Proof of Theorem sqrt2irrlem
Step | Hyp | Ref
| Expression |
1 | | 2re 8109 |
. . . . . . . . . . . 12
⊢ 2 ∈
ℝ |
2 | | 0le2 8129 |
. . . . . . . . . . . 12
⊢ 0 ≤
2 |
3 | | resqrtth 9917 |
. . . . . . . . . . . 12
⊢ ((2
∈ ℝ ∧ 0 ≤ 2) → ((√‘2)↑2) =
2) |
4 | 1, 2, 3 | mp2an 416 |
. . . . . . . . . . 11
⊢
((√‘2)↑2) = 2 |
5 | | sqrt2irrlem.3 |
. . . . . . . . . . . 12
⊢ (𝜑 → (√‘2) = (𝐴 / 𝐵)) |
6 | 5 | oveq1d 5547 |
. . . . . . . . . . 11
⊢ (𝜑 → ((√‘2)↑2)
= ((𝐴 / 𝐵)↑2)) |
7 | 4, 6 | syl5eqr 2127 |
. . . . . . . . . 10
⊢ (𝜑 → 2 = ((𝐴 / 𝐵)↑2)) |
8 | | sqrt2irrlem.1 |
. . . . . . . . . . . 12
⊢ (𝜑 → 𝐴 ∈ ℤ) |
9 | 8 | zcnd 8470 |
. . . . . . . . . . 11
⊢ (𝜑 → 𝐴 ∈ ℂ) |
10 | | sqrt2irrlem.2 |
. . . . . . . . . . . 12
⊢ (𝜑 → 𝐵 ∈ ℕ) |
11 | 10 | nncnd 8053 |
. . . . . . . . . . 11
⊢ (𝜑 → 𝐵 ∈ ℂ) |
12 | 10 | nnap0d 8084 |
. . . . . . . . . . 11
⊢ (𝜑 → 𝐵 # 0) |
13 | 9, 11, 12 | sqdivapd 9618 |
. . . . . . . . . 10
⊢ (𝜑 → ((𝐴 / 𝐵)↑2) = ((𝐴↑2) / (𝐵↑2))) |
14 | 7, 13 | eqtrd 2113 |
. . . . . . . . 9
⊢ (𝜑 → 2 = ((𝐴↑2) / (𝐵↑2))) |
15 | 14 | oveq1d 5547 |
. . . . . . . 8
⊢ (𝜑 → (2 · (𝐵↑2)) = (((𝐴↑2) / (𝐵↑2)) · (𝐵↑2))) |
16 | 9 | sqcld 9603 |
. . . . . . . . 9
⊢ (𝜑 → (𝐴↑2) ∈ ℂ) |
17 | 10 | nnsqcld 9626 |
. . . . . . . . . 10
⊢ (𝜑 → (𝐵↑2) ∈ ℕ) |
18 | 17 | nncnd 8053 |
. . . . . . . . 9
⊢ (𝜑 → (𝐵↑2) ∈ ℂ) |
19 | 17 | nnap0d 8084 |
. . . . . . . . 9
⊢ (𝜑 → (𝐵↑2) # 0) |
20 | 16, 18, 19 | divcanap1d 7878 |
. . . . . . . 8
⊢ (𝜑 → (((𝐴↑2) / (𝐵↑2)) · (𝐵↑2)) = (𝐴↑2)) |
21 | 15, 20 | eqtrd 2113 |
. . . . . . 7
⊢ (𝜑 → (2 · (𝐵↑2)) = (𝐴↑2)) |
22 | 21 | oveq1d 5547 |
. . . . . 6
⊢ (𝜑 → ((2 · (𝐵↑2)) / 2) = ((𝐴↑2) / 2)) |
23 | | 2cnd 8112 |
. . . . . . 7
⊢ (𝜑 → 2 ∈
ℂ) |
24 | | 2ap0 8132 |
. . . . . . . 8
⊢ 2 #
0 |
25 | 24 | a1i 9 |
. . . . . . 7
⊢ (𝜑 → 2 # 0) |
26 | 18, 23, 25 | divcanap3d 7882 |
. . . . . 6
⊢ (𝜑 → ((2 · (𝐵↑2)) / 2) = (𝐵↑2)) |
27 | 22, 26 | eqtr3d 2115 |
. . . . 5
⊢ (𝜑 → ((𝐴↑2) / 2) = (𝐵↑2)) |
28 | 27, 17 | eqeltrd 2155 |
. . . 4
⊢ (𝜑 → ((𝐴↑2) / 2) ∈
ℕ) |
29 | 28 | nnzd 8468 |
. . 3
⊢ (𝜑 → ((𝐴↑2) / 2) ∈
ℤ) |
30 | | zesq 9591 |
. . . 4
⊢ (𝐴 ∈ ℤ → ((𝐴 / 2) ∈ ℤ ↔
((𝐴↑2) / 2) ∈
ℤ)) |
31 | 8, 30 | syl 14 |
. . 3
⊢ (𝜑 → ((𝐴 / 2) ∈ ℤ ↔ ((𝐴↑2) / 2) ∈
ℤ)) |
32 | 29, 31 | mpbird 165 |
. 2
⊢ (𝜑 → (𝐴 / 2) ∈ ℤ) |
33 | | 2cn 8110 |
. . . . . . . . 9
⊢ 2 ∈
ℂ |
34 | 33 | sqvali 9555 |
. . . . . . . 8
⊢
(2↑2) = (2 · 2) |
35 | 34 | oveq2i 5543 |
. . . . . . 7
⊢ ((𝐴↑2) / (2↑2)) = ((𝐴↑2) / (2 ·
2)) |
36 | 9, 23, 25 | sqdivapd 9618 |
. . . . . . 7
⊢ (𝜑 → ((𝐴 / 2)↑2) = ((𝐴↑2) / (2↑2))) |
37 | 16, 23, 23, 25, 25 | divdivap1d 7908 |
. . . . . . 7
⊢ (𝜑 → (((𝐴↑2) / 2) / 2) = ((𝐴↑2) / (2 · 2))) |
38 | 35, 36, 37 | 3eqtr4a 2139 |
. . . . . 6
⊢ (𝜑 → ((𝐴 / 2)↑2) = (((𝐴↑2) / 2) / 2)) |
39 | 27 | oveq1d 5547 |
. . . . . 6
⊢ (𝜑 → (((𝐴↑2) / 2) / 2) = ((𝐵↑2) / 2)) |
40 | 38, 39 | eqtrd 2113 |
. . . . 5
⊢ (𝜑 → ((𝐴 / 2)↑2) = ((𝐵↑2) / 2)) |
41 | | zsqcl 9546 |
. . . . . 6
⊢ ((𝐴 / 2) ∈ ℤ →
((𝐴 / 2)↑2) ∈
ℤ) |
42 | 32, 41 | syl 14 |
. . . . 5
⊢ (𝜑 → ((𝐴 / 2)↑2) ∈
ℤ) |
43 | 40, 42 | eqeltrrd 2156 |
. . . 4
⊢ (𝜑 → ((𝐵↑2) / 2) ∈
ℤ) |
44 | 17 | nnrpd 8772 |
. . . . . 6
⊢ (𝜑 → (𝐵↑2) ∈
ℝ+) |
45 | 44 | rphalfcld 8786 |
. . . . 5
⊢ (𝜑 → ((𝐵↑2) / 2) ∈
ℝ+) |
46 | 45 | rpgt0d 8776 |
. . . 4
⊢ (𝜑 → 0 < ((𝐵↑2) / 2)) |
47 | | elnnz 8361 |
. . . 4
⊢ (((𝐵↑2) / 2) ∈ ℕ
↔ (((𝐵↑2) / 2)
∈ ℤ ∧ 0 < ((𝐵↑2) / 2))) |
48 | 43, 46, 47 | sylanbrc 408 |
. . 3
⊢ (𝜑 → ((𝐵↑2) / 2) ∈
ℕ) |
49 | | nnesq 9592 |
. . . 4
⊢ (𝐵 ∈ ℕ → ((𝐵 / 2) ∈ ℕ ↔
((𝐵↑2) / 2) ∈
ℕ)) |
50 | 10, 49 | syl 14 |
. . 3
⊢ (𝜑 → ((𝐵 / 2) ∈ ℕ ↔ ((𝐵↑2) / 2) ∈
ℕ)) |
51 | 48, 50 | mpbird 165 |
. 2
⊢ (𝜑 → (𝐵 / 2) ∈ ℕ) |
52 | 32, 51 | jca 300 |
1
⊢ (𝜑 → ((𝐴 / 2) ∈ ℤ ∧ (𝐵 / 2) ∈
ℕ)) |