ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  sqrt2irrlem GIF version

Theorem sqrt2irrlem 10540
Description: Lemma for sqrt2irr 10541. This is the core of the proof: - if 𝐴 / 𝐵 = √(2), then 𝐴 and 𝐵 are even, so 𝐴 / 2 and 𝐵 / 2 are smaller representatives, which is absurd by the method of infinite descent (here implemented by strong induction). (Contributed by NM, 20-Aug-2001.) (Revised by Mario Carneiro, 12-Sep-2015.)
Hypotheses
Ref Expression
sqrt2irrlem.1 (𝜑𝐴 ∈ ℤ)
sqrt2irrlem.2 (𝜑𝐵 ∈ ℕ)
sqrt2irrlem.3 (𝜑 → (√‘2) = (𝐴 / 𝐵))
Assertion
Ref Expression
sqrt2irrlem (𝜑 → ((𝐴 / 2) ∈ ℤ ∧ (𝐵 / 2) ∈ ℕ))

Proof of Theorem sqrt2irrlem
StepHypRef Expression
1 2re 8109 . . . . . . . . . . . 12 2 ∈ ℝ
2 0le2 8129 . . . . . . . . . . . 12 0 ≤ 2
3 resqrtth 9917 . . . . . . . . . . . 12 ((2 ∈ ℝ ∧ 0 ≤ 2) → ((√‘2)↑2) = 2)
41, 2, 3mp2an 416 . . . . . . . . . . 11 ((√‘2)↑2) = 2
5 sqrt2irrlem.3 . . . . . . . . . . . 12 (𝜑 → (√‘2) = (𝐴 / 𝐵))
65oveq1d 5547 . . . . . . . . . . 11 (𝜑 → ((√‘2)↑2) = ((𝐴 / 𝐵)↑2))
74, 6syl5eqr 2127 . . . . . . . . . 10 (𝜑 → 2 = ((𝐴 / 𝐵)↑2))
8 sqrt2irrlem.1 . . . . . . . . . . . 12 (𝜑𝐴 ∈ ℤ)
98zcnd 8470 . . . . . . . . . . 11 (𝜑𝐴 ∈ ℂ)
10 sqrt2irrlem.2 . . . . . . . . . . . 12 (𝜑𝐵 ∈ ℕ)
1110nncnd 8053 . . . . . . . . . . 11 (𝜑𝐵 ∈ ℂ)
1210nnap0d 8084 . . . . . . . . . . 11 (𝜑𝐵 # 0)
139, 11, 12sqdivapd 9618 . . . . . . . . . 10 (𝜑 → ((𝐴 / 𝐵)↑2) = ((𝐴↑2) / (𝐵↑2)))
147, 13eqtrd 2113 . . . . . . . . 9 (𝜑 → 2 = ((𝐴↑2) / (𝐵↑2)))
1514oveq1d 5547 . . . . . . . 8 (𝜑 → (2 · (𝐵↑2)) = (((𝐴↑2) / (𝐵↑2)) · (𝐵↑2)))
169sqcld 9603 . . . . . . . . 9 (𝜑 → (𝐴↑2) ∈ ℂ)
1710nnsqcld 9626 . . . . . . . . . 10 (𝜑 → (𝐵↑2) ∈ ℕ)
1817nncnd 8053 . . . . . . . . 9 (𝜑 → (𝐵↑2) ∈ ℂ)
1917nnap0d 8084 . . . . . . . . 9 (𝜑 → (𝐵↑2) # 0)
2016, 18, 19divcanap1d 7878 . . . . . . . 8 (𝜑 → (((𝐴↑2) / (𝐵↑2)) · (𝐵↑2)) = (𝐴↑2))
2115, 20eqtrd 2113 . . . . . . 7 (𝜑 → (2 · (𝐵↑2)) = (𝐴↑2))
2221oveq1d 5547 . . . . . 6 (𝜑 → ((2 · (𝐵↑2)) / 2) = ((𝐴↑2) / 2))
23 2cnd 8112 . . . . . . 7 (𝜑 → 2 ∈ ℂ)
24 2ap0 8132 . . . . . . . 8 2 # 0
2524a1i 9 . . . . . . 7 (𝜑 → 2 # 0)
2618, 23, 25divcanap3d 7882 . . . . . 6 (𝜑 → ((2 · (𝐵↑2)) / 2) = (𝐵↑2))
2722, 26eqtr3d 2115 . . . . 5 (𝜑 → ((𝐴↑2) / 2) = (𝐵↑2))
2827, 17eqeltrd 2155 . . . 4 (𝜑 → ((𝐴↑2) / 2) ∈ ℕ)
2928nnzd 8468 . . 3 (𝜑 → ((𝐴↑2) / 2) ∈ ℤ)
30 zesq 9591 . . . 4 (𝐴 ∈ ℤ → ((𝐴 / 2) ∈ ℤ ↔ ((𝐴↑2) / 2) ∈ ℤ))
318, 30syl 14 . . 3 (𝜑 → ((𝐴 / 2) ∈ ℤ ↔ ((𝐴↑2) / 2) ∈ ℤ))
3229, 31mpbird 165 . 2 (𝜑 → (𝐴 / 2) ∈ ℤ)
33 2cn 8110 . . . . . . . . 9 2 ∈ ℂ
3433sqvali 9555 . . . . . . . 8 (2↑2) = (2 · 2)
3534oveq2i 5543 . . . . . . 7 ((𝐴↑2) / (2↑2)) = ((𝐴↑2) / (2 · 2))
369, 23, 25sqdivapd 9618 . . . . . . 7 (𝜑 → ((𝐴 / 2)↑2) = ((𝐴↑2) / (2↑2)))
3716, 23, 23, 25, 25divdivap1d 7908 . . . . . . 7 (𝜑 → (((𝐴↑2) / 2) / 2) = ((𝐴↑2) / (2 · 2)))
3835, 36, 373eqtr4a 2139 . . . . . 6 (𝜑 → ((𝐴 / 2)↑2) = (((𝐴↑2) / 2) / 2))
3927oveq1d 5547 . . . . . 6 (𝜑 → (((𝐴↑2) / 2) / 2) = ((𝐵↑2) / 2))
4038, 39eqtrd 2113 . . . . 5 (𝜑 → ((𝐴 / 2)↑2) = ((𝐵↑2) / 2))
41 zsqcl 9546 . . . . . 6 ((𝐴 / 2) ∈ ℤ → ((𝐴 / 2)↑2) ∈ ℤ)
4232, 41syl 14 . . . . 5 (𝜑 → ((𝐴 / 2)↑2) ∈ ℤ)
4340, 42eqeltrrd 2156 . . . 4 (𝜑 → ((𝐵↑2) / 2) ∈ ℤ)
4417nnrpd 8772 . . . . . 6 (𝜑 → (𝐵↑2) ∈ ℝ+)
4544rphalfcld 8786 . . . . 5 (𝜑 → ((𝐵↑2) / 2) ∈ ℝ+)
4645rpgt0d 8776 . . . 4 (𝜑 → 0 < ((𝐵↑2) / 2))
47 elnnz 8361 . . . 4 (((𝐵↑2) / 2) ∈ ℕ ↔ (((𝐵↑2) / 2) ∈ ℤ ∧ 0 < ((𝐵↑2) / 2)))
4843, 46, 47sylanbrc 408 . . 3 (𝜑 → ((𝐵↑2) / 2) ∈ ℕ)
49 nnesq 9592 . . . 4 (𝐵 ∈ ℕ → ((𝐵 / 2) ∈ ℕ ↔ ((𝐵↑2) / 2) ∈ ℕ))
5010, 49syl 14 . . 3 (𝜑 → ((𝐵 / 2) ∈ ℕ ↔ ((𝐵↑2) / 2) ∈ ℕ))
5148, 50mpbird 165 . 2 (𝜑 → (𝐵 / 2) ∈ ℕ)
5232, 51jca 300 1 (𝜑 → ((𝐴 / 2) ∈ ℤ ∧ (𝐵 / 2) ∈ ℕ))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 102  wb 103   = wceq 1284  wcel 1433   class class class wbr 3785  cfv 4922  (class class class)co 5532  cr 6980  0cc0 6981   · cmul 6986   < clt 7153  cle 7154   # cap 7681   / cdiv 7760  cn 8039  2c2 8089  cz 8351  cexp 9475  csqrt 9882
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 576  ax-in2 577  ax-io 662  ax-5 1376  ax-7 1377  ax-gen 1378  ax-ie1 1422  ax-ie2 1423  ax-8 1435  ax-10 1436  ax-11 1437  ax-i12 1438  ax-bndl 1439  ax-4 1440  ax-13 1444  ax-14 1445  ax-17 1459  ax-i9 1463  ax-ial 1467  ax-i5r 1468  ax-ext 2063  ax-coll 3893  ax-sep 3896  ax-nul 3904  ax-pow 3948  ax-pr 3964  ax-un 4188  ax-setind 4280  ax-iinf 4329  ax-cnex 7067  ax-resscn 7068  ax-1cn 7069  ax-1re 7070  ax-icn 7071  ax-addcl 7072  ax-addrcl 7073  ax-mulcl 7074  ax-mulrcl 7075  ax-addcom 7076  ax-mulcom 7077  ax-addass 7078  ax-mulass 7079  ax-distr 7080  ax-i2m1 7081  ax-0lt1 7082  ax-1rid 7083  ax-0id 7084  ax-rnegex 7085  ax-precex 7086  ax-cnre 7087  ax-pre-ltirr 7088  ax-pre-ltwlin 7089  ax-pre-lttrn 7090  ax-pre-apti 7091  ax-pre-ltadd 7092  ax-pre-mulgt0 7093  ax-pre-mulext 7094  ax-arch 7095  ax-caucvg 7096
This theorem depends on definitions:  df-bi 115  df-dc 776  df-3or 920  df-3an 921  df-tru 1287  df-fal 1290  df-nf 1390  df-sb 1686  df-eu 1944  df-mo 1945  df-clab 2068  df-cleq 2074  df-clel 2077  df-nfc 2208  df-ne 2246  df-nel 2340  df-ral 2353  df-rex 2354  df-reu 2355  df-rmo 2356  df-rab 2357  df-v 2603  df-sbc 2816  df-csb 2909  df-dif 2975  df-un 2977  df-in 2979  df-ss 2986  df-nul 3252  df-if 3352  df-pw 3384  df-sn 3404  df-pr 3405  df-op 3407  df-uni 3602  df-int 3637  df-iun 3680  df-br 3786  df-opab 3840  df-mpt 3841  df-tr 3876  df-id 4048  df-po 4051  df-iso 4052  df-iord 4121  df-on 4123  df-suc 4126  df-iom 4332  df-xp 4369  df-rel 4370  df-cnv 4371  df-co 4372  df-dm 4373  df-rn 4374  df-res 4375  df-ima 4376  df-iota 4887  df-fun 4924  df-fn 4925  df-f 4926  df-f1 4927  df-fo 4928  df-f1o 4929  df-fv 4930  df-riota 5488  df-ov 5535  df-oprab 5536  df-mpt2 5537  df-1st 5787  df-2nd 5788  df-recs 5943  df-frec 6001  df-pnf 7155  df-mnf 7156  df-xr 7157  df-ltxr 7158  df-le 7159  df-sub 7281  df-neg 7282  df-reap 7675  df-ap 7682  df-div 7761  df-inn 8040  df-2 8098  df-3 8099  df-4 8100  df-n0 8289  df-z 8352  df-uz 8620  df-rp 8735  df-iseq 9432  df-iexp 9476  df-rsqrt 9884
This theorem is referenced by:  sqrt2irr  10541
  Copyright terms: Public domain W3C validator