ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  expclzaplem GIF version

Theorem expclzaplem 9500
Description: Closure law for integer exponentiation. Lemma for expclzap 9501 and expap0i 9508. (Contributed by Jim Kingdon, 9-Jun-2020.)
Assertion
Ref Expression
expclzaplem ((𝐴 ∈ ℂ ∧ 𝐴 # 0 ∧ 𝑁 ∈ ℤ) → (𝐴𝑁) ∈ {𝑧 ∈ ℂ ∣ 𝑧 # 0})
Distinct variable groups:   𝑧,𝐴   𝑧,𝑁

Proof of Theorem expclzaplem
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 breq1 3788 . . . . 5 (𝑧 = 𝐴 → (𝑧 # 0 ↔ 𝐴 # 0))
21elrab 2749 . . . 4 (𝐴 ∈ {𝑧 ∈ ℂ ∣ 𝑧 # 0} ↔ (𝐴 ∈ ℂ ∧ 𝐴 # 0))
3 ssrab2 3079 . . . . . 6 {𝑧 ∈ ℂ ∣ 𝑧 # 0} ⊆ ℂ
4 breq1 3788 . . . . . . . 8 (𝑧 = 𝑥 → (𝑧 # 0 ↔ 𝑥 # 0))
54elrab 2749 . . . . . . 7 (𝑥 ∈ {𝑧 ∈ ℂ ∣ 𝑧 # 0} ↔ (𝑥 ∈ ℂ ∧ 𝑥 # 0))
6 breq1 3788 . . . . . . . 8 (𝑧 = 𝑦 → (𝑧 # 0 ↔ 𝑦 # 0))
76elrab 2749 . . . . . . 7 (𝑦 ∈ {𝑧 ∈ ℂ ∣ 𝑧 # 0} ↔ (𝑦 ∈ ℂ ∧ 𝑦 # 0))
8 mulcl 7100 . . . . . . . . 9 ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ) → (𝑥 · 𝑦) ∈ ℂ)
98ad2ant2r 492 . . . . . . . 8 (((𝑥 ∈ ℂ ∧ 𝑥 # 0) ∧ (𝑦 ∈ ℂ ∧ 𝑦 # 0)) → (𝑥 · 𝑦) ∈ ℂ)
10 mulap0 7744 . . . . . . . 8 (((𝑥 ∈ ℂ ∧ 𝑥 # 0) ∧ (𝑦 ∈ ℂ ∧ 𝑦 # 0)) → (𝑥 · 𝑦) # 0)
11 breq1 3788 . . . . . . . . 9 (𝑧 = (𝑥 · 𝑦) → (𝑧 # 0 ↔ (𝑥 · 𝑦) # 0))
1211elrab 2749 . . . . . . . 8 ((𝑥 · 𝑦) ∈ {𝑧 ∈ ℂ ∣ 𝑧 # 0} ↔ ((𝑥 · 𝑦) ∈ ℂ ∧ (𝑥 · 𝑦) # 0))
139, 10, 12sylanbrc 408 . . . . . . 7 (((𝑥 ∈ ℂ ∧ 𝑥 # 0) ∧ (𝑦 ∈ ℂ ∧ 𝑦 # 0)) → (𝑥 · 𝑦) ∈ {𝑧 ∈ ℂ ∣ 𝑧 # 0})
145, 7, 13syl2anb 285 . . . . . 6 ((𝑥 ∈ {𝑧 ∈ ℂ ∣ 𝑧 # 0} ∧ 𝑦 ∈ {𝑧 ∈ ℂ ∣ 𝑧 # 0}) → (𝑥 · 𝑦) ∈ {𝑧 ∈ ℂ ∣ 𝑧 # 0})
15 ax-1cn 7069 . . . . . . 7 1 ∈ ℂ
16 1ap0 7690 . . . . . . 7 1 # 0
17 breq1 3788 . . . . . . . 8 (𝑧 = 1 → (𝑧 # 0 ↔ 1 # 0))
1817elrab 2749 . . . . . . 7 (1 ∈ {𝑧 ∈ ℂ ∣ 𝑧 # 0} ↔ (1 ∈ ℂ ∧ 1 # 0))
1915, 16, 18mpbir2an 883 . . . . . 6 1 ∈ {𝑧 ∈ ℂ ∣ 𝑧 # 0}
20 recclap 7767 . . . . . . . . 9 ((𝑥 ∈ ℂ ∧ 𝑥 # 0) → (1 / 𝑥) ∈ ℂ)
21 recap0 7773 . . . . . . . . 9 ((𝑥 ∈ ℂ ∧ 𝑥 # 0) → (1 / 𝑥) # 0)
2220, 21jca 300 . . . . . . . 8 ((𝑥 ∈ ℂ ∧ 𝑥 # 0) → ((1 / 𝑥) ∈ ℂ ∧ (1 / 𝑥) # 0))
23 breq1 3788 . . . . . . . . 9 (𝑧 = (1 / 𝑥) → (𝑧 # 0 ↔ (1 / 𝑥) # 0))
2423elrab 2749 . . . . . . . 8 ((1 / 𝑥) ∈ {𝑧 ∈ ℂ ∣ 𝑧 # 0} ↔ ((1 / 𝑥) ∈ ℂ ∧ (1 / 𝑥) # 0))
2522, 5, 243imtr4i 199 . . . . . . 7 (𝑥 ∈ {𝑧 ∈ ℂ ∣ 𝑧 # 0} → (1 / 𝑥) ∈ {𝑧 ∈ ℂ ∣ 𝑧 # 0})
2625adantr 270 . . . . . 6 ((𝑥 ∈ {𝑧 ∈ ℂ ∣ 𝑧 # 0} ∧ 𝑥 # 0) → (1 / 𝑥) ∈ {𝑧 ∈ ℂ ∣ 𝑧 # 0})
273, 14, 19, 26expcl2lemap 9488 . . . . 5 ((𝐴 ∈ {𝑧 ∈ ℂ ∣ 𝑧 # 0} ∧ 𝐴 # 0 ∧ 𝑁 ∈ ℤ) → (𝐴𝑁) ∈ {𝑧 ∈ ℂ ∣ 𝑧 # 0})
28273expia 1140 . . . 4 ((𝐴 ∈ {𝑧 ∈ ℂ ∣ 𝑧 # 0} ∧ 𝐴 # 0) → (𝑁 ∈ ℤ → (𝐴𝑁) ∈ {𝑧 ∈ ℂ ∣ 𝑧 # 0}))
292, 28sylanbr 279 . . 3 (((𝐴 ∈ ℂ ∧ 𝐴 # 0) ∧ 𝐴 # 0) → (𝑁 ∈ ℤ → (𝐴𝑁) ∈ {𝑧 ∈ ℂ ∣ 𝑧 # 0}))
3029anabss3 549 . 2 ((𝐴 ∈ ℂ ∧ 𝐴 # 0) → (𝑁 ∈ ℤ → (𝐴𝑁) ∈ {𝑧 ∈ ℂ ∣ 𝑧 # 0}))
31303impia 1135 1 ((𝐴 ∈ ℂ ∧ 𝐴 # 0 ∧ 𝑁 ∈ ℤ) → (𝐴𝑁) ∈ {𝑧 ∈ ℂ ∣ 𝑧 # 0})
Colors of variables: wff set class
Syntax hints:  wi 4  wa 102  w3a 919  wcel 1433  {crab 2352   class class class wbr 3785  (class class class)co 5532  cc 6979  0cc0 6981  1c1 6982   · cmul 6986   # cap 7681   / cdiv 7760  cz 8351  cexp 9475
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 576  ax-in2 577  ax-io 662  ax-5 1376  ax-7 1377  ax-gen 1378  ax-ie1 1422  ax-ie2 1423  ax-8 1435  ax-10 1436  ax-11 1437  ax-i12 1438  ax-bndl 1439  ax-4 1440  ax-13 1444  ax-14 1445  ax-17 1459  ax-i9 1463  ax-ial 1467  ax-i5r 1468  ax-ext 2063  ax-coll 3893  ax-sep 3896  ax-nul 3904  ax-pow 3948  ax-pr 3964  ax-un 4188  ax-setind 4280  ax-iinf 4329  ax-cnex 7067  ax-resscn 7068  ax-1cn 7069  ax-1re 7070  ax-icn 7071  ax-addcl 7072  ax-addrcl 7073  ax-mulcl 7074  ax-mulrcl 7075  ax-addcom 7076  ax-mulcom 7077  ax-addass 7078  ax-mulass 7079  ax-distr 7080  ax-i2m1 7081  ax-0lt1 7082  ax-1rid 7083  ax-0id 7084  ax-rnegex 7085  ax-precex 7086  ax-cnre 7087  ax-pre-ltirr 7088  ax-pre-ltwlin 7089  ax-pre-lttrn 7090  ax-pre-apti 7091  ax-pre-ltadd 7092  ax-pre-mulgt0 7093  ax-pre-mulext 7094
This theorem depends on definitions:  df-bi 115  df-dc 776  df-3or 920  df-3an 921  df-tru 1287  df-fal 1290  df-nf 1390  df-sb 1686  df-eu 1944  df-mo 1945  df-clab 2068  df-cleq 2074  df-clel 2077  df-nfc 2208  df-ne 2246  df-nel 2340  df-ral 2353  df-rex 2354  df-reu 2355  df-rmo 2356  df-rab 2357  df-v 2603  df-sbc 2816  df-csb 2909  df-dif 2975  df-un 2977  df-in 2979  df-ss 2986  df-nul 3252  df-if 3352  df-pw 3384  df-sn 3404  df-pr 3405  df-op 3407  df-uni 3602  df-int 3637  df-iun 3680  df-br 3786  df-opab 3840  df-mpt 3841  df-tr 3876  df-id 4048  df-po 4051  df-iso 4052  df-iord 4121  df-on 4123  df-suc 4126  df-iom 4332  df-xp 4369  df-rel 4370  df-cnv 4371  df-co 4372  df-dm 4373  df-rn 4374  df-res 4375  df-ima 4376  df-iota 4887  df-fun 4924  df-fn 4925  df-f 4926  df-f1 4927  df-fo 4928  df-f1o 4929  df-fv 4930  df-riota 5488  df-ov 5535  df-oprab 5536  df-mpt2 5537  df-1st 5787  df-2nd 5788  df-recs 5943  df-frec 6001  df-pnf 7155  df-mnf 7156  df-xr 7157  df-ltxr 7158  df-le 7159  df-sub 7281  df-neg 7282  df-reap 7675  df-ap 7682  df-div 7761  df-inn 8040  df-n0 8289  df-z 8352  df-uz 8620  df-iseq 9432  df-iexp 9476
This theorem is referenced by:  expclzap  9501  expap0i  9508
  Copyright terms: Public domain W3C validator