ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  max0addsup GIF version

Theorem max0addsup 10105
Description: The sum of the positive and negative part functions is the absolute value function over the reals. (Contributed by Jim Kingdon, 30-Jan-2022.)
Assertion
Ref Expression
max0addsup (𝐴 ∈ ℝ → (sup({𝐴, 0}, ℝ, < ) + sup({-𝐴, 0}, ℝ, < )) = (abs‘𝐴))

Proof of Theorem max0addsup
StepHypRef Expression
1 0re 7119 . . . . . 6 0 ∈ ℝ
2 maxabs 10095 . . . . . 6 ((𝐴 ∈ ℝ ∧ 0 ∈ ℝ) → sup({𝐴, 0}, ℝ, < ) = (((𝐴 + 0) + (abs‘(𝐴 − 0))) / 2))
31, 2mpan2 415 . . . . 5 (𝐴 ∈ ℝ → sup({𝐴, 0}, ℝ, < ) = (((𝐴 + 0) + (abs‘(𝐴 − 0))) / 2))
4 recn 7106 . . . . . . . 8 (𝐴 ∈ ℝ → 𝐴 ∈ ℂ)
54addid1d 7257 . . . . . . 7 (𝐴 ∈ ℝ → (𝐴 + 0) = 𝐴)
64subid1d 7408 . . . . . . . 8 (𝐴 ∈ ℝ → (𝐴 − 0) = 𝐴)
76fveq2d 5202 . . . . . . 7 (𝐴 ∈ ℝ → (abs‘(𝐴 − 0)) = (abs‘𝐴))
85, 7oveq12d 5550 . . . . . 6 (𝐴 ∈ ℝ → ((𝐴 + 0) + (abs‘(𝐴 − 0))) = (𝐴 + (abs‘𝐴)))
98oveq1d 5547 . . . . 5 (𝐴 ∈ ℝ → (((𝐴 + 0) + (abs‘(𝐴 − 0))) / 2) = ((𝐴 + (abs‘𝐴)) / 2))
103, 9eqtrd 2113 . . . 4 (𝐴 ∈ ℝ → sup({𝐴, 0}, ℝ, < ) = ((𝐴 + (abs‘𝐴)) / 2))
11 renegcl 7369 . . . . . 6 (𝐴 ∈ ℝ → -𝐴 ∈ ℝ)
12 maxabs 10095 . . . . . 6 ((-𝐴 ∈ ℝ ∧ 0 ∈ ℝ) → sup({-𝐴, 0}, ℝ, < ) = (((-𝐴 + 0) + (abs‘(-𝐴 − 0))) / 2))
1311, 1, 12sylancl 404 . . . . 5 (𝐴 ∈ ℝ → sup({-𝐴, 0}, ℝ, < ) = (((-𝐴 + 0) + (abs‘(-𝐴 − 0))) / 2))
1411recnd 7147 . . . . . . . 8 (𝐴 ∈ ℝ → -𝐴 ∈ ℂ)
1514addid1d 7257 . . . . . . 7 (𝐴 ∈ ℝ → (-𝐴 + 0) = -𝐴)
1614subid1d 7408 . . . . . . . . 9 (𝐴 ∈ ℝ → (-𝐴 − 0) = -𝐴)
1716fveq2d 5202 . . . . . . . 8 (𝐴 ∈ ℝ → (abs‘(-𝐴 − 0)) = (abs‘-𝐴))
184absnegd 10075 . . . . . . . 8 (𝐴 ∈ ℝ → (abs‘-𝐴) = (abs‘𝐴))
1917, 18eqtrd 2113 . . . . . . 7 (𝐴 ∈ ℝ → (abs‘(-𝐴 − 0)) = (abs‘𝐴))
2015, 19oveq12d 5550 . . . . . 6 (𝐴 ∈ ℝ → ((-𝐴 + 0) + (abs‘(-𝐴 − 0))) = (-𝐴 + (abs‘𝐴)))
2120oveq1d 5547 . . . . 5 (𝐴 ∈ ℝ → (((-𝐴 + 0) + (abs‘(-𝐴 − 0))) / 2) = ((-𝐴 + (abs‘𝐴)) / 2))
2213, 21eqtrd 2113 . . . 4 (𝐴 ∈ ℝ → sup({-𝐴, 0}, ℝ, < ) = ((-𝐴 + (abs‘𝐴)) / 2))
2310, 22oveq12d 5550 . . 3 (𝐴 ∈ ℝ → (sup({𝐴, 0}, ℝ, < ) + sup({-𝐴, 0}, ℝ, < )) = (((𝐴 + (abs‘𝐴)) / 2) + ((-𝐴 + (abs‘𝐴)) / 2)))
244abscld 10067 . . . . . 6 (𝐴 ∈ ℝ → (abs‘𝐴) ∈ ℝ)
2524recnd 7147 . . . . 5 (𝐴 ∈ ℝ → (abs‘𝐴) ∈ ℂ)
264, 25addcld 7138 . . . 4 (𝐴 ∈ ℝ → (𝐴 + (abs‘𝐴)) ∈ ℂ)
2714, 25addcld 7138 . . . 4 (𝐴 ∈ ℝ → (-𝐴 + (abs‘𝐴)) ∈ ℂ)
28 2cnd 8112 . . . 4 (𝐴 ∈ ℝ → 2 ∈ ℂ)
29 2ap0 8132 . . . . 5 2 # 0
3029a1i 9 . . . 4 (𝐴 ∈ ℝ → 2 # 0)
3126, 27, 28, 30divdirapd 7915 . . 3 (𝐴 ∈ ℝ → (((𝐴 + (abs‘𝐴)) + (-𝐴 + (abs‘𝐴))) / 2) = (((𝐴 + (abs‘𝐴)) / 2) + ((-𝐴 + (abs‘𝐴)) / 2)))
324, 25, 14, 25add4d 7277 . . . . 5 (𝐴 ∈ ℝ → ((𝐴 + (abs‘𝐴)) + (-𝐴 + (abs‘𝐴))) = ((𝐴 + -𝐴) + ((abs‘𝐴) + (abs‘𝐴))))
334negidd 7409 . . . . . 6 (𝐴 ∈ ℝ → (𝐴 + -𝐴) = 0)
3433oveq1d 5547 . . . . 5 (𝐴 ∈ ℝ → ((𝐴 + -𝐴) + ((abs‘𝐴) + (abs‘𝐴))) = (0 + ((abs‘𝐴) + (abs‘𝐴))))
3525, 25addcld 7138 . . . . . 6 (𝐴 ∈ ℝ → ((abs‘𝐴) + (abs‘𝐴)) ∈ ℂ)
3635addid2d 7258 . . . . 5 (𝐴 ∈ ℝ → (0 + ((abs‘𝐴) + (abs‘𝐴))) = ((abs‘𝐴) + (abs‘𝐴)))
3732, 34, 363eqtrd 2117 . . . 4 (𝐴 ∈ ℝ → ((𝐴 + (abs‘𝐴)) + (-𝐴 + (abs‘𝐴))) = ((abs‘𝐴) + (abs‘𝐴)))
3837oveq1d 5547 . . 3 (𝐴 ∈ ℝ → (((𝐴 + (abs‘𝐴)) + (-𝐴 + (abs‘𝐴))) / 2) = (((abs‘𝐴) + (abs‘𝐴)) / 2))
3923, 31, 383eqtr2d 2119 . 2 (𝐴 ∈ ℝ → (sup({𝐴, 0}, ℝ, < ) + sup({-𝐴, 0}, ℝ, < )) = (((abs‘𝐴) + (abs‘𝐴)) / 2))
40252timesd 8273 . . 3 (𝐴 ∈ ℝ → (2 · (abs‘𝐴)) = ((abs‘𝐴) + (abs‘𝐴)))
4140oveq1d 5547 . 2 (𝐴 ∈ ℝ → ((2 · (abs‘𝐴)) / 2) = (((abs‘𝐴) + (abs‘𝐴)) / 2))
4225, 28, 30divcanap3d 7882 . 2 (𝐴 ∈ ℝ → ((2 · (abs‘𝐴)) / 2) = (abs‘𝐴))
4339, 41, 423eqtr2d 2119 1 (𝐴 ∈ ℝ → (sup({𝐴, 0}, ℝ, < ) + sup({-𝐴, 0}, ℝ, < )) = (abs‘𝐴))
Colors of variables: wff set class
Syntax hints:  wi 4   = wceq 1284  wcel 1433  {cpr 3399   class class class wbr 3785  cfv 4922  (class class class)co 5532  supcsup 6395  cr 6980  0cc0 6981   + caddc 6984   · cmul 6986   < clt 7153  cmin 7279  -cneg 7280   # cap 7681   / cdiv 7760  2c2 8089  abscabs 9883
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 576  ax-in2 577  ax-io 662  ax-5 1376  ax-7 1377  ax-gen 1378  ax-ie1 1422  ax-ie2 1423  ax-8 1435  ax-10 1436  ax-11 1437  ax-i12 1438  ax-bndl 1439  ax-4 1440  ax-13 1444  ax-14 1445  ax-17 1459  ax-i9 1463  ax-ial 1467  ax-i5r 1468  ax-ext 2063  ax-coll 3893  ax-sep 3896  ax-nul 3904  ax-pow 3948  ax-pr 3964  ax-un 4188  ax-setind 4280  ax-iinf 4329  ax-cnex 7067  ax-resscn 7068  ax-1cn 7069  ax-1re 7070  ax-icn 7071  ax-addcl 7072  ax-addrcl 7073  ax-mulcl 7074  ax-mulrcl 7075  ax-addcom 7076  ax-mulcom 7077  ax-addass 7078  ax-mulass 7079  ax-distr 7080  ax-i2m1 7081  ax-0lt1 7082  ax-1rid 7083  ax-0id 7084  ax-rnegex 7085  ax-precex 7086  ax-cnre 7087  ax-pre-ltirr 7088  ax-pre-ltwlin 7089  ax-pre-lttrn 7090  ax-pre-apti 7091  ax-pre-ltadd 7092  ax-pre-mulgt0 7093  ax-pre-mulext 7094  ax-arch 7095  ax-caucvg 7096
This theorem depends on definitions:  df-bi 115  df-dc 776  df-3or 920  df-3an 921  df-tru 1287  df-fal 1290  df-nf 1390  df-sb 1686  df-eu 1944  df-mo 1945  df-clab 2068  df-cleq 2074  df-clel 2077  df-nfc 2208  df-ne 2246  df-nel 2340  df-ral 2353  df-rex 2354  df-reu 2355  df-rmo 2356  df-rab 2357  df-v 2603  df-sbc 2816  df-csb 2909  df-dif 2975  df-un 2977  df-in 2979  df-ss 2986  df-nul 3252  df-if 3352  df-pw 3384  df-sn 3404  df-pr 3405  df-op 3407  df-uni 3602  df-int 3637  df-iun 3680  df-br 3786  df-opab 3840  df-mpt 3841  df-tr 3876  df-id 4048  df-po 4051  df-iso 4052  df-iord 4121  df-on 4123  df-suc 4126  df-iom 4332  df-xp 4369  df-rel 4370  df-cnv 4371  df-co 4372  df-dm 4373  df-rn 4374  df-res 4375  df-ima 4376  df-iota 4887  df-fun 4924  df-fn 4925  df-f 4926  df-f1 4927  df-fo 4928  df-f1o 4929  df-fv 4930  df-riota 5488  df-ov 5535  df-oprab 5536  df-mpt2 5537  df-1st 5787  df-2nd 5788  df-recs 5943  df-frec 6001  df-sup 6397  df-pnf 7155  df-mnf 7156  df-xr 7157  df-ltxr 7158  df-le 7159  df-sub 7281  df-neg 7282  df-reap 7675  df-ap 7682  df-div 7761  df-inn 8040  df-2 8098  df-3 8099  df-4 8100  df-n0 8289  df-z 8352  df-uz 8620  df-rp 8735  df-iseq 9432  df-iexp 9476  df-cj 9729  df-re 9730  df-im 9731  df-rsqrt 9884  df-abs 9885
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator