId(), TUPLOCK_from_mxstatus, UnlockReleaseBuffer(), UnlockTupleTuplock, UpdateXmaxHintBits(), XactLockTableWait(), XLOG_HEAP_LOCK, XLogInsert(), and HeapUpdateFailureData::xmax.
Referenced by EvalPlanQualFetch(), ExecLockRows(), and GetTupleForTrigger().
{ HTSU_Result result; ItemPointer tid = &(tuple->t_self); ItemId lp; Page page; TransactionId xid, xmax; uint16 old_infomask, new_infomask, new_infomask2; bool have_tuple_lock = false; *buffer = ReadBuffer(relation, ItemPointerGetBlockNumber(tid)); LockBuffer(*buffer, BUFFER_LOCK_EXCLUSIVE); page = BufferGetPage(*buffer); lp = PageGetItemId(page, ItemPointerGetOffsetNumber(tid)); Assert(ItemIdIsNormal(lp)); tuple->t_data = (HeapTupleHeader) PageGetItem(page, lp); tuple->t_len = ItemIdGetLength(lp); tuple->t_tableOid = RelationGetRelid(relation); l3: result = HeapTupleSatisfiesUpdate(tuple->t_data, cid, *buffer); if (result == HeapTupleInvisible) { UnlockReleaseBuffer(*buffer); elog(ERROR, "attempted to lock invisible tuple"); } else if (result == HeapTupleBeingUpdated) { TransactionId xwait; uint16 infomask; uint16 infomask2; bool require_sleep; ItemPointerData t_ctid; /* must copy state data before unlocking buffer */ xwait = HeapTupleHeaderGetRawXmax(tuple->t_data); infomask = tuple->t_data->t_infomask; infomask2 = tuple->t_data->t_infomask2; ItemPointerCopy(&tuple->t_data->t_ctid, &t_ctid); LockBuffer(*buffer, BUFFER_LOCK_UNLOCK); /* * If any subtransaction of the current top transaction already holds a * lock as strong or stronger than what we're requesting, we * effectively hold the desired lock already. We *must* succeed * without trying to take the tuple lock, else we will deadlock against * anyone wanting to acquire a stronger lock. */ if (infomask & HEAP_XMAX_IS_MULTI) { int i; int nmembers; MultiXactMember *members; /* * We don't need to allow old multixacts here; if that had been the * case, HeapTupleSatisfiesUpdate would have returned MayBeUpdated * and we wouldn't be here. */ nmembers = GetMultiXactIdMembers(xwait, &members, false); for (i = 0; i < nmembers; i++) { if (TransactionIdIsCurrentTransactionId(members[i].xid)) { LockTupleMode membermode; membermode = TUPLOCK_from_mxstatus(members[i].status); if (membermode >= mode) { if (have_tuple_lock) UnlockTupleTuplock(relation, tid, mode); pfree(members); return HeapTupleMayBeUpdated; } } } pfree(members); } /* * Acquire tuple lock to establish our priority for the tuple. * LockTuple will release us when we are next-in-line for the tuple. * We must do this even if we are share-locking. * * If we are forced to "start over" below, we keep the tuple lock; * this arranges that we stay at the head of the line while rechecking * tuple state. */ if (!have_tuple_lock) { if (nowait) { if (!ConditionalLockTupleTuplock(relation, tid, mode)) ereport(ERROR, (errcode(ERRCODE_LOCK_NOT_AVAILABLE), errmsg("could not obtain lock on row in relation \"%s\"", RelationGetRelationName(relation)))); } else LockTupleTuplock(relation, tid, mode); have_tuple_lock = true; } /* * Initially assume that we will have to wait for the locking * transaction(s) to finish. We check various cases below in which * this can be turned off. */ require_sleep = true; if (mode == LockTupleKeyShare) { /* * If we're requesting KeyShare, and there's no update present, we * don't need to wait. Even if there is an update, we can still * continue if the key hasn't been modified. * * However, if there are updates, we need to walk the update chain * to mark future versions of the row as locked, too. That way, if * somebody deletes that future version, we're protected against * the key going away. This locking of future versions could block * momentarily, if a concurrent transaction is deleting a key; or * it could return a value to the effect that the transaction * deleting the key has already committed. So we do this before * re-locking the buffer; otherwise this would be prone to * deadlocks. * * Note that the TID we're locking was grabbed before we unlocked * the buffer. For it to change while we're not looking, the other * properties we're testing for below after re-locking the buffer * would also change, in which case we would restart this loop * above. */ if (!(infomask2 & HEAP_KEYS_UPDATED)) { bool updated; updated = !HEAP_XMAX_IS_LOCKED_ONLY(infomask); /* * If there are updates, follow the update chain; bail out * if that cannot be done. */ if (follow_updates && updated) { HTSU_Result res; res = heap_lock_updated_tuple(relation, tuple, &t_ctid, GetCurrentTransactionId(), mode); if (res != HeapTupleMayBeUpdated) { result = res; /* recovery code expects to have buffer lock held */ LockBuffer(*buffer, BUFFER_LOCK_EXCLUSIVE); goto failed; } } LockBuffer(*buffer, BUFFER_LOCK_EXCLUSIVE); /* * Make sure it's still an appropriate lock, else start over. * Also, if it wasn't updated before we released the lock, but * is updated now, we start over too; the reason is that we now * need to follow the update chain to lock the new versions. */ if (!HeapTupleHeaderIsOnlyLocked(tuple->t_data) && ((tuple->t_data->t_infomask2 & HEAP_KEYS_UPDATED) || !updated)) goto l3; /* Things look okay, so we can skip sleeping */ require_sleep = false; /* * Note we allow Xmax to change here; other updaters/lockers * could have modified it before we grabbed the buffer lock. * However, this is not a problem, because with the recheck we * just did we ensure that they still don't conflict with the * lock we want. */ } } else if (mode == LockTupleShare) { /* * If we're requesting Share, we can similarly avoid sleeping if * there's no update and no exclusive lock present. */ if (HEAP_XMAX_IS_LOCKED_ONLY(infomask) && !HEAP_XMAX_IS_EXCL_LOCKED(infomask)) { LockBuffer(*buffer, BUFFER_LOCK_EXCLUSIVE); /* * Make sure it's still an appropriate lock, else start over. * See above about allowing xmax to change. */ if (!HEAP_XMAX_IS_LOCKED_ONLY(tuple->t_data->t_infomask) || HEAP_XMAX_IS_EXCL_LOCKED(tuple->t_data->t_infomask)) goto l3; require_sleep = false; } } else if (mode == LockTupleNoKeyExclusive) { /* * If we're requesting NoKeyExclusive, we might also be able to * avoid sleeping; just ensure that there's no other lock type than * KeyShare. Note that this is a bit more involved than just * checking hint bits -- we need to expand the multixact to figure * out lock modes for each one (unless there was only one such * locker). */ if (infomask & HEAP_XMAX_IS_MULTI) { int nmembers; MultiXactMember *members; /* * We don't need to allow old multixacts here; if that had been * the case, HeapTupleSatisfiesUpdate would have returned * MayBeUpdated and we wouldn't be here. */ nmembers = GetMultiXactIdMembers(xwait, &members, false); if (nmembers <= 0) { /* * No need to keep the previous xmax here. This is unlikely * to happen. */ require_sleep = false; } else { int i; bool allowed = true; for (i = 0; i < nmembers; i++) { if (members[i].status != MultiXactStatusForKeyShare) { allowed = false; break; } } if (allowed) { /* * if the xmax changed under us in the meantime, start * over. */ LockBuffer(*buffer, BUFFER_LOCK_EXCLUSIVE); if (!(tuple->t_data->t_infomask & HEAP_XMAX_IS_MULTI) || !TransactionIdEquals(HeapTupleHeaderGetRawXmax(tuple->t_data), xwait)) { pfree(members); goto l3; } /* otherwise, we're good */ require_sleep = false; } pfree(members); } } else if (HEAP_XMAX_IS_KEYSHR_LOCKED(infomask)) { LockBuffer(*buffer, BUFFER_LOCK_EXCLUSIVE); /* if the xmax changed in the meantime, start over */ if ((tuple->t_data->t_infomask & HEAP_XMAX_IS_MULTI) || !TransactionIdEquals(HeapTupleHeaderGetRawXmax(tuple->t_data), xwait)) goto l3; /* otherwise, we're good */ require_sleep = false; } } /* * By here, we either have already acquired the buffer exclusive lock, * or we must wait for the locking transaction or multixact; so below * we ensure that we grab buffer lock after the sleep. */ if (require_sleep) { if (infomask & HEAP_XMAX_IS_MULTI) { MultiXactStatus status = get_mxact_status_for_lock(mode, false); /* We only ever lock tuples, never update them */ if (status >= MultiXactStatusNoKeyUpdate) elog(ERROR, "invalid lock mode in heap_lock_tuple"); /* wait for multixact to end */ if (nowait) { if (!ConditionalMultiXactIdWait((MultiXactId) xwait, status, NULL, infomask)) ereport(ERROR, (errcode(ERRCODE_LOCK_NOT_AVAILABLE), errmsg("could not obtain lock on row in relation \"%s\"", RelationGetRelationName(relation)))); } else MultiXactIdWait((MultiXactId) xwait, status, NULL, infomask); /* if there are updates, follow the update chain */ if (follow_updates && !HEAP_XMAX_IS_LOCKED_ONLY(infomask)) { HTSU_Result res; res = heap_lock_updated_tuple(relation, tuple, &t_ctid, GetCurrentTransactionId(), mode); if (res != HeapTupleMayBeUpdated) { result = res; /* recovery code expects to have buffer lock held */ LockBuffer(*buffer, BUFFER_LOCK_EXCLUSIVE); goto failed; } } LockBuffer(*buffer, BUFFER_LOCK_EXCLUSIVE); /* * If xwait had just locked the tuple then some other xact * could update this tuple before we get to this point. Check * for xmax change, and start over if so. */ if (!(tuple->t_data->t_infomask & HEAP_XMAX_IS_MULTI) || !TransactionIdEquals(HeapTupleHeaderGetRawXmax(tuple->t_data), xwait)) goto l3; /* * Of course, the multixact might not be done here: if we're * requesting a light lock mode, other transactions with light * locks could still be alive, as well as locks owned by our * own xact or other subxacts of this backend. We need to * preserve the surviving MultiXact members. Note that it * isn't absolutely necessary in the latter case, but doing so * is simpler. */ } else { /* wait for regular transaction to end */ if (nowait) { if (!ConditionalXactLockTableWait(xwait)) ereport(ERROR, (errcode(ERRCODE_LOCK_NOT_AVAILABLE), errmsg("could not obtain lock on row in relation \"%s\"", RelationGetRelationName(relation)))); } else XactLockTableWait(xwait); /* if there are updates, follow the update chain */ if (follow_updates && !HEAP_XMAX_IS_LOCKED_ONLY(infomask)) { HTSU_Result res; res = heap_lock_updated_tuple(relation, tuple, &t_ctid, GetCurrentTransactionId(), mode); if (res != HeapTupleMayBeUpdated) { result = res; /* recovery code expects to have buffer lock held */ LockBuffer(*buffer, BUFFER_LOCK_EXCLUSIVE); goto failed; } } LockBuffer(*buffer, BUFFER_LOCK_EXCLUSIVE); /* * xwait is done, but if xwait had just locked the tuple then * some other xact could update this tuple before we get to * this point. Check for xmax change, and start over if so. */ if ((tuple->t_data->t_infomask & HEAP_XMAX_IS_MULTI) || !TransactionIdEquals(HeapTupleHeaderGetRawXmax(tuple->t_data), xwait)) goto l3; /* * Otherwise check if it committed or aborted. Note we cannot * be here if the tuple was only locked by somebody who didn't * conflict with us; that should have been handled above. So * that transaction must necessarily be gone by now. */ UpdateXmaxHintBits(tuple->t_data, *buffer, xwait); } } /* By here, we're certain that we hold buffer exclusive lock again */ /* * We may lock if previous xmax aborted, or if it committed but only * locked the tuple without updating it; or if we didn't have to wait * at all for whatever reason. */ if (!require_sleep || (tuple->t_data->t_infomask & HEAP_XMAX_INVALID) || HEAP_XMAX_IS_LOCKED_ONLY(tuple->t_data->t_infomask) || HeapTupleHeaderIsOnlyLocked(tuple->t_data)) result = HeapTupleMayBeUpdated; else result = HeapTupleUpdated; } failed: if (result != HeapTupleMayBeUpdated) { Assert(result == HeapTupleSelfUpdated || result == HeapTupleUpdated); Assert(!(tuple->t_data->t_infomask & HEAP_XMAX_INVALID)); hufd->ctid = tuple->t_data->t_ctid; hufd->xmax = HeapTupleHeaderGetUpdateXid(tuple->t_data); if (result == HeapTupleSelfUpdated) hufd->cmax = HeapTupleHeaderGetCmax(tuple->t_data); else hufd->cmax = 0; /* for lack of an InvalidCommandId value */ LockBuffer(*buffer, BUFFER_LOCK_UNLOCK); if (have_tuple_lock) UnlockTupleTuplock(relation, tid, mode); return result; } xmax = HeapTupleHeaderGetRawXmax(tuple->t_data); old_infomask = tuple->t_data->t_infomask; /* * We might already hold the desired lock (or stronger), possibly under a * different subtransaction of the current top transaction. If so, there * is no need to change state or issue a WAL record. We already handled * the case where this is true for xmax being a MultiXactId, so now check * for cases where it is a plain TransactionId. * * Note in particular that this covers the case where we already hold * exclusive lock on the tuple and the caller only wants key share or share * lock. It would certainly not do to give up the exclusive lock. */ if (!(old_infomask & (HEAP_XMAX_INVALID | HEAP_XMAX_COMMITTED | HEAP_XMAX_IS_MULTI)) && (mode == LockTupleKeyShare ? (HEAP_XMAX_IS_KEYSHR_LOCKED(old_infomask) || HEAP_XMAX_IS_SHR_LOCKED(old_infomask) || HEAP_XMAX_IS_EXCL_LOCKED(old_infomask)) : mode == LockTupleShare ? (HEAP_XMAX_IS_SHR_LOCKED(old_infomask) || HEAP_XMAX_IS_EXCL_LOCKED(old_infomask)) : (HEAP_XMAX_IS_EXCL_LOCKED(old_infomask))) && TransactionIdIsCurrentTransactionId(xmax)) { LockBuffer(*buffer, BUFFER_LOCK_UNLOCK); /* Probably can't hold tuple lock here, but may as well check */ if (have_tuple_lock) UnlockTupleTuplock(relation, tid, mode); return HeapTupleMayBeUpdated; } /* * If this is the first possibly-multixact-able operation in the * current transaction, set my per-backend OldestMemberMXactId setting. * We can be certain that the transaction will never become a member of * any older MultiXactIds than that. (We have to do this even if we * end up just using our own TransactionId below, since some other * backend could incorporate our XID into a MultiXact immediately * afterwards.) */ MultiXactIdSetOldestMember(); /* * Compute the new xmax and infomask to store into the tuple. Note we do * not modify the tuple just yet, because that would leave it in the wrong * state if multixact.c elogs. */ compute_new_xmax_infomask(xmax, old_infomask, tuple->t_data->t_infomask2, GetCurrentTransactionId(), mode, false, &xid, &new_infomask, &new_infomask2); START_CRIT_SECTION(); /* * Store transaction information of xact locking the tuple. * * Note: Cmax is meaningless in this context, so don't set it; this avoids * possibly generating a useless combo CID. Moreover, if we're locking a * previously updated tuple, it's important to preserve the Cmax. * * Also reset the HOT UPDATE bit, but only if there's no update; otherwise * we would break the HOT chain. */ tuple->t_data->t_infomask &= ~HEAP_XMAX_BITS; tuple->t_data->t_infomask2 &= ~HEAP_KEYS_UPDATED; tuple->t_data->t_infomask |= new_infomask; tuple->t_data->t_infomask2 |= new_infomask2; if (HEAP_XMAX_IS_LOCKED_ONLY(new_infomask)) HeapTupleHeaderClearHotUpdated(tuple->t_data); HeapTupleHeaderSetXmax(tuple->t_data, xid); /* * Make sure there is no forward chain link in t_ctid. Note that in the * cases where the tuple has been updated, we must not overwrite t_ctid, * because it was set by the updater. Moreover, if the tuple has been * updated, we need to follow the update chain to lock the new versions * of the tuple as well. */ if (HEAP_XMAX_IS_LOCKED_ONLY(new_infomask)) tuple->t_data->t_ctid = *tid; MarkBufferDirty(*buffer); /* * XLOG stuff. You might think that we don't need an XLOG record because * there is no state change worth restoring after a crash. You would be * wrong however: we have just written either a TransactionId or a * MultiXactId that may never have been seen on disk before, and we need * to make sure that there are XLOG entries covering those ID numbers. * Else the same IDs might be re-used after a crash, which would be * disastrous if this page made it to disk before the crash. Essentially * we have to enforce the WAL log-before-data rule even in this case. * (Also, in a PITR log-shipping or 2PC environment, we have to have XLOG * entries for everything anyway.) */ if (RelationNeedsWAL(relation)) { xl_heap_lock xlrec; XLogRecPtr recptr; XLogRecData rdata[2]; xlrec.target.node = relation->rd_node; xlrec.target.tid = tuple->t_self; xlrec.locking_xid = xid; xlrec.infobits_set = compute_infobits(new_infomask, tuple->t_data->t_infomask2); rdata[0].data = (char *) &xlrec; rdata[0].len = SizeOfHeapLock; rdata[0].buffer = InvalidBuffer; rdata[0].next = &(rdata[1]); rdata[1].data = NULL; rdata[1].len = 0; rdata[1].buffer = *buffer; rdata[1].buffer_std = true; rdata[1].next = NULL; recptr = XLogInsert(RM_HEAP_ID, XLOG_HEAP_LOCK, rdata); PageSetLSN(page, recptr); } END_CRIT_SECTION(); LockBuffer(*buffer, BUFFER_LOCK_UNLOCK); /* * Don't update the visibility map here. Locking a tuple doesn't change * visibility info. */ /* * Now that we have successfully marked the tuple as locked, we can * release the lmgr tuple lock, if we had it. */ if (have_tuple_lock) UnlockTupleTuplock(relation, tid, mode); return HeapTupleMayBeUpdated; }
void heap_markpos | ( | HeapScanDesc | scan | ) |
Definition at line 5486 of file heapam.c.
References ItemPointerSetInvalid, HeapScanDescData::rs_cindex, HeapScanDescData::rs_ctup, HeapScanDescData::rs_mctid, HeapScanDescData::rs_mindex, HeapScanDescData::rs_pageatatime, HeapTupleData::t_data, and HeapTupleData::t_self.
Referenced by ExecSeqMarkPos().
void heap_multi_insert | ( | Relation | relation, | |
HeapTuple * | tuples, | |||
int | ntuples, | |||
CommandId | cid, | |||
int | options, | |||
BulkInsertState | bistate | |||
) |
Definition at line 2241 of file heapam.c.
References xl_heap_multi_insert::all_visible_cleared, Assert, xl_heap_multi_insert::blkno, XLogRecData::buffer, XLogRecData::buffer_std, BufferGetBlockNumber(), BufferGetPage, CacheInvalidateHeapTuple(), CheckForSerializableConflictIn(), XLogRecData::data, xl_multi_insert_tuple::datalen, END_CRIT_SECTION, FirstOffsetNumber, GetCurrentTransactionId(), HEAP_DEFAULT_FILLFACTOR, heap_prepare_insert(), i, InvalidBuffer, IsSystemRelation(), ItemPointerGetOffsetNumber, XLogRecData::len, MarkBufferDirty(), MAXALIGN, XLogRecData::next, xl_heap_multi_insert::node, xl_heap_multi_insert::ntuples, offsetof, xl_heap_multi_insert::offsets, PageClearAllVisible, PageGetHeapFreeSpace(), PageGetMaxOffsetNumber, PageIsAllVisible, PageSetLSN, palloc(), pgstat_count_heap_insert(), RelationData::rd_node, RelationGetBufferForTuple(), RelationGetTargetPageFreeSpace, RelationNeedsWAL, RelationPutHeapTuple(), ReleaseBuffer(), SHORTALIGN, START_CRIT_SECTION, HeapTupleData::t_data, HeapTupleHeaderData::t_hoff, xl_multi_insert_tuple::t_hoff, HeapTupleHeaderData::t_infomask, xl_multi_insert_tuple::t_infomask, HeapTupleHeaderData::t_infomask2, xl_multi_insert_tuple::t_infomask2, HeapTupleData::t_len, HeapTupleData::t_self, UnlockReleaseBuffer(), visibilitymap_clear(), and XLogInsert().
Referenced by CopyFromInsertBatch().
{ TransactionId xid = GetCurrentTransactionId(); HeapTuple *heaptuples; int i; int ndone; char *scratch = NULL; Page page; bool needwal; Size saveFreeSpace; needwal = !(options & HEAP_INSERT_SKIP_WAL) && RelationNeedsWAL(relation); saveFreeSpace = RelationGetTargetPageFreeSpace(relation, HEAP_DEFAULT_FILLFACTOR); /* Toast and set header data in all the tuples */ heaptuples = palloc(ntuples * sizeof(HeapTuple)); for (i = 0; i < ntuples; i++) heaptuples[i] = heap_prepare_insert(relation, tuples[i], xid, cid, options); /* * Allocate some memory to use for constructing the WAL record. Using * palloc() within a critical section is not safe, so we allocate this * beforehand. */ if (needwal) scratch = palloc(BLCKSZ); /* * We're about to do the actual inserts -- but check for conflict first, * to avoid possibly having to roll back work we've just done. * * For a heap insert, we only need to check for table-level SSI locks. Our * new tuple can't possibly conflict with existing tuple locks, and heap * page locks are only consolidated versions of tuple locks; they do not * lock "gaps" as index page locks do. So we don't need to identify a * buffer before making the call. */ CheckForSerializableConflictIn(relation, NULL, InvalidBuffer); ndone = 0; while (ndone < ntuples) { Buffer buffer; Buffer vmbuffer = InvalidBuffer; bool all_visible_cleared = false; int nthispage; /* * Find buffer where at least the next tuple will fit. If the page is * all-visible, this will also pin the requisite visibility map page. */ buffer = RelationGetBufferForTuple(relation, heaptuples[ndone]->t_len, InvalidBuffer, options, bistate, &vmbuffer, NULL); page = BufferGetPage(buffer); /* NO EREPORT(ERROR) from here till changes are logged */ START_CRIT_SECTION(); /* * RelationGetBufferForTuple has ensured that the first tuple fits. * Put that on the page, and then as many other tuples as fit. */ RelationPutHeapTuple(relation, buffer, heaptuples[ndone]); for (nthispage = 1; ndone + nthispage < ntuples; nthispage++) { HeapTuple heaptup = heaptuples[ndone + nthispage]; if (PageGetHeapFreeSpace(page) < MAXALIGN(heaptup->t_len) + saveFreeSpace) break; RelationPutHeapTuple(relation, buffer, heaptup); } if (PageIsAllVisible(page)) { all_visible_cleared = true; PageClearAllVisible(page); visibilitymap_clear(relation, BufferGetBlockNumber(buffer), vmbuffer); } /* * XXX Should we set PageSetPrunable on this page ? See heap_insert() */ MarkBufferDirty(buffer); /* XLOG stuff */ if (needwal) { XLogRecPtr recptr; xl_heap_multi_insert *xlrec; XLogRecData rdata[2]; uint8 info = XLOG_HEAP2_MULTI_INSERT; char *tupledata; int totaldatalen; char *scratchptr = scratch; bool init; /* * If the page was previously empty, we can reinit the page * instead of restoring the whole thing. */ init = (ItemPointerGetOffsetNumber(&(heaptuples[ndone]->t_self)) == FirstOffsetNumber && PageGetMaxOffsetNumber(page) == FirstOffsetNumber + nthispage - 1); /* allocate xl_heap_multi_insert struct from the scratch area */ xlrec = (xl_heap_multi_insert *) scratchptr; scratchptr += SizeOfHeapMultiInsert; /* * Allocate offsets array. Unless we're reinitializing the page, * in that case the tuples are stored in order starting at * FirstOffsetNumber and we don't need to store the offsets * explicitly. */ if (!init) scratchptr += nthispage * sizeof(OffsetNumber); /* the rest of the scratch space is used for tuple data */ tupledata = scratchptr; xlrec->all_visible_cleared = all_visible_cleared; xlrec->node = relation->rd_node; xlrec->blkno = BufferGetBlockNumber(buffer); xlrec->ntuples = nthispage; /* * Write out an xl_multi_insert_tuple and the tuple data itself * for each tuple. */ for (i = 0; i < nthispage; i++) { HeapTuple heaptup = heaptuples[ndone + i]; xl_multi_insert_tuple *tuphdr; int datalen; if (!init) xlrec->offsets[i] = ItemPointerGetOffsetNumber(&heaptup->t_self); /* xl_multi_insert_tuple needs two-byte alignment. */ tuphdr = (xl_multi_insert_tuple *) SHORTALIGN(scratchptr); scratchptr = ((char *) tuphdr) + SizeOfMultiInsertTuple; tuphdr->t_infomask2 = heaptup->t_data->t_infomask2; tuphdr->t_infomask = heaptup->t_data->t_infomask; tuphdr->t_hoff = heaptup->t_data->t_hoff; /* write bitmap [+ padding] [+ oid] + data */ datalen = heaptup->t_len - offsetof(HeapTupleHeaderData, t_bits); memcpy(scratchptr, (char *) heaptup->t_data + offsetof(HeapTupleHeaderData, t_bits), datalen); tuphdr->datalen = datalen; scratchptr += datalen; } totaldatalen = scratchptr - tupledata; Assert((scratchptr - scratch) < BLCKSZ); rdata[0].data = (char *) xlrec; rdata[0].len = tupledata - scratch; rdata[0].buffer = InvalidBuffer; rdata[0].next = &rdata[1]; rdata[1].data = tupledata; rdata[1].len = totaldatalen; rdata[1].buffer = buffer; rdata[1].buffer_std = true; rdata[1].next = NULL; /* * If we're going to reinitialize the whole page using the WAL * record, hide buffer reference from XLogInsert. */ if (init) { rdata[1].buffer = InvalidBuffer; info |= XLOG_HEAP_INIT_PAGE; } recptr = XLogInsert(RM_HEAP2_ID, info, rdata); PageSetLSN(page, recptr); } END_CRIT_SECTION(); UnlockReleaseBuffer(buffer); if (vmbuffer != InvalidBuffer) ReleaseBuffer(vmbuffer); ndone += nthispage; } /* * If tuples are cachable, mark them for invalidation from the caches in * case we abort. Note it is OK to do this after releasing the buffer, * because the heaptuples data structure is all in local memory, not in * the shared buffer. */ if (IsSystemRelation(relation)) { for (i = 0; i < ntuples; i++) CacheInvalidateHeapTuple(relation, heaptuples[i], NULL); } /* * Copy t_self fields back to the caller's original tuples. This does * nothing for untoasted tuples (tuples[i] == heaptuples[i)], but it's * probably faster to always copy than check. */ for (i = 0; i < ntuples; i++) tuples[i]->t_self = heaptuples[i]->t_self; pgstat_count_heap_insert(relation, ntuples); }
Definition at line 1183 of file heapam.c.
References ereport, errcode(), errmsg(), ERROR, RelationData::rd_rel, relation_open(), RelationGetRelationName, RELKIND_COMPOSITE_TYPE, and RELKIND_INDEX.
Referenced by acquire_inherited_sample_rows(), AcquireRewriteLocks(), AddEnumLabel(), AddNewAttributeTuples(), AddRoleMems(), AfterTriggerSetState(), AggregateCreate(), AlterConstraintNamespaces(), AlterDatabase(), AlterDatabaseOwner(), AlterDomainAddConstraint(), AlterDomainDefault(), AlterDomainDropConstraint(), AlterDomainNotNull(), AlterDomainValidateConstraint(), AlterEventTrigger(), AlterEventTriggerOwner(), AlterEventTriggerOwner_oid(), AlterExtensionNamespace(), AlterForeignDataWrapper(), AlterForeignDataWrapperOwner(), AlterForeignDataWrapperOwner_oid(), AlterForeignServer(), AlterForeignServerOwner(), AlterForeignServerOwner_oid(), AlterFunction(), AlterObjectNamespace_oid(), AlterRole(), AlterSchemaOwner(), AlterSchemaOwner_oid(), AlterSeqNamespaces(), AlterSetting(), AlterTableCreateToastTable(), AlterTableNamespaceInternal(), AlterTableSpaceOptions(), AlterTSConfiguration(), AlterTSDictionary(), AlterTypeNamespaceInternal(), AlterTypeOwner(), AlterTypeOwnerInternal(), AlterUserMapping(), AppendAttributeTuples(), ApplyExtensionUpdates(), AssignTypeArrayOid(), ATAddCheckConstraint(), ATExecAddColumn(), ATExecAddInherit(), ATExecAddOf(), ATExecAlterColumnGenericOptions(), ATExecAlterColumnType(), ATExecChangeOwner(), ATExecDropColumn(), ATExecDropConstraint(), ATExecDropInherit(), ATExecDropNotNull(), ATExecDropOf(), ATExecGenericOptions(), ATExecSetNotNull(), ATExecSetOptions(), ATExecSetRelOptions(), ATExecSetStatistics(), ATExecSetStorage(), ATExecSetTableSpace(), ATExecValidateConstraint(), ATRewriteTable(), ATRewriteTables(), AttrDefaultFetch(), boot_openrel(), build_indices(), build_physical_tlist(), CatalogCacheInitializeCache(), change_owner_fix_column_acls(), change_owner_recurse_to_sequences(), changeDependencyFor(), changeDependencyOnOwner(), check_db_file_conflict(), check_functional_grouping(), check_selective_binary_conversion(), CheckConstraintFetch(), checkSharedDependencies(), ChooseConstraintName(), cluster(), CollationCreate(), ConstraintNameIsUsed(), ConversionCreate(), copy_heap_data(), copyTemplateDependencies(), create_proc_lang(), create_toast_table(), CreateCast(), CreateComments(), CreateConstraintEntry(), createdb(), CreateForeignDataWrapper(), CreateForeignServer(), CreateForeignTable(), CreateOpFamily(), CreateRole(), CreateSharedComments(), CreateTableSpace(), CreateTrigger(), CreateUserMapping(), currtid_byreloid(), database_to_xmlschema_internal(), DefineOpClass(), DefineQueryRewrite(), DefineSequence(), DefineTSConfiguration(), DefineTSDictionary(), DefineTSParser(), DefineTSTemplate(), DeleteAttributeTuples(), DeleteComments(), deleteDependencyRecordsFor(), deleteDependencyRecordsForClass(), deleteOneObject(), DeleteRelationTuple(), DeleteSecurityLabel(), DeleteSharedComments(), deleteSharedDependencyRecordsFor(), DeleteSharedSecurityLabel(), DeleteSystemAttributeTuples(), deleteWhatDependsOn(), DelRoleMems(), deparseSelectSql(), do_autovacuum(), drop_parent_dependency(), DropCastById(), dropDatabaseDependencies(), dropdb(), DropProceduralLanguageById(), DropRole(), DropSetting(), DropTableSpace(), EnableDisableRule(), EnableDisableTrigger(), enum_endpoint(), enum_range_internal(), EnumValuesCreate(), EnumValuesDelete(), EventTriggerSQLDropAddObject(), exec_object_restorecon(), ExecAlterExtensionStmt(), ExecAlterObjectSchemaStmt(), ExecAlterOwnerStmt(), ExecGetTriggerResultRel(), ExecGrant_Database(), ExecGrant_Fdw(), ExecGrant_ForeignServer(), ExecGrant_Function(), ExecGrant_Language(), ExecGrant_Largeobject(), ExecGrant_Namespace(), ExecGrant_Relation(), ExecGrant_Tablespace(), ExecGrant_Type(), ExecOpenScanRelation(), ExecRefreshMatView(), ExecRenameStmt(), ExecuteTruncate(), expand_inherited_rtentry(), expand_targetlist(), extension_config_remove(), find_composite_type_dependencies(), find_inheritance_children(), find_language_template(), find_typed_table_dependencies(), finish_heap_swap(), fireRIRrules(), get_actual_variable_range(), get_constraint_index(), get_database_list(), get_database_oid(), get_db_info(), get_domain_constraint_oid(), get_extension_name(), get_extension_oid(), get_extension_schema(), get_file_fdw_attribute_options(), get_index_constraint(), get_object_address_relobject(), get_pkey_attnames(), get_rel_oids(), get_relation_constraint_oid(), get_relation_constraints(), get_relation_data_width(), get_relation_info(), get_rels_with_domain(), get_rewrite_oid_without_relid(), get_tables_to_cluster(), get_tablespace_name(), get_tablespace_oid(), get_trigger_oid(), GetComment(), getConstraintTypeDescription(), GetDatabaseTuple(), GetDatabaseTupleByOid(), GetDefaultOpClass(), GetDomainConstraints(), getExtensionOfObject(), getObjectDescription(), getObjectIdentity(), getOwnedSequences(), getRelationsInNamespace(), GetSecurityLabel(), GetSharedSecurityLabel(), gettype(), GrantRole(), heap_create_with_catalog(), heap_drop_with_catalog(), heap_sync(), heap_truncate(), heap_truncate_find_FKs(), heap_truncate_one_rel(), index_build(), index_constraint_create(), index_create(), index_drop(), index_set_state_flags(), index_update_stats(), InitPlan(), insert_event_trigger_tuple(), InsertExtensionTuple(), InsertRule(), intorel_startup(), isQueryUsingTempRelation_walker(), LargeObjectCreate(), LargeObjectDrop(), LargeObjectExists(), load_enum_cache_data(), lookup_ts_config_cache(), LookupOpclassInfo(), make_new_heap(), make_viewdef(), makeArrayTypeName(), mark_index_clustered(), MergeAttributesIntoExisting(), MergeConstraintsIntoExisting(), MergeWithExistingConstraint(), movedb(), myLargeObjectExists(), NamespaceCreate(), objectsInSchemaToOids(), open_lo_relation(), OperatorCreate(), OperatorShellMake(), OperatorUpd(), performDeletion(), performMultipleDeletions(), pg_extension_config_dump(), pg_extension_ownercheck(), pg_get_serial_sequence(), pg_get_triggerdef_worker(), pg_identify_object(), pg_largeobject_aclmask_snapshot(), pg_largeobject_ownercheck(), pgstat_collect_oids(), postgresPlanForeignModify(), ProcedureCreate(), process_settings(), RangeCreate(), RangeDelete(), recordMultipleDependencies(), recordSharedDependencyOn(), regclassin(), regoperin(), regprocin(), regtypein(), reindex_index(), reindex_relation(), ReindexDatabase(), RelationBuildRuleLock(), RelationBuildTriggers(), RelationBuildTupleDesc(), RelationGetExclusionInfo(), RelationGetIndexList(), RelationRemoveInheritance(), RelationSetNewRelfilenode(), remove_dbtablespaces(), RemoveAmOpEntryById(), RemoveAmProcEntryById(), RemoveAttrDefault(), RemoveAttrDefaultById(), RemoveAttributeById(), RemoveCollationById(), RemoveConstraintById(), RemoveConversionById(), RemoveDefaultACLById(), RemoveEventTriggerById(), RemoveExtensionById(), RemoveForeignDataWrapperById(), RemoveForeignServerById(), RemoveFunctionById(), RemoveOpClassById(), RemoveOperatorById(), RemoveOpFamilyById(), RemoveRewriteRuleById(), RemoveRoleFromObjectACL(), RemoveSchemaById(), RemoveStatistics(), RemoveTriggerById(), RemoveTSConfigurationById(), RemoveTSDictionaryById(), RemoveTSParserById(), RemoveTSTemplateById(), RemoveTypeById(), RemoveUserMappingById(), renameatt_internal(), RenameConstraint(), RenameConstraintById(), RenameDatabase(), RenameRelationInternal(), RenameRewriteRule(), RenameRole(), RenameSchema(), RenameTableSpace(), renametrig(), RenameType(), RenameTypeInternal(), RewriteQuery(), rewriteTargetView(), RI_FKey_cascade_del(), RI_FKey_cascade_upd(), RI_FKey_check(), RI_FKey_setdefault_del(), RI_FKey_setdefault_upd(), RI_FKey_setnull_del(), RI_FKey_setnull_upd(), ri_restrict_del(), ri_restrict_upd(), ScanPgRelation(), schema_to_xmlschema_internal(), SearchCatCache(), SearchCatCacheList(), sepgsql_attribute_post_create(), sepgsql_database_post_create(), sepgsql_index_modify(), sepgsql_proc_post_create(), sepgsql_proc_setattr(), sepgsql_relation_post_create(), sepgsql_relation_setattr(), sepgsql_schema_post_create(), sequenceIsOwned(), SetDefaultACL(), SetFunctionArgType(), SetFunctionReturnType(), SetRelationHasSubclass(), SetRelationNumChecks(), SetRelationRuleStatus(), SetSecurityLabel(), SetSharedSecurityLabel(), shdepDropOwned(), shdepReassignOwned(), StoreAttrDefault(), StoreCatalogInheritance(), storeOperators(), storeProcedures(), swap_relation_files(), table_to_xml_and_xmlschema(), table_to_xmlschema(), ThereIsAtLeastOneRole(), toast_delete_datum(), toast_fetch_datum(), toast_fetch_datum_slice(), toast_save_datum(), toastid_valueid_exists(), transientrel_startup(), TypeCreate(), typeInheritsFrom(), TypeShellMake(), update_attstats(), updateAclDependencies(), UpdateIndexRelation(), vac_truncate_clog(), vac_update_datfrozenxid(), vac_update_relstats(), and validate_index().
{ Relation r; r = relation_open(relationId, lockmode); if (r->rd_rel->relkind == RELKIND_INDEX) ereport(ERROR, (errcode(ERRCODE_WRONG_OBJECT_TYPE), errmsg("\"%s\" is an index", RelationGetRelationName(r)))); else if (r->rd_rel->relkind == RELKIND_COMPOSITE_TYPE) ereport(ERROR, (errcode(ERRCODE_WRONG_OBJECT_TYPE), errmsg("\"%s\" is a composite type", RelationGetRelationName(r)))); return r; }
Definition at line 1211 of file heapam.c.
References ereport, errcode(), errmsg(), ERROR, RelationData::rd_rel, relation_openrv(), RelationGetRelationName, RELKIND_COMPOSITE_TYPE, and RELKIND_INDEX.
Referenced by ATAddForeignKeyConstraint(), ATExecAddInherit(), ATExecDropInherit(), boot_openrel(), BootstrapToastTable(), CreateTrigger(), currtid_byrelname(), DefineIndex(), DoCopy(), ExecuteTruncate(), get_object_address_relobject(), get_rel_from_relname(), MergeAttributes(), pgrowlocks(), transformIndexConstraint(), transformIndexStmt(), and transformRuleStmt().
{ Relation r; r = relation_openrv(relation, lockmode); if (r->rd_rel->relkind == RELKIND_INDEX) ereport(ERROR, (errcode(ERRCODE_WRONG_OBJECT_TYPE), errmsg("\"%s\" is an index", RelationGetRelationName(r)))); else if (r->rd_rel->relkind == RELKIND_COMPOSITE_TYPE) ereport(ERROR, (errcode(ERRCODE_WRONG_OBJECT_TYPE), errmsg("\"%s\" is a composite type", RelationGetRelationName(r)))); return r; }
Definition at line 1240 of file heapam.c.
References ereport, errcode(), errmsg(), ERROR, RelationData::rd_rel, relation_openrv_extended(), RelationGetRelationName, RELKIND_COMPOSITE_TYPE, and RELKIND_INDEX.
Referenced by parserOpenTable().
{ Relation r; r = relation_openrv_extended(relation, lockmode, missing_ok); if (r) { if (r->rd_rel->relkind == RELKIND_INDEX) ereport(ERROR, (errcode(ERRCODE_WRONG_OBJECT_TYPE), errmsg("\"%s\" is an index", RelationGetRelationName(r)))); else if (r->rd_rel->relkind == RELKIND_COMPOSITE_TYPE) ereport(ERROR, (errcode(ERRCODE_WRONG_OBJECT_TYPE), errmsg("\"%s\" is a composite type", RelationGetRelationName(r)))); } return r; }
int heap_page_prune | ( | Relation | relation, | |
Buffer | buffer, | |||
TransactionId | OldestXmin, | |||
bool | report_stats, | |||
TransactionId * | latestRemovedXid | |||
) |
Definition at line 155 of file pruneheap.c.
References BufferGetPage, END_CRIT_SECTION, FirstOffsetNumber, heap_page_prune_execute(), heap_prune_chain(), ItemIdIsDead, ItemIdIsUsed, PruneState::latestRemovedXid, log_heap_clean(), MarkBufferDirty(), MarkBufferDirtyHint(), PruneState::marked, PruneState::ndead, PruneState::new_prune_xid, PruneState::nowdead, PruneState::nowunused, PruneState::nredirected, PruneState::nunused, OffsetNumberNext, PageClearFull, PageGetItemId, PageGetMaxOffsetNumber, PageIsFull, PageSetLSN, pgstat_update_heap_dead_tuples(), PruneState::redirected, RelationNeedsWAL, and START_CRIT_SECTION.
Referenced by heap_page_prune_opt(), and lazy_scan_heap().
{ int ndeleted = 0; Page page = BufferGetPage(buffer); OffsetNumber offnum, maxoff; PruneState prstate; /* * Our strategy is to scan the page and make lists of items to change, * then apply the changes within a critical section. This keeps as much * logic as possible out of the critical section, and also ensures that * WAL replay will work the same as the normal case. * * First, initialize the new pd_prune_xid value to zero (indicating no * prunable tuples). If we find any tuples which may soon become * prunable, we will save the lowest relevant XID in new_prune_xid. Also * initialize the rest of our working state. */ prstate.new_prune_xid = InvalidTransactionId; prstate.latestRemovedXid = *latestRemovedXid; prstate.nredirected = prstate.ndead = prstate.nunused = 0; memset(prstate.marked, 0, sizeof(prstate.marked)); /* Scan the page */ maxoff = PageGetMaxOffsetNumber(page); for (offnum = FirstOffsetNumber; offnum <= maxoff; offnum = OffsetNumberNext(offnum)) { ItemId itemid; /* Ignore items already processed as part of an earlier chain */ if (prstate.marked[offnum]) continue; /* Nothing to do if slot is empty or already dead */ itemid = PageGetItemId(page, offnum); if (!ItemIdIsUsed(itemid) || ItemIdIsDead(itemid)) continue; /* Process this item or chain of items */ ndeleted += heap_prune_chain(relation, buffer, offnum, OldestXmin, &prstate); } /* Any error while applying the changes is critical */ START_CRIT_SECTION(); /* Have we found any prunable items? */ if (prstate.nredirected > 0 || prstate.ndead > 0 || prstate.nunused > 0) { /* * Apply the planned item changes, then repair page fragmentation, and * update the page's hint bit about whether it has free line pointers. */ heap_page_prune_execute(buffer, prstate.redirected, prstate.nredirected, prstate.nowdead, prstate.ndead, prstate.nowunused, prstate.nunused); /* * Update the page's pd_prune_xid field to either zero, or the lowest * XID of any soon-prunable tuple. */ ((PageHeader) page)->pd_prune_xid = prstate.new_prune_xid; /* * Also clear the "page is full" flag, since there's no point in * repeating the prune/defrag process until something else happens to * the page. */ PageClearFull(page); MarkBufferDirty(buffer); /* * Emit a WAL HEAP_CLEAN record showing what we did */ if (RelationNeedsWAL(relation)) { XLogRecPtr recptr; recptr = log_heap_clean(relation, buffer, prstate.redirected, prstate.nredirected, prstate.nowdead, prstate.ndead, prstate.nowunused, prstate.nunused, prstate.latestRemovedXid); PageSetLSN(BufferGetPage(buffer), recptr); } } else { /* * If we didn't prune anything, but have found a new value for the * pd_prune_xid field, update it and mark the buffer dirty. This is * treated as a non-WAL-logged hint. * * Also clear the "page is full" flag if it is set, since there's no * point in repeating the prune/defrag process until something else * happens to the page. */ if (((PageHeader) page)->pd_prune_xid != prstate.new_prune_xid || PageIsFull(page)) { ((PageHeader) page)->pd_prune_xid = prstate.new_prune_xid; PageClearFull(page); MarkBufferDirtyHint(buffer); } } END_CRIT_SECTION(); /* * If requested, report the number of tuples reclaimed to pgstats. This is * ndeleted minus ndead, because we don't want to count a now-DEAD root * item as a deletion for this purpose. */ if (report_stats && ndeleted > prstate.ndead) pgstat_update_heap_dead_tuples(relation, ndeleted - prstate.ndead); *latestRemovedXid = prstate.latestRemovedXid; /* * XXX Should we update the FSM information of this page ? * * There are two schools of thought here. We may not want to update FSM * information so that the page is not used for unrelated UPDATEs/INSERTs * and any free space in this page will remain available for further * UPDATEs in *this* page, thus improving chances for doing HOT updates. * * But for a large table and where a page does not receive further UPDATEs * for a long time, we might waste this space by not updating the FSM * information. The relation may get extended and fragmented further. * * One possibility is to leave "fillfactor" worth of space in this page * and update FSM with the remaining space. */ return ndeleted; }
void heap_page_prune_execute | ( | Buffer | buffer, | |
OffsetNumber * | redirected, | |||
int | nredirected, | |||
OffsetNumber * | nowdead, | |||
int | ndead, | |||
OffsetNumber * | nowunused, | |||
int | nunused | |||
) |
Definition at line 641 of file pruneheap.c.
References BufferGetPage, i, ItemIdSetDead, ItemIdSetRedirect, ItemIdSetUnused, PageGetItemId, and PageRepairFragmentation().
Referenced by heap_page_prune(), and heap_xlog_clean().
{ Page page = (Page) BufferGetPage(buffer); OffsetNumber *offnum; int i; /* Update all redirected line pointers */ offnum = redirected; for (i = 0; i < nredirected; i++) { OffsetNumber fromoff = *offnum++; OffsetNumber tooff = *offnum++; ItemId fromlp = PageGetItemId(page, fromoff); ItemIdSetRedirect(fromlp, tooff); } /* Update all now-dead line pointers */ offnum = nowdead; for (i = 0; i < ndead; i++) { OffsetNumber off = *offnum++; ItemId lp = PageGetItemId(page, off); ItemIdSetDead(lp); } /* Update all now-unused line pointers */ offnum = nowunused; for (i = 0; i < nunused; i++) { OffsetNumber off = *offnum++; ItemId lp = PageGetItemId(page, off); ItemIdSetUnused(lp); } /* * Finally, repair any fragmentation, and update the page's hint bit about * whether it has free pointers. */ PageRepairFragmentation(page); }
void heap_page_prune_opt | ( | Relation | relation, | |
Buffer | buffer, | |||
TransactionId | OldestXmin | |||
) |
Definition at line 73 of file pruneheap.c.
References BUFFER_LOCK_UNLOCK, BufferGetPage, ConditionalLockBufferForCleanup(), HEAP_DEFAULT_FILLFACTOR, heap_page_prune(), LockBuffer(), Max, PageGetHeapFreeSpace(), PageIsFull, PageIsPrunable, RecoveryInProgress(), and RelationGetTargetPageFreeSpace.
Referenced by bitgetpage(), heapgetpage(), and index_fetch_heap().
{ Page page = BufferGetPage(buffer); Size minfree; /* * Let's see if we really need pruning. * * Forget it if page is not hinted to contain something prunable that's * older than OldestXmin. */ if (!PageIsPrunable(page, OldestXmin)) return; /* * We can't write WAL in recovery mode, so there's no point trying to * clean the page. The master will likely issue a cleaning WAL record soon * anyway, so this is no particular loss. */ if (RecoveryInProgress()) return; /* * We prune when a previous UPDATE failed to find enough space on the page * for a new tuple version, or when free space falls below the relation's * fill-factor target (but not less than 10%). * * Checking free space here is questionable since we aren't holding any * lock on the buffer; in the worst case we could get a bogus answer. It's * unlikely to be *seriously* wrong, though, since reading either pd_lower * or pd_upper is probably atomic. Avoiding taking a lock seems more * important than sometimes getting a wrong answer in what is after all * just a heuristic estimate. */ minfree = RelationGetTargetPageFreeSpace(relation, HEAP_DEFAULT_FILLFACTOR); minfree = Max(minfree, BLCKSZ / 10); if (PageIsFull(page) || PageGetHeapFreeSpace(page) < minfree) { /* OK, try to get exclusive buffer lock */ if (!ConditionalLockBufferForCleanup(buffer)) return; /* * Now that we have buffer lock, get accurate information about the * page's free space, and recheck the heuristic about whether to * prune. (We needn't recheck PageIsPrunable, since no one else could * have pruned while we hold pin.) */ if (PageIsFull(page) || PageGetHeapFreeSpace(page) < minfree) { TransactionId ignore = InvalidTransactionId; /* return value not * needed */ /* OK to prune */ (void) heap_page_prune(relation, buffer, OldestXmin, true, &ignore); } /* And release buffer lock */ LockBuffer(buffer, BUFFER_LOCK_UNLOCK); } }
void heap_rescan | ( | HeapScanDesc | scan, | |
ScanKey | key | |||
) |
Definition at line 1375 of file heapam.c.
References BufferIsValid, initscan(), ReleaseBuffer(), and HeapScanDescData::rs_cbuf.
Referenced by ExecReScanBitmapHeapScan(), and ExecReScanSeqScan().
{ /* * unpin scan buffers */ if (BufferIsValid(scan->rs_cbuf)) ReleaseBuffer(scan->rs_cbuf); /* * reinitialize scan descriptor */ initscan(scan, key, true); }
void heap_restrpos | ( | HeapScanDesc | scan | ) |
Definition at line 5505 of file heapam.c.
References BufferIsValid, heapgettup(), heapgettup_pagemode(), ItemPointerIsValid, NoMovementScanDirection, ReleaseBuffer(), HeapScanDescData::rs_cblock, HeapScanDescData::rs_cbuf, HeapScanDescData::rs_cindex, HeapScanDescData::rs_ctup, HeapScanDescData::rs_inited, HeapScanDescData::rs_mctid, HeapScanDescData::rs_mindex, HeapScanDescData::rs_pageatatime, HeapTupleData::t_data, and HeapTupleData::t_self.
Referenced by ExecSeqRestrPos().
{ /* XXX no amrestrpos checking that ammarkpos called */ if (!ItemPointerIsValid(&scan->rs_mctid)) { scan->rs_ctup.t_data = NULL; /* * unpin scan buffers */ if (BufferIsValid(scan->rs_cbuf)) ReleaseBuffer(scan->rs_cbuf); scan->rs_cbuf = InvalidBuffer; scan->rs_cblock = InvalidBlockNumber; scan->rs_inited = false; } else { /* * If we reached end of scan, rs_inited will now be false. We must * reset it to true to keep heapgettup from doing the wrong thing. */ scan->rs_inited = true; scan->rs_ctup.t_self = scan->rs_mctid; if (scan->rs_pageatatime) { scan->rs_cindex = scan->rs_mindex; heapgettup_pagemode(scan, NoMovementScanDirection, 0, /* needn't recheck scan keys */ NULL); } else heapgettup(scan, NoMovementScanDirection, 0, /* needn't recheck scan keys */ NULL); } }
void heap_sync | ( | Relation | relation | ) |
Definition at line 7148 of file heapam.c.
References AccessShareLock, FlushRelationBuffers(), heap_close, heap_open(), MAIN_FORKNUM, OidIsValid, RelationData::rd_rel, RelationData::rd_smgr, RelationNeedsWAL, and smgrimmedsync().
Referenced by ATRewriteTable(), CopyFrom(), end_heap_rewrite(), intorel_shutdown(), and transientrel_shutdown().
{ /* non-WAL-logged tables never need fsync */ if (!RelationNeedsWAL(rel)) return; /* main heap */ FlushRelationBuffers(rel); /* FlushRelationBuffers will have opened rd_smgr */ smgrimmedsync(rel->rd_smgr, MAIN_FORKNUM); /* FSM is not critical, don't bother syncing it */ /* toast heap, if any */ if (OidIsValid(rel->rd_rel->reltoastrelid)) { Relation toastrel; toastrel = heap_open(rel->rd_rel->reltoastrelid, AccessShareLock); FlushRelationBuffers(toastrel); smgrimmedsync(toastrel->rd_smgr, MAIN_FORKNUM); heap_close(toastrel, AccessShareLock); } }
bool heap_tuple_needs_freeze | ( | HeapTupleHeader | tuple, | |
TransactionId | cutoff_xid, | |||
MultiXactId | cutoff_multi, | |||
Buffer | buf | |||
) |
Definition at line 5441 of file heapam.c.
References HEAP_MOVED, HEAP_XMAX_INVALID, HEAP_XMAX_IS_MULTI, HeapTupleHeaderGetRawXmax, HeapTupleHeaderGetXmin, HeapTupleHeaderGetXvac, MultiXactIdPrecedes(), HeapTupleHeaderData::t_infomask, TransactionIdIsNormal, and TransactionIdPrecedes().
Referenced by lazy_check_needs_freeze().
{ TransactionId xid; xid = HeapTupleHeaderGetXmin(tuple); if (TransactionIdIsNormal(xid) && TransactionIdPrecedes(xid, cutoff_xid)) return true; if (!(tuple->t_infomask & HEAP_XMAX_INVALID)) { if (!(tuple->t_infomask & HEAP_XMAX_IS_MULTI)) { xid = HeapTupleHeaderGetRawXmax(tuple); if (TransactionIdIsNormal(xid) && TransactionIdPrecedes(xid, cutoff_xid)) return true; } else { MultiXactId multi; multi = HeapTupleHeaderGetRawXmax(tuple); if (MultiXactIdPrecedes(multi, cutoff_multi)) return true; } } if (tuple->t_infomask & HEAP_MOVED) { xid = HeapTupleHeaderGetXvac(tuple); if (TransactionIdIsNormal(xid) && TransactionIdPrecedes(xid, cutoff_xid)) return true; } return false; }
HTSU_Result heap_update | ( | Relation | relation, | |
ItemPointer | otid, | |||
HeapTuple | newtup, | |||
CommandId | cid, | |||
Snapshot | crosscheck, | |||
bool | wait, | |||
HeapUpdateFailureData * | hufd, | |||
LockTupleMode * | lockmode | |||
) |
Definition at line 2906 of file heapam.c.
References Assert, bms_free(), BUFFER_LOCK_EXCLUSIVE, BUFFER_LOCK_UNLOCK, BufferGetBlockNumber(), BufferGetPage, BufferIsValid, CacheInvalidateHeapTuple(), CheckForSerializableConflictIn(), HeapUpdateFailureData::cmax, compute_new_xmax_infomask(), HeapUpdateFailureData::ctid, elog, END_CRIT_SECTION, ERROR, GetCurrentTransactionId(), GetMultiXactIdHintBits(), heap_freetuple(), HEAP_HASOID, HEAP_UPDATED, HEAP_XMAX_BITS, HEAP_XMAX_INVALID, HEAP_XMAX_IS_KEYSHR_LOCKED, HEAP_XMAX_IS_LOCKED_ONLY, HEAP_XMAX_IS_MULTI, HEAP_XMAX_KEYSHR_LOCK, HeapSatisfiesHOTandKeyUpdate(), HeapTupleBeingUpdated, HeapTupleClearHeapOnly, HeapTupleClearHotUpdated, HeapTupleGetOid, HeapTupleGetUpdateXid(), HeapTupleHasExternal, HeapTupleHeaderAdjustCmax(), HeapTupleHeaderGetCmax(), HeapTupleHeaderGetRawXmax, HeapTupleHeaderGetUpdateXid, HeapTupleHeaderSetCmax, HeapTupleHeaderSetCmin, HeapTupleHeaderSetXmax, HeapTupleHeaderSetXmin, HeapTupleInvisible, HeapTupleMayBeUpdated, HeapTupleSatisfiesUpdate(), HeapTupleSatisfiesVisibility, HeapTupleSelfUpdated, HeapTupleSetHeapOnly, HeapTupleSetHotUpdated, HeapTupleSetOid, HeapTupleUpdated, InvalidBuffer, InvalidSnapshot, ItemIdGetLength, ItemIdIsNormal, ItemPointerGetBlockNumber, ItemPointerGetOffsetNumber, ItemPointerIsValid, LockBuffer(), LockTupleTuplock, log_heap_update(), MarkBufferDirty(), MAXALIGN, MultiXactIdSetOldestMember(), MultiXactIdWait(), PageClearAllVisible, PageGetHeapFreeSpace(), PageGetItem, PageGetItemId, PageIsAllVisible, PageSetFull, PageSetLSN, PageSetPrunable, pgstat_count_heap_update(), RelationData::rd_rel, ReadBuffer(), RelationGetBufferForTuple(), RelationGetIndexAttrBitmap(), RelationGetRelid, RelationNeedsWAL, RelationPutHeapTuple(), ReleaseBuffer(), RELKIND_MATVIEW, RELKIND_RELATION, START_CRIT_SECTION, HeapTupleHeaderData::t_ctid, HeapTupleData::t_data, HeapTupleHeaderData::t_infomask, HeapTupleHeaderData::t_infomask2, HeapTupleData::t_len, HeapTupleData::t_self, HeapTupleData::t_tableOid, toast_insert_or_update(), TransactionIdDidAbort(), TransactionIdEquals, TransactionIdIsValid, UnlockReleaseBuffer(), UnlockTupleTuplock, UpdateXmaxHintBits(), visibilitymap_clear(), visibilitymap_pin(), XactLockTableWait(), and HeapUpdateFailureData::xmax.
Referenced by ExecUpdate(), and simple_heap_update().
{ HTSU_Result result; TransactionId xid = GetCurrentTransactionId(); Bitmapset *hot_attrs; Bitmapset *key_attrs; ItemId lp; HeapTupleData oldtup; HeapTuple heaptup; Page page; BlockNumber block; MultiXactStatus mxact_status; Buffer buffer, newbuf, vmbuffer = InvalidBuffer, vmbuffer_new = InvalidBuffer; bool need_toast, already_marked; Size newtupsize, pagefree; bool have_tuple_lock = false; bool iscombo; bool satisfies_hot; bool satisfies_key; bool use_hot_update = false; bool key_intact; bool all_visible_cleared = false; bool all_visible_cleared_new = false; bool checked_lockers; bool locker_remains; TransactionId xmax_new_tuple, xmax_old_tuple; uint16 infomask_old_tuple, infomask2_old_tuple, infomask_new_tuple, infomask2_new_tuple; Assert(ItemPointerIsValid(otid)); /* * Fetch the list of attributes to be checked for HOT update. This is * wasted effort if we fail to update or have to put the new tuple on a * different page. But we must compute the list before obtaining buffer * lock --- in the worst case, if we are doing an update on one of the * relevant system catalogs, we could deadlock if we try to fetch the list * later. In any case, the relcache caches the data so this is usually * pretty cheap. * * Note that we get a copy here, so we need not worry about relcache flush * happening midway through. */ hot_attrs = RelationGetIndexAttrBitmap(relation, false); key_attrs = RelationGetIndexAttrBitmap(relation, true); block = ItemPointerGetBlockNumber(otid); buffer = ReadBuffer(relation, block); page = BufferGetPage(buffer); /* * Before locking the buffer, pin the visibility map page if it appears to * be necessary. Since we haven't got the lock yet, someone else might be * in the middle of changing this, so we'll need to recheck after we have * the lock. */ if (PageIsAllVisible(page)) visibilitymap_pin(relation, block, &vmbuffer); LockBuffer(buffer, BUFFER_LOCK_EXCLUSIVE); lp = PageGetItemId(page, ItemPointerGetOffsetNumber(otid)); Assert(ItemIdIsNormal(lp)); /* * Fill in enough data in oldtup for HeapSatisfiesHOTandKeyUpdate to work * properly. */ oldtup.t_tableOid = RelationGetRelid(relation); oldtup.t_data = (HeapTupleHeader) PageGetItem(page, lp); oldtup.t_len = ItemIdGetLength(lp); oldtup.t_self = *otid; /* the new tuple is ready, except for this: */ newtup->t_tableOid = RelationGetRelid(relation); /* Fill in OID for newtup */ if (relation->rd_rel->relhasoids) { #ifdef NOT_USED /* this is redundant with an Assert in HeapTupleSetOid */ Assert(newtup->t_data->t_infomask & HEAP_HASOID); #endif HeapTupleSetOid(newtup, HeapTupleGetOid(&oldtup)); } else { /* check there is not space for an OID */ Assert(!(newtup->t_data->t_infomask & HEAP_HASOID)); } /* * If we're not updating any "key" column, we can grab a weaker lock type. * This allows for more concurrency when we are running simultaneously with * foreign key checks. * * Note that if a column gets detoasted while executing the update, but the * value ends up being the same, this test will fail and we will use the * stronger lock. This is acceptable; the important case to optimize is * updates that don't manipulate key columns, not those that * serendipitiously arrive at the same key values. */ HeapSatisfiesHOTandKeyUpdate(relation, hot_attrs, key_attrs, &satisfies_hot, &satisfies_key, &oldtup, newtup); if (satisfies_key) { *lockmode = LockTupleNoKeyExclusive; mxact_status = MultiXactStatusNoKeyUpdate; key_intact = true; /* * If this is the first possibly-multixact-able operation in the * current transaction, set my per-backend OldestMemberMXactId setting. * We can be certain that the transaction will never become a member of * any older MultiXactIds than that. (We have to do this even if we * end up just using our own TransactionId below, since some other * backend could incorporate our XID into a MultiXact immediately * afterwards.) */ MultiXactIdSetOldestMember(); } else { *lockmode = LockTupleExclusive; mxact_status = MultiXactStatusUpdate; key_intact = false; } /* * Note: beyond this point, use oldtup not otid to refer to old tuple. * otid may very well point at newtup->t_self, which we will overwrite * with the new tuple's location, so there's great risk of confusion if we * use otid anymore. */ l2: checked_lockers = false; locker_remains = false; result = HeapTupleSatisfiesUpdate(oldtup.t_data, cid, buffer); /* see below about the "no wait" case */ Assert(result != HeapTupleBeingUpdated || wait); if (result == HeapTupleInvisible) { UnlockReleaseBuffer(buffer); elog(ERROR, "attempted to update invisible tuple"); } else if (result == HeapTupleBeingUpdated && wait) { TransactionId xwait; uint16 infomask; bool can_continue = false; checked_lockers = true; /* * XXX note that we don't consider the "no wait" case here. This * isn't a problem currently because no caller uses that case, but it * should be fixed if such a caller is introduced. It wasn't a problem * previously because this code would always wait, but now that some * tuple locks do not conflict with one of the lock modes we use, it is * possible that this case is interesting to handle specially. * * This may cause failures with third-party code that calls heap_update * directly. */ /* must copy state data before unlocking buffer */ xwait = HeapTupleHeaderGetRawXmax(oldtup.t_data); infomask = oldtup.t_data->t_infomask; LockBuffer(buffer, BUFFER_LOCK_UNLOCK); /* * Acquire tuple lock to establish our priority for the tuple (see * heap_lock_tuple). LockTuple will release us when we are * next-in-line for the tuple. * * If we are forced to "start over" below, we keep the tuple lock; * this arranges that we stay at the head of the line while rechecking * tuple state. */ if (!have_tuple_lock) { LockTupleTuplock(relation, &(oldtup.t_self), *lockmode); have_tuple_lock = true; } /* * Now we have to do something about the existing locker. If it's a * multi, sleep on it; we might be awakened before it is completely * gone (or even not sleep at all in some cases); we need to preserve * it as locker, unless it is gone completely. * * If it's not a multi, we need to check for sleeping conditions before * actually going to sleep. If the update doesn't conflict with the * locks, we just continue without sleeping (but making sure it is * preserved). */ if (infomask & HEAP_XMAX_IS_MULTI) { TransactionId update_xact; int remain; /* wait for multixact */ MultiXactIdWait((MultiXactId) xwait, mxact_status, &remain, infomask); LockBuffer(buffer, BUFFER_LOCK_EXCLUSIVE); /* * If xwait had just locked the tuple then some other xact could * update this tuple before we get to this point. Check for xmax * change, and start over if so. */ if (!(oldtup.t_data->t_infomask & HEAP_XMAX_IS_MULTI) || !TransactionIdEquals(HeapTupleHeaderGetRawXmax(oldtup.t_data), xwait)) goto l2; /* * Note that the multixact may not be done by now. It could have * surviving members; our own xact or other subxacts of this * backend, and also any other concurrent transaction that locked * the tuple with KeyShare if we only got TupleLockUpdate. If this * is the case, we have to be careful to mark the updated tuple * with the surviving members in Xmax. * * Note that there could have been another update in the MultiXact. * In that case, we need to check whether it committed or aborted. * If it aborted we are safe to update it again; otherwise there is * an update conflict, and we have to return HeapTupleUpdated * below. * * In the LockTupleExclusive case, we still need to preserve the * surviving members: those would include the tuple locks we had * before this one, which are important to keep in case this * subxact aborts. */ update_xact = InvalidTransactionId; if (!HEAP_XMAX_IS_LOCKED_ONLY(oldtup.t_data->t_infomask)) update_xact = HeapTupleGetUpdateXid(oldtup.t_data); /* there was no UPDATE in the MultiXact; or it aborted. */ if (!TransactionIdIsValid(update_xact) || TransactionIdDidAbort(update_xact)) can_continue = true; locker_remains = remain != 0; } else { /* * If it's just a key-share locker, and we're not changing the * key columns, we don't need to wait for it to end; but we * need to preserve it as locker. */ if (HEAP_XMAX_IS_KEYSHR_LOCKED(infomask) && key_intact) { LockBuffer(buffer, BUFFER_LOCK_EXCLUSIVE); /* * recheck the locker; if someone else changed the tuple while we * weren't looking, start over. */ if ((oldtup.t_data->t_infomask & HEAP_XMAX_IS_MULTI) || !TransactionIdEquals(HeapTupleHeaderGetRawXmax(oldtup.t_data), xwait)) goto l2; can_continue = true; locker_remains = true; } else { /* wait for regular transaction to end */ XactLockTableWait(xwait); LockBuffer(buffer, BUFFER_LOCK_EXCLUSIVE); /* * xwait is done, but if xwait had just locked the tuple then some * other xact could update this tuple before we get to this point. * Check for xmax change, and start over if so. */ if ((oldtup.t_data->t_infomask & HEAP_XMAX_IS_MULTI) || !TransactionIdEquals(HeapTupleHeaderGetRawXmax(oldtup.t_data), xwait)) goto l2; /* Otherwise check if it committed or aborted */ UpdateXmaxHintBits(oldtup.t_data, buffer, xwait); if (oldtup.t_data->t_infomask & HEAP_XMAX_INVALID) can_continue = true; } } result = can_continue ? HeapTupleMayBeUpdated : HeapTupleUpdated; } if (crosscheck != InvalidSnapshot && result == HeapTupleMayBeUpdated) { /* Perform additional check for transaction-snapshot mode RI updates */ if (!HeapTupleSatisfiesVisibility(&oldtup, crosscheck, buffer)) result = HeapTupleUpdated; } if (result != HeapTupleMayBeUpdated) { Assert(result == HeapTupleSelfUpdated || result == HeapTupleUpdated || result == HeapTupleBeingUpdated); Assert(!(oldtup.t_data->t_infomask & HEAP_XMAX_INVALID)); hufd->ctid = oldtup.t_data->t_ctid; hufd->xmax = HeapTupleHeaderGetUpdateXid(oldtup.t_data); if (result == HeapTupleSelfUpdated) hufd->cmax = HeapTupleHeaderGetCmax(oldtup.t_data); else hufd->cmax = 0; /* for lack of an InvalidCommandId value */ UnlockReleaseBuffer(buffer); if (have_tuple_lock) UnlockTupleTuplock(relation, &(oldtup.t_self), *lockmode); if (vmbuffer != InvalidBuffer) ReleaseBuffer(vmbuffer); bms_free(hot_attrs); bms_free(key_attrs); return result; } /* * If we didn't pin the visibility map page and the page has become all * visible while we were busy locking the buffer, or during some * subsequent window during which we had it unlocked, we'll have to unlock * and re-lock, to avoid holding the buffer lock across an I/O. That's a * bit unfortunate, especially since we'll now have to recheck whether * the tuple has been locked or updated under us, but hopefully it won't * happen very often. */ if (vmbuffer == InvalidBuffer && PageIsAllVisible(page)) { LockBuffer(buffer, BUFFER_LOCK_UNLOCK); visibilitymap_pin(relation, block, &vmbuffer); LockBuffer(buffer, BUFFER_LOCK_EXCLUSIVE); goto l2; } /* * We're about to do the actual update -- check for conflict first, to * avoid possibly having to roll back work we've just done. */ CheckForSerializableConflictIn(relation, &oldtup, buffer); /* Fill in transaction status data */ /* * If the tuple we're updating is locked, we need to preserve the locking * info in the old tuple's Xmax. Prepare a new Xmax value for this. */ compute_new_xmax_infomask(HeapTupleHeaderGetRawXmax(oldtup.t_data), oldtup.t_data->t_infomask, oldtup.t_data->t_infomask2, xid, *lockmode, true, &xmax_old_tuple, &infomask_old_tuple, &infomask2_old_tuple); /* * And also prepare an Xmax value for the new copy of the tuple. If there * was no xmax previously, or there was one but all lockers are now gone, * then use InvalidXid; otherwise, get the xmax from the old tuple. (In * rare cases that might also be InvalidXid and yet not have the * HEAP_XMAX_INVALID bit set; that's fine.) */ if ((oldtup.t_data->t_infomask & HEAP_XMAX_INVALID) || (checked_lockers && !locker_remains)) xmax_new_tuple = InvalidTransactionId; else xmax_new_tuple = HeapTupleHeaderGetRawXmax(oldtup.t_data); if (!TransactionIdIsValid(xmax_new_tuple)) { infomask_new_tuple = HEAP_XMAX_INVALID; infomask2_new_tuple = 0; } else { /* * If we found a valid Xmax for the new tuple, then the infomask bits * to use on the new tuple depend on what was there on the old one. * Note that since we're doing an update, the only possibility is that * the lockers had FOR KEY SHARE lock. */ if (oldtup.t_data->t_infomask & HEAP_XMAX_IS_MULTI) { GetMultiXactIdHintBits(xmax_new_tuple, &infomask_new_tuple, &infomask2_new_tuple); } else { infomask_new_tuple = HEAP_XMAX_KEYSHR_LOCK | HEAP_XMAX_LOCK_ONLY; infomask2_new_tuple = 0; } } /* * Prepare the new tuple with the appropriate initial values of Xmin and * Xmax, as well as initial infomask bits as computed above. */ newtup->t_data->t_infomask &= ~(HEAP_XACT_MASK); newtup->t_data->t_infomask2 &= ~(HEAP2_XACT_MASK); HeapTupleHeaderSetXmin(newtup->t_data, xid); HeapTupleHeaderSetCmin(newtup->t_data, cid); newtup->t_data->t_infomask |= HEAP_UPDATED | infomask_new_tuple; newtup->t_data->t_infomask2 |= infomask2_new_tuple; HeapTupleHeaderSetXmax(newtup->t_data, xmax_new_tuple); /* * Replace cid with a combo cid if necessary. Note that we already put * the plain cid into the new tuple. */ HeapTupleHeaderAdjustCmax(oldtup.t_data, &cid, &iscombo); /* * If the toaster needs to be activated, OR if the new tuple will not fit * on the same page as the old, then we need to release the content lock * (but not the pin!) on the old tuple's buffer while we are off doing * TOAST and/or table-file-extension work. We must mark the old tuple to * show that it's already being updated, else other processes may try to * update it themselves. * * We need to invoke the toaster if there are already any out-of-line * toasted values present, or if the new tuple is over-threshold. */ if (relation->rd_rel->relkind != RELKIND_RELATION && relation->rd_rel->relkind != RELKIND_MATVIEW) { /* toast table entries should never be recursively toasted */ Assert(!HeapTupleHasExternal(&oldtup)); Assert(!HeapTupleHasExternal(newtup)); need_toast = false; } else need_toast = (HeapTupleHasExternal(&oldtup) || HeapTupleHasExternal(newtup) || newtup->t_len > TOAST_TUPLE_THRESHOLD); pagefree = PageGetHeapFreeSpace(page); newtupsize = MAXALIGN(newtup->t_len); if (need_toast || newtupsize > pagefree) { /* Clear obsolete visibility flags ... */ oldtup.t_data->t_infomask &= ~(HEAP_XMAX_BITS | HEAP_MOVED); oldtup.t_data->t_infomask2 &= ~HEAP_KEYS_UPDATED; HeapTupleClearHotUpdated(&oldtup); /* ... and store info about transaction updating this tuple */ Assert(TransactionIdIsValid(xmax_old_tuple)); HeapTupleHeaderSetXmax(oldtup.t_data, xmax_old_tuple); oldtup.t_data->t_infomask |= infomask_old_tuple; oldtup.t_data->t_infomask2 |= infomask2_old_tuple; HeapTupleHeaderSetCmax(oldtup.t_data, cid, iscombo); /* temporarily make it look not-updated */ oldtup.t_data->t_ctid = oldtup.t_self; already_marked = true; LockBuffer(buffer, BUFFER_LOCK_UNLOCK); /* * Let the toaster do its thing, if needed. * * Note: below this point, heaptup is the data we actually intend to * store into the relation; newtup is the caller's original untoasted * data. */ if (need_toast) { /* Note we always use WAL and FSM during updates */ heaptup = toast_insert_or_update(relation, newtup, &oldtup, 0); newtupsize = MAXALIGN(heaptup->t_len); } else heaptup = newtup; /* * Now, do we need a new page for the tuple, or not? This is a bit * tricky since someone else could have added tuples to the page while * we weren't looking. We have to recheck the available space after * reacquiring the buffer lock. But don't bother to do that if the * former amount of free space is still not enough; it's unlikely * there's more free now than before. * * What's more, if we need to get a new page, we will need to acquire * buffer locks on both old and new pages. To avoid deadlock against * some other backend trying to get the same two locks in the other * order, we must be consistent about the order we get the locks in. * We use the rule "lock the lower-numbered page of the relation * first". To implement this, we must do RelationGetBufferForTuple * while not holding the lock on the old page, and we must rely on it * to get the locks on both pages in the correct order. */ if (newtupsize > pagefree) { /* Assume there's no chance to put heaptup on same page. */ newbuf = RelationGetBufferForTuple(relation, heaptup->t_len, buffer, 0, NULL, &vmbuffer_new, &vmbuffer); } else { /* Re-acquire the lock on the old tuple's page. */ LockBuffer(buffer, BUFFER_LOCK_EXCLUSIVE); /* Re-check using the up-to-date free space */ pagefree = PageGetHeapFreeSpace(page); if (newtupsize > pagefree) { /* * Rats, it doesn't fit anymore. We must now unlock and * relock to avoid deadlock. Fortunately, this path should * seldom be taken. */ LockBuffer(buffer, BUFFER_LOCK_UNLOCK); newbuf = RelationGetBufferForTuple(relation, heaptup->t_len, buffer, 0, NULL, &vmbuffer_new, &vmbuffer); } else { /* OK, it fits here, so we're done. */ newbuf = buffer; } } } else { /* No TOAST work needed, and it'll fit on same page */ already_marked = false; newbuf = buffer; heaptup = newtup; } /* * We're about to create the new tuple -- check for conflict first, to * avoid possibly having to roll back work we've just done. * * NOTE: For a tuple insert, we only need to check for table locks, since * predicate locking at the index level will cover ranges for anything * except a table scan. Therefore, only provide the relation. */ CheckForSerializableConflictIn(relation, NULL, InvalidBuffer); /* * At this point newbuf and buffer are both pinned and locked, and newbuf * has enough space for the new tuple. If they are the same buffer, only * one pin is held. */ if (newbuf == buffer) { /* * Since the new tuple is going into the same page, we might be able * to do a HOT update. Check if any of the index columns have been * changed. If not, then HOT update is possible. */ if (satisfies_hot) use_hot_update = true; } else { /* Set a hint that the old page could use prune/defrag */ PageSetFull(page); } /* NO EREPORT(ERROR) from here till changes are logged */ START_CRIT_SECTION(); /* * If this transaction commits, the old tuple will become DEAD sooner or * later. Set flag that this page is a candidate for pruning once our xid * falls below the OldestXmin horizon. If the transaction finally aborts, * the subsequent page pruning will be a no-op and the hint will be * cleared. * * XXX Should we set hint on newbuf as well? If the transaction aborts, * there would be a prunable tuple in the newbuf; but for now we choose * not to optimize for aborts. Note that heap_xlog_update must be kept in * sync if this decision changes. */ PageSetPrunable(page, xid); if (use_hot_update) { /* Mark the old tuple as HOT-updated */ HeapTupleSetHotUpdated(&oldtup); /* And mark the new tuple as heap-only */ HeapTupleSetHeapOnly(heaptup); /* Mark the caller's copy too, in case different from heaptup */ HeapTupleSetHeapOnly(newtup); } else { /* Make sure tuples are correctly marked as not-HOT */ HeapTupleClearHotUpdated(&oldtup); HeapTupleClearHeapOnly(heaptup); HeapTupleClearHeapOnly(newtup); } RelationPutHeapTuple(relation, newbuf, heaptup); /* insert new tuple */ if (!already_marked) { /* Clear obsolete visibility flags ... */ oldtup.t_data->t_infomask &= ~(HEAP_XMAX_BITS | HEAP_MOVED); oldtup.t_data->t_infomask2 &= ~HEAP_KEYS_UPDATED; /* ... and store info about transaction updating this tuple */ Assert(TransactionIdIsValid(xmax_old_tuple)); HeapTupleHeaderSetXmax(oldtup.t_data, xmax_old_tuple); oldtup.t_data->t_infomask |= infomask_old_tuple; oldtup.t_data->t_infomask2 |= infomask2_old_tuple; HeapTupleHeaderSetCmax(oldtup.t_data, cid, iscombo); } /* record address of new tuple in t_ctid of old one */ oldtup.t_data->t_ctid = heaptup->t_self; /* clear PD_ALL_VISIBLE flags */ if (PageIsAllVisible(BufferGetPage(buffer))) { all_visible_cleared = true; PageClearAllVisible(BufferGetPage(buffer)); visibilitymap_clear(relation, BufferGetBlockNumber(buffer), vmbuffer); } if (newbuf != buffer && PageIsAllVisible(BufferGetPage(newbuf))) { all_visible_cleared_new = true; PageClearAllVisible(BufferGetPage(newbuf)); visibilitymap_clear(relation, BufferGetBlockNumber(newbuf), vmbuffer_new); } if (newbuf != buffer) MarkBufferDirty(newbuf); MarkBufferDirty(buffer); /* XLOG stuff */ if (RelationNeedsWAL(relation)) { XLogRecPtr recptr = log_heap_update(relation, buffer, newbuf, &oldtup, heaptup, all_visible_cleared, all_visible_cleared_new); if (newbuf != buffer) { PageSetLSN(BufferGetPage(newbuf), recptr); } PageSetLSN(BufferGetPage(buffer), recptr); } END_CRIT_SECTION(); if (newbuf != buffer) LockBuffer(newbuf, BUFFER_LOCK_UNLOCK); LockBuffer(buffer, BUFFER_LOCK_UNLOCK); /* * Mark old tuple for invalidation from system caches at next command * boundary, and mark the new tuple for invalidation in case we abort. We * have to do this before releasing the buffer because oldtup is in the * buffer. (heaptup is all in local memory, but it's necessary to process * both tuple versions in one call to inval.c so we can avoid redundant * sinval messages.) */ CacheInvalidateHeapTuple(relation, &oldtup, heaptup); /* Now we can release the buffer(s) */ if (newbuf != buffer) ReleaseBuffer(newbuf); ReleaseBuffer(buffer); if (BufferIsValid(vmbuffer_new)) ReleaseBuffer(vmbuffer_new); if (BufferIsValid(vmbuffer)) ReleaseBuffer(vmbuffer); /* * Release the lmgr tuple lock, if we had it. */ if (have_tuple_lock) UnlockTupleTuplock(relation, &(oldtup.t_self), *lockmode); pgstat_count_heap_update(relation, use_hot_update); /* * If heaptup is a private copy, release it. Don't forget to copy t_self * back to the caller's image, too. */ if (heaptup != newtup) { newtup->t_self = heaptup->t_self; heap_freetuple(heaptup); } bms_free(hot_attrs); bms_free(key_attrs); return HeapTupleMayBeUpdated; }
Definition at line 1159 of file heapam.c.
References Assert, LockInfoData::lockRelId, MAX_LOCKMODES, NoLock, RelationData::rd_lockInfo, RelationClose(), and UnlockRelationId().
Referenced by AlterExtensionNamespace(), AlterObjectNamespace_oid(), AlterSeqNamespaces(), AlterSequence(), AlterTableNamespace(), analyze_rel(), ATController(), ATExecChangeOwner(), ATExecSetTableSpace(), ATPostAlterTypeParse(), ATRewriteCatalogs(), ATSimpleRecursion(), ATTypedTableRecursion(), bt_metap(), bt_page_items(), bt_page_stats(), build_row_from_class(), BuildEventTriggerCache(), calculate_indexes_size(), calculate_toast_table_size(), change_owner_recurse_to_sequences(), check_of_type(), CheckAttributeType(), cluster_rel(), CommentObject(), currval_oid(), dblink_build_sql_delete(), dblink_build_sql_insert(), dblink_build_sql_update(), dblink_get_pkey(), DefineRelation(), DefineVirtualRelation(), do_setval(), ExecAlterExtensionContentsStmt(), ExecSecLabelStmt(), ExecuteTruncate(), expandRelation(), find_composite_type_dependencies(), finish_heap_swap(), get_raw_page_internal(), get_rels_with_domain(), get_tables_to_cluster(), heap_drop_with_catalog(), lastval(), load_typcache_tupdesc(), nextval_internal(), pg_freespace(), pg_indexes_size(), pg_relation_is_scannable(), pg_relation_size(), pg_relpages(), pg_sequence_parameters(), pg_table_size(), pg_total_relation_size(), pgstat_heap(), pgstat_index(), pgstatginindex(), pgstatindex(), pltcl_init_load_unknown(), process_owned_by(), relation_is_updatable(), RelationNameGetTupleDesc(), RemoveAttrDefaultById(), RemoveAttributeById(), rename_constraint_internal(), renameatt_internal(), RenameRelationInternal(), RenameRewriteRule(), renametrig(), ResetSequence(), set_relation_column_names(), transformAlterTableStmt(), transformIndexConstraint(), UpdateRangeTableOfViewParse(), and vacuum_rel().
{ LockRelId relid = relation->rd_lockInfo.lockRelId; Assert(lockmode >= NoLock && lockmode < MAX_LOCKMODES); /* The relcache does the real work... */ RelationClose(relation); if (lockmode != NoLock) UnlockRelationId(&relid, lockmode); }
Definition at line 1013 of file heapam.c.
References Assert, elog, ERROR, LockRelationOid(), MAX_LOCKMODES, MyXactAccessedTempRel, NoLock, pgstat_initstats(), RelationIdGetRelation(), RelationIsValid, and RelationUsesLocalBuffers.
Referenced by AlterObjectNamespace_oid(), AlterSeqNamespaces(), AlterTable(), AlterTableInternal(), AlterTableNamespace(), ATExecChangeOwner(), ATExecSetTableSpace(), ATRewriteCatalogs(), ATSimpleRecursion(), ATTypedTableRecursion(), build_row_from_class(), BuildEventTriggerCache(), calculate_indexes_size(), calculate_toast_table_size(), change_owner_recurse_to_sequences(), check_of_type(), CheckAttributeType(), DefineRelation(), DefineVirtualRelation(), ExecuteTruncate(), expandRelation(), find_composite_type_dependencies(), finish_heap_swap(), get_rels_with_domain(), heap_drop_with_catalog(), heap_open(), index_open(), load_typcache_tupdesc(), open_share_lock(), pg_freespace(), pgstatginindex(), pgstattuplebyid(), relation_openrv(), relation_openrv_extended(), RemoveAttrDefaultById(), RemoveAttributeById(), rename_constraint_internal(), renameatt_internal(), RenameRelationInternal(), RenameRewriteRule(), renametrig(), set_relation_column_names(), and UpdateRangeTableOfViewParse().
{ Relation r; Assert(lockmode >= NoLock && lockmode < MAX_LOCKMODES); /* Get the lock before trying to open the relcache entry */ if (lockmode != NoLock) LockRelationOid(relationId, lockmode); /* The relcache does all the real work... */ r = RelationIdGetRelation(relationId); if (!RelationIsValid(r)) elog(ERROR, "could not open relation with OID %u", relationId); /* Make note that we've accessed a temporary relation */ if (RelationUsesLocalBuffers(r)) MyXactAccessedTempRel = true; pgstat_initstats(r); return r; }
Definition at line 1091 of file heapam.c.
References AcceptInvalidationMessages(), NoLock, RangeVarGetRelid, and relation_open().
Referenced by ATPostAlterTypeParse(), bt_metap(), bt_page_items(), bt_page_stats(), get_object_address_attribute(), get_raw_page_internal(), heap_openrv(), pg_relpages(), pgstatindex(), pgstattuple(), process_owned_by(), RelationNameGetTupleDesc(), and transformTableLikeClause().
{ Oid relOid; /* * Check for shared-cache-inval messages before trying to open the * relation. This is needed even if we already hold a lock on the * relation, because GRANT/REVOKE are executed without taking any lock on * the target relation, and we want to be sure we see current ACL * information. We can skip this if asked for NoLock, on the assumption * that such a call is not the first one in the current command, and so we * should be reasonably up-to-date already. (XXX this all could stand to * be redesigned, but for the moment we'll keep doing this like it's been * done historically.) */ if (lockmode != NoLock) AcceptInvalidationMessages(); /* Look up and lock the appropriate relation using namespace search */ relOid = RangeVarGetRelid(relation, lockmode, false); /* Let relation_open do the rest */ return relation_open(relOid, NoLock); }
Definition at line 1126 of file heapam.c.
References AcceptInvalidationMessages(), NoLock, OidIsValid, RangeVarGetRelid, and relation_open().
Referenced by get_relation_by_qualified_name(), heap_openrv_extended(), pltcl_init_load_unknown(), and transformAlterTableStmt().
{ Oid relOid; /* * Check for shared-cache-inval messages before trying to open the * relation. See comments in relation_openrv(). */ if (lockmode != NoLock) AcceptInvalidationMessages(); /* Look up and lock the appropriate relation using namespace search */ relOid = RangeVarGetRelid(relation, lockmode, missing_ok); /* Return NULL on not-found */ if (!OidIsValid(relOid)) return NULL; /* Let relation_open do the rest */ return relation_open(relOid, NoLock); }
void setLastTid | ( | const ItemPointer | tid | ) |
void simple_heap_delete | ( | Relation | relation, | |
ItemPointer | tid | |||
) |
Definition at line 2842 of file heapam.c.
References elog, ERROR, GetCurrentCommandId(), heap_delete(), HeapTupleMayBeUpdated, HeapTupleSelfUpdated, HeapTupleUpdated, and InvalidSnapshot.
Referenced by AlterSetting(), ATExecAlterColumnType(), ATExecDropInherit(), changeDependencyFor(), CreateComments(), CreateSharedComments(), DeleteAttributeTuples(), DeleteComments(), deleteDependencyRecordsFor(), deleteDependencyRecordsForClass(), deleteOneObject(), DeleteRelationTuple(), DeleteSecurityLabel(), DeleteSharedComments(), DeleteSharedSecurityLabel(), DeleteSystemAttributeTuples(), DelRoleMems(), drop_parent_dependency(), DropCastById(), DropConfigurationMapping(), dropDatabaseDependencies(), dropdb(), DropProceduralLanguageById(), DropRole(), DropSetting(), DropTableSpace(), EnumValuesDelete(), heap_drop_with_catalog(), index_drop(), inv_truncate(), LargeObjectDrop(), MakeConfigurationMapping(), RangeDelete(), RelationRemoveInheritance(), RemoveAmOpEntryById(), RemoveAmProcEntryById(), RemoveAttrDefaultById(), RemoveAttributeById(), RemoveCollationById(), RemoveConstraintById(), RemoveConversionById(), RemoveDefaultACLById(), RemoveEventTriggerById(), RemoveExtensionById(), RemoveForeignDataWrapperById(), RemoveForeignServerById(), RemoveFunctionById(), RemoveOpClassById(), RemoveOperatorById(), RemoveOpFamilyById(), RemoveRewriteRuleById(), RemoveSchemaById(), RemoveStatistics(), RemoveTriggerById(), RemoveTSConfigurationById(), RemoveTSDictionaryById(), RemoveTSParserById(), RemoveTSTemplateById(), RemoveTypeById(), RemoveUserMappingById(), SetSecurityLabel(), SetSharedSecurityLabel(), shdepChangeDep(), shdepDropDependency(), and toast_delete_datum().
{ HTSU_Result result; HeapUpdateFailureData hufd; result = heap_delete(relation, tid, GetCurrentCommandId(true), InvalidSnapshot, true /* wait for commit */, &hufd); switch (result) { case HeapTupleSelfUpdated: /* Tuple was already updated in current command? */ elog(ERROR, "tuple already updated by self"); break; case HeapTupleMayBeUpdated: /* done successfully */ break; case HeapTupleUpdated: elog(ERROR, "tuple concurrently updated"); break; default: elog(ERROR, "unrecognized heap_delete status: %u", result); break; } }
Definition at line 2472 of file heapam.c.
References GetCurrentCommandId(), and heap_insert().
Referenced by AddEnumLabel(), AddRoleMems(), AggregateCreate(), AlterSetting(), CollationCreate(), ConversionCreate(), copyTemplateDependencies(), create_proc_lang(), CreateCast(), CreateComments(), CreateConstraintEntry(), createdb(), CreateForeignDataWrapper(), CreateForeignServer(), CreateForeignTable(), CreateOpFamily(), CreateRole(), CreateSharedComments(), CreateTableSpace(), CreateTrigger(), CreateUserMapping(), DefineOpClass(), DefineTSConfiguration(), DefineTSDictionary(), DefineTSParser(), DefineTSTemplate(), EnumValuesCreate(), fill_seq_with_data(), insert_event_trigger_tuple(), InsertExtensionTuple(), InsertOneTuple(), InsertPgAttributeTuple(), InsertPgClassTuple(), InsertRule(), inv_truncate(), inv_write(), LargeObjectCreate(), MakeConfigurationMapping(), NamespaceCreate(), ProcedureCreate(), RangeCreate(), recordMultipleDependencies(), SetDefaultACL(), SetSecurityLabel(), SetSharedSecurityLabel(), shdepAddDependency(), shdepChangeDep(), StoreAttrDefault(), StoreCatalogInheritance1(), storeOperators(), storeProcedures(), TypeCreate(), TypeShellMake(), update_attstats(), and UpdateIndexRelation().
{ return heap_insert(relation, tup, GetCurrentCommandId(true), 0, NULL); }
void simple_heap_update | ( | Relation | relation, | |
ItemPointer | otid, | |||
HeapTuple | tup | |||
) |
Definition at line 3808 of file heapam.c.
References elog, ERROR, GetCurrentCommandId(), heap_update(), HeapTupleMayBeUpdated, HeapTupleSelfUpdated, HeapTupleUpdated, and InvalidSnapshot.
Referenced by AddRoleMems(), AlterConstraintNamespaces(), AlterDatabase(), AlterDatabaseOwner(), AlterDomainDefault(), AlterDomainNotNull(), AlterDomainValidateConstraint(), AlterEventTrigger(), AlterEventTriggerOwner_internal(), AlterExtensionNamespace(), AlterForeignDataWrapper(), AlterForeignDataWrapperOwner_internal(), AlterForeignServer(), AlterForeignServerOwner_internal(), AlterFunction(), AlterObjectNamespace_internal(), AlterObjectOwner_internal(), AlterObjectRename_internal(), AlterRelationNamespaceInternal(), AlterRole(), AlterSchemaOwner_internal(), AlterSetting(), AlterTableSpaceOptions(), AlterTSDictionary(), AlterTypeNamespaceInternal(), AlterTypeOwner(), AlterTypeOwnerInternal(), AlterUserMapping(), ApplyExtensionUpdates(), ATExecAddColumn(), ATExecAddOf(), ATExecAlterColumnGenericOptions(), ATExecAlterColumnType(), ATExecChangeOwner(), ATExecDropColumn(), ATExecDropConstraint(), ATExecDropInherit(), ATExecDropNotNull(), ATExecDropOf(), ATExecGenericOptions(), ATExecSetNotNull(), ATExecSetOptions(), ATExecSetRelOptions(), ATExecSetStatistics(), ATExecSetStorage(), ATExecSetTableSpace(), ATExecValidateConstraint(), change_owner_fix_column_acls(), changeDependencyFor(), create_proc_lang(), create_toast_table(), CreateComments(), CreateSharedComments(), CreateTrigger(), DefineQueryRewrite(), DelRoleMems(), EnableDisableRule(), EnableDisableTrigger(), ExecGrant_Attribute(), ExecGrant_Database(), ExecGrant_Fdw(), ExecGrant_ForeignServer(), ExecGrant_Function(), ExecGrant_Language(), ExecGrant_Largeobject(), ExecGrant_Namespace(), ExecGrant_Relation(), ExecGrant_Tablespace(), ExecGrant_Type(), extension_config_remove(), index_build(), index_constraint_create(), InsertRule(), inv_truncate(), inv_write(), MakeConfigurationMapping(), mark_index_clustered(), MergeAttributesIntoExisting(), MergeConstraintsIntoExisting(), MergeWithExistingConstraint(), movedb(), OperatorCreate(), OperatorUpd(), pg_extension_config_dump(), ProcedureCreate(), reindex_index(), RelationSetNewRelfilenode(), RemoveAttrDefaultById(), RemoveAttributeById(), RemoveConstraintById(), renameatt_internal(), RenameConstraintById(), RenameDatabase(), RenameRelationInternal(), RenameRewriteRule(), RenameRole(), RenameSchema(), RenameTableSpace(), renametrig(), RenameTypeInternal(), RenumberEnumType(), SetDefaultACL(), SetFunctionArgType(), SetFunctionReturnType(), SetRelationHasSubclass(), SetRelationNumChecks(), SetRelationRuleStatus(), SetSecurityLabel(), SetSharedSecurityLabel(), shdepChangeDep(), StoreAttrDefault(), swap_relation_files(), TypeCreate(), and update_attstats().
{ HTSU_Result result; HeapUpdateFailureData hufd; LockTupleMode lockmode; result = heap_update(relation, otid, tup, GetCurrentCommandId(true), InvalidSnapshot, true /* wait for commit */, &hufd, &lockmode); switch (result) { case HeapTupleSelfUpdated: /* Tuple was already updated in current command? */ elog(ERROR, "tuple already updated by self"); break; case HeapTupleMayBeUpdated: /* done successfully */ break; case HeapTupleUpdated: elog(ERROR, "tuple concurrently updated"); break; default: elog(ERROR, "unrecognized heap_update status: %u", result); break; } }
BlockNumber ss_get_location | ( | Relation | rel, | |
BlockNumber | relnblocks | |||
) |
Definition at line 250 of file syncscan.c.
References elog, LOG, LW_EXCLUSIVE, LWLockAcquire(), LWLockRelease(), RelationData::rd_node, RelationGetRelationName, ss_search(), and SyncScanLock.
Referenced by initscan().
{ BlockNumber startloc; LWLockAcquire(SyncScanLock, LW_EXCLUSIVE); startloc = ss_search(rel->rd_node, 0, false); LWLockRelease(SyncScanLock); /* * If the location is not a valid block number for this scan, start at 0. * * This can happen if for instance a VACUUM truncated the table since the * location was saved. */ if (startloc >= relnblocks) startloc = 0; #ifdef TRACE_SYNCSCAN if (trace_syncscan) elog(LOG, "SYNC_SCAN: start \"%s\" (size %u) at %u", RelationGetRelationName(rel), relnblocks, startloc); #endif return startloc; }
void ss_report_location | ( | Relation | rel, | |
BlockNumber | location | |||
) |
Definition at line 285 of file syncscan.c.
References elog, LOG, LW_EXCLUSIVE, LWLockConditionalAcquire(), LWLockRelease(), RelationData::rd_node, RelationGetRelationName, ss_search(), SYNC_SCAN_REPORT_INTERVAL, and SyncScanLock.
Referenced by heapgettup(), and heapgettup_pagemode().
{ #ifdef TRACE_SYNCSCAN if (trace_syncscan) { if ((location % 1024) == 0) elog(LOG, "SYNC_SCAN: scanning \"%s\" at %u", RelationGetRelationName(rel), location); } #endif /* * To reduce lock contention, only report scan progress every N pages. For * the same reason, don't block if the lock isn't immediately available. * Missing a few updates isn't critical, it just means that a new scan * that wants to join the pack will start a little bit behind the head of * the scan. Hopefully the pages are still in OS cache and the scan * catches up quickly. */ if ((location % SYNC_SCAN_REPORT_INTERVAL) == 0) { if (LWLockConditionalAcquire(SyncScanLock, LW_EXCLUSIVE)) { (void) ss_search(rel->rd_node, location, true); LWLockRelease(SyncScanLock); } #ifdef TRACE_SYNCSCAN else if (trace_syncscan) elog(LOG, "SYNC_SCAN: missed update for \"%s\" at %u", RelationGetRelationName(rel), location); #endif } }
void SyncScanShmemInit | ( | void | ) |
Definition at line 132 of file syncscan.c.
References Assert, RelFileNode::dbNode, ss_scan_locations_t::head, i, IsUnderPostmaster, ss_scan_locations_t::items, ss_scan_location_t::location, ss_lru_item_t::location, ss_lru_item_t::next, ss_lru_item_t::prev, ss_scan_location_t::relfilenode, RelFileNode::relNode, ShmemInitStruct(), SizeOfScanLocations, RelFileNode::spcNode, SYNC_SCAN_NELEM, and ss_scan_locations_t::tail.
Referenced by CreateSharedMemoryAndSemaphores().
{ int i; bool found; scan_locations = (ss_scan_locations_t *) ShmemInitStruct("Sync Scan Locations List", SizeOfScanLocations(SYNC_SCAN_NELEM), &found); if (!IsUnderPostmaster) { /* Initialize shared memory area */ Assert(!found); scan_locations->head = &scan_locations->items[0]; scan_locations->tail = &scan_locations->items[SYNC_SCAN_NELEM - 1]; for (i = 0; i < SYNC_SCAN_NELEM; i++) { ss_lru_item_t *item = &scan_locations->items[i]; /* * Initialize all slots with invalid values. As scans are started, * these invalid entries will fall off the LRU list and get * replaced with real entries. */ item->location.relfilenode.spcNode = InvalidOid; item->location.relfilenode.dbNode = InvalidOid; item->location.relfilenode.relNode = InvalidOid; item->location.location = InvalidBlockNumber; item->prev = (i > 0) ? (&scan_locations->items[i - 1]) : NULL; item->next = (i < SYNC_SCAN_NELEM - 1) ? (&scan_locations->items[i + 1]) : NULL; } } else Assert(found); }
Size SyncScanShmemSize | ( | void | ) |
Definition at line 123 of file syncscan.c.
References SizeOfScanLocations, and SYNC_SCAN_NELEM.
Referenced by CreateSharedMemoryAndSemaphores().
{ return SizeOfScanLocations(SYNC_SCAN_NELEM); }
Definition at line 1046 of file heapam.c.
References Assert, elog, ERROR, LockRelationOid(), MAX_LOCKMODES, MyXactAccessedTempRel, NoLock, ObjectIdGetDatum, pgstat_initstats(), RelationIdGetRelation(), RelationIsValid, RelationUsesLocalBuffers, RELOID, SearchSysCacheExists1, and UnlockRelationOid().
Referenced by analyze_rel(), cluster_rel(), pg_indexes_size(), pg_relation_is_scannable(), pg_relation_size(), pg_table_size(), pg_total_relation_size(), relation_is_updatable(), and vacuum_rel().
{ Relation r; Assert(lockmode >= NoLock && lockmode < MAX_LOCKMODES); /* Get the lock first */ if (lockmode != NoLock) LockRelationOid(relationId, lockmode); /* * Now that we have the lock, probe to see if the relation really exists * or not. */ if (!SearchSysCacheExists1(RELOID, ObjectIdGetDatum(relationId))) { /* Release useless lock */ if (lockmode != NoLock) UnlockRelationOid(relationId, lockmode); return NULL; } /* Should be safe to do a relcache load */ r = RelationIdGetRelation(relationId); if (!RelationIsValid(r)) elog(ERROR, "could not open relation with OID %u", relationId); /* Make note that we've accessed a temporary relation */ if (RelationUsesLocalBuffers(r)) MyXactAccessedTempRel = true; pgstat_initstats(r); return r; }