![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > dfabsmax | GIF version |
Description: Absolute value of a real number in terms of maximum. Definition 3.13 of [Geuvers], p. 11. (Contributed by BJ and Jim Kingdon, 21-Dec-2021.) |
Ref | Expression |
---|---|
dfabsmax | ⊢ (𝐴 ∈ ℝ → (abs‘𝐴) = sup({𝐴, -𝐴}, ℝ, < )) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | id 19 | . . . 4 ⊢ (𝐴 ∈ ℝ → 𝐴 ∈ ℝ) | |
2 | renegcl 7369 | . . . . 5 ⊢ (𝐴 ∈ ℝ → -𝐴 ∈ ℝ) | |
3 | maxcl 10096 | . . . . 5 ⊢ ((𝐴 ∈ ℝ ∧ -𝐴 ∈ ℝ) → sup({𝐴, -𝐴}, ℝ, < ) ∈ ℝ) | |
4 | 2, 3 | mpdan 412 | . . . 4 ⊢ (𝐴 ∈ ℝ → sup({𝐴, -𝐴}, ℝ, < ) ∈ ℝ) |
5 | maxle2 10098 | . . . . 5 ⊢ ((𝐴 ∈ ℝ ∧ -𝐴 ∈ ℝ) → -𝐴 ≤ sup({𝐴, -𝐴}, ℝ, < )) | |
6 | 2, 5 | mpdan 412 | . . . 4 ⊢ (𝐴 ∈ ℝ → -𝐴 ≤ sup({𝐴, -𝐴}, ℝ, < )) |
7 | 1, 4, 6 | lenegcon1d 7627 | . . 3 ⊢ (𝐴 ∈ ℝ → -sup({𝐴, -𝐴}, ℝ, < ) ≤ 𝐴) |
8 | maxle1 10097 | . . . 4 ⊢ ((𝐴 ∈ ℝ ∧ -𝐴 ∈ ℝ) → 𝐴 ≤ sup({𝐴, -𝐴}, ℝ, < )) | |
9 | 2, 8 | mpdan 412 | . . 3 ⊢ (𝐴 ∈ ℝ → 𝐴 ≤ sup({𝐴, -𝐴}, ℝ, < )) |
10 | absle 9975 | . . . 4 ⊢ ((𝐴 ∈ ℝ ∧ sup({𝐴, -𝐴}, ℝ, < ) ∈ ℝ) → ((abs‘𝐴) ≤ sup({𝐴, -𝐴}, ℝ, < ) ↔ (-sup({𝐴, -𝐴}, ℝ, < ) ≤ 𝐴 ∧ 𝐴 ≤ sup({𝐴, -𝐴}, ℝ, < )))) | |
11 | 4, 10 | mpdan 412 | . . 3 ⊢ (𝐴 ∈ ℝ → ((abs‘𝐴) ≤ sup({𝐴, -𝐴}, ℝ, < ) ↔ (-sup({𝐴, -𝐴}, ℝ, < ) ≤ 𝐴 ∧ 𝐴 ≤ sup({𝐴, -𝐴}, ℝ, < )))) |
12 | 7, 9, 11 | mpbir2and 885 | . 2 ⊢ (𝐴 ∈ ℝ → (abs‘𝐴) ≤ sup({𝐴, -𝐴}, ℝ, < )) |
13 | recn 7106 | . . . 4 ⊢ (𝐴 ∈ ℝ → 𝐴 ∈ ℂ) | |
14 | 13 | abscld 10067 | . . 3 ⊢ (𝐴 ∈ ℝ → (abs‘𝐴) ∈ ℝ) |
15 | leabs 9960 | . . 3 ⊢ (𝐴 ∈ ℝ → 𝐴 ≤ (abs‘𝐴)) | |
16 | 2 | leabsd 10047 | . . . 4 ⊢ (𝐴 ∈ ℝ → -𝐴 ≤ (abs‘-𝐴)) |
17 | 13 | absnegd 10075 | . . . 4 ⊢ (𝐴 ∈ ℝ → (abs‘-𝐴) = (abs‘𝐴)) |
18 | 16, 17 | breqtrd 3809 | . . 3 ⊢ (𝐴 ∈ ℝ → -𝐴 ≤ (abs‘𝐴)) |
19 | maxleast 10099 | . . 3 ⊢ (((𝐴 ∈ ℝ ∧ -𝐴 ∈ ℝ ∧ (abs‘𝐴) ∈ ℝ) ∧ (𝐴 ≤ (abs‘𝐴) ∧ -𝐴 ≤ (abs‘𝐴))) → sup({𝐴, -𝐴}, ℝ, < ) ≤ (abs‘𝐴)) | |
20 | 1, 2, 14, 15, 18, 19 | syl32anc 1177 | . 2 ⊢ (𝐴 ∈ ℝ → sup({𝐴, -𝐴}, ℝ, < ) ≤ (abs‘𝐴)) |
21 | 14, 4 | letri3d 7226 | . 2 ⊢ (𝐴 ∈ ℝ → ((abs‘𝐴) = sup({𝐴, -𝐴}, ℝ, < ) ↔ ((abs‘𝐴) ≤ sup({𝐴, -𝐴}, ℝ, < ) ∧ sup({𝐴, -𝐴}, ℝ, < ) ≤ (abs‘𝐴)))) |
22 | 12, 20, 21 | mpbir2and 885 | 1 ⊢ (𝐴 ∈ ℝ → (abs‘𝐴) = sup({𝐴, -𝐴}, ℝ, < )) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 102 ↔ wb 103 = wceq 1284 ∈ wcel 1433 {cpr 3399 class class class wbr 3785 ‘cfv 4922 supcsup 6395 ℝcr 6980 < clt 7153 ≤ cle 7154 -cneg 7280 abscabs 9883 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-in1 576 ax-in2 577 ax-io 662 ax-5 1376 ax-7 1377 ax-gen 1378 ax-ie1 1422 ax-ie2 1423 ax-8 1435 ax-10 1436 ax-11 1437 ax-i12 1438 ax-bndl 1439 ax-4 1440 ax-13 1444 ax-14 1445 ax-17 1459 ax-i9 1463 ax-ial 1467 ax-i5r 1468 ax-ext 2063 ax-coll 3893 ax-sep 3896 ax-nul 3904 ax-pow 3948 ax-pr 3964 ax-un 4188 ax-setind 4280 ax-iinf 4329 ax-cnex 7067 ax-resscn 7068 ax-1cn 7069 ax-1re 7070 ax-icn 7071 ax-addcl 7072 ax-addrcl 7073 ax-mulcl 7074 ax-mulrcl 7075 ax-addcom 7076 ax-mulcom 7077 ax-addass 7078 ax-mulass 7079 ax-distr 7080 ax-i2m1 7081 ax-0lt1 7082 ax-1rid 7083 ax-0id 7084 ax-rnegex 7085 ax-precex 7086 ax-cnre 7087 ax-pre-ltirr 7088 ax-pre-ltwlin 7089 ax-pre-lttrn 7090 ax-pre-apti 7091 ax-pre-ltadd 7092 ax-pre-mulgt0 7093 ax-pre-mulext 7094 ax-arch 7095 ax-caucvg 7096 |
This theorem depends on definitions: df-bi 115 df-dc 776 df-3or 920 df-3an 921 df-tru 1287 df-fal 1290 df-nf 1390 df-sb 1686 df-eu 1944 df-mo 1945 df-clab 2068 df-cleq 2074 df-clel 2077 df-nfc 2208 df-ne 2246 df-nel 2340 df-ral 2353 df-rex 2354 df-reu 2355 df-rmo 2356 df-rab 2357 df-v 2603 df-sbc 2816 df-csb 2909 df-dif 2975 df-un 2977 df-in 2979 df-ss 2986 df-nul 3252 df-if 3352 df-pw 3384 df-sn 3404 df-pr 3405 df-op 3407 df-uni 3602 df-int 3637 df-iun 3680 df-br 3786 df-opab 3840 df-mpt 3841 df-tr 3876 df-id 4048 df-po 4051 df-iso 4052 df-iord 4121 df-on 4123 df-suc 4126 df-iom 4332 df-xp 4369 df-rel 4370 df-cnv 4371 df-co 4372 df-dm 4373 df-rn 4374 df-res 4375 df-ima 4376 df-iota 4887 df-fun 4924 df-fn 4925 df-f 4926 df-f1 4927 df-fo 4928 df-f1o 4929 df-fv 4930 df-riota 5488 df-ov 5535 df-oprab 5536 df-mpt2 5537 df-1st 5787 df-2nd 5788 df-recs 5943 df-frec 6001 df-sup 6397 df-pnf 7155 df-mnf 7156 df-xr 7157 df-ltxr 7158 df-le 7159 df-sub 7281 df-neg 7282 df-reap 7675 df-ap 7682 df-div 7761 df-inn 8040 df-2 8098 df-3 8099 df-4 8100 df-n0 8289 df-z 8352 df-uz 8620 df-rp 8735 df-iseq 9432 df-iexp 9476 df-cj 9729 df-re 9730 df-im 9731 df-rsqrt 9884 df-abs 9885 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |