MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ac5num Structured version   Visualization version   Unicode version

Theorem ac5num 8859
Description: A version of ac5b 9300 with the choice as a hypothesis. (Contributed by Mario Carneiro, 27-Aug-2015.)
Assertion
Ref Expression
ac5num  |-  ( ( U. A  e.  dom  card  /\  -.  (/)  e.  A )  ->  E. f ( f : A --> U. A  /\  A. x  e.  A  ( f `  x
)  e.  x ) )
Distinct variable group:    x, f, A

Proof of Theorem ac5num
Dummy variables  g 
r  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 uniexr 6972 . . . 4  |-  ( U. A  e.  dom  card  ->  A  e.  _V )
2 dfac8b 8854 . . . 4  |-  ( U. A  e.  dom  card  ->  E. r  r  We  U. A )
3 dfac8c 8856 . . . 4  |-  ( A  e.  _V  ->  ( E. r  r  We  U. A  ->  E. g A. x  e.  A  ( x  =/=  (/)  ->  (
g `  x )  e.  x ) ) )
41, 2, 3sylc 65 . . 3  |-  ( U. A  e.  dom  card  ->  E. g A. x  e.  A  ( x  =/=  (/)  ->  ( g `  x )  e.  x
) )
54adantr 481 . 2  |-  ( ( U. A  e.  dom  card  /\  -.  (/)  e.  A )  ->  E. g A. x  e.  A  ( x  =/=  (/)  ->  ( g `  x )  e.  x
) )
6 nelne2 2891 . . . . . . . . . . . 12  |-  ( ( x  e.  A  /\  -.  (/)  e.  A )  ->  x  =/=  (/) )
76ancoms 469 . . . . . . . . . . 11  |-  ( ( -.  (/)  e.  A  /\  x  e.  A )  ->  x  =/=  (/) )
87adantll 750 . . . . . . . . . 10  |-  ( ( ( U. A  e. 
dom  card  /\  -.  (/)  e.  A
)  /\  x  e.  A )  ->  x  =/=  (/) )
9 pm2.27 42 . . . . . . . . . 10  |-  ( x  =/=  (/)  ->  ( (
x  =/=  (/)  ->  (
g `  x )  e.  x )  ->  (
g `  x )  e.  x ) )
108, 9syl 17 . . . . . . . . 9  |-  ( ( ( U. A  e. 
dom  card  /\  -.  (/)  e.  A
)  /\  x  e.  A )  ->  (
( x  =/=  (/)  ->  (
g `  x )  e.  x )  ->  (
g `  x )  e.  x ) )
1110ralimdva 2962 . . . . . . . 8  |-  ( ( U. A  e.  dom  card  /\  -.  (/)  e.  A )  ->  ( A. x  e.  A  ( x  =/=  (/)  ->  ( g `  x )  e.  x
)  ->  A. x  e.  A  ( g `  x )  e.  x
) )
1211imp 445 . . . . . . 7  |-  ( ( ( U. A  e. 
dom  card  /\  -.  (/)  e.  A
)  /\  A. x  e.  A  ( x  =/=  (/)  ->  ( g `  x )  e.  x
) )  ->  A. x  e.  A  ( g `  x )  e.  x
)
13 fveq2 6191 . . . . . . . . 9  |-  ( x  =  y  ->  (
g `  x )  =  ( g `  y ) )
14 id 22 . . . . . . . . 9  |-  ( x  =  y  ->  x  =  y )
1513, 14eleq12d 2695 . . . . . . . 8  |-  ( x  =  y  ->  (
( g `  x
)  e.  x  <->  ( g `  y )  e.  y ) )
1615rspccva 3308 . . . . . . 7  |-  ( ( A. x  e.  A  ( g `  x
)  e.  x  /\  y  e.  A )  ->  ( g `  y
)  e.  y )
1712, 16sylan 488 . . . . . 6  |-  ( ( ( ( U. A  e.  dom  card  /\  -.  (/)  e.  A
)  /\  A. x  e.  A  ( x  =/=  (/)  ->  ( g `  x )  e.  x
) )  /\  y  e.  A )  ->  (
g `  y )  e.  y )
18 elunii 4441 . . . . . 6  |-  ( ( ( g `  y
)  e.  y  /\  y  e.  A )  ->  ( g `  y
)  e.  U. A
)
1917, 18sylancom 701 . . . . 5  |-  ( ( ( ( U. A  e.  dom  card  /\  -.  (/)  e.  A
)  /\  A. x  e.  A  ( x  =/=  (/)  ->  ( g `  x )  e.  x
) )  /\  y  e.  A )  ->  (
g `  y )  e.  U. A )
20 eqid 2622 . . . . 5  |-  ( y  e.  A  |->  ( g `
 y ) )  =  ( y  e.  A  |->  ( g `  y ) )
2119, 20fmptd 6385 . . . 4  |-  ( ( ( U. A  e. 
dom  card  /\  -.  (/)  e.  A
)  /\  A. x  e.  A  ( x  =/=  (/)  ->  ( g `  x )  e.  x
) )  ->  (
y  e.  A  |->  ( g `  y ) ) : A --> U. A
)
221ad2antrr 762 . . . 4  |-  ( ( ( U. A  e. 
dom  card  /\  -.  (/)  e.  A
)  /\  A. x  e.  A  ( x  =/=  (/)  ->  ( g `  x )  e.  x
) )  ->  A  e.  _V )
23 elex 3212 . . . . 5  |-  ( U. A  e.  dom  card  ->  U. A  e.  _V )
2423ad2antrr 762 . . . 4  |-  ( ( ( U. A  e. 
dom  card  /\  -.  (/)  e.  A
)  /\  A. x  e.  A  ( x  =/=  (/)  ->  ( g `  x )  e.  x
) )  ->  U. A  e.  _V )
25 fex2 7121 . . . 4  |-  ( ( ( y  e.  A  |->  ( g `  y
) ) : A --> U. A  /\  A  e. 
_V  /\  U. A  e. 
_V )  ->  (
y  e.  A  |->  ( g `  y ) )  e.  _V )
2621, 22, 24, 25syl3anc 1326 . . 3  |-  ( ( ( U. A  e. 
dom  card  /\  -.  (/)  e.  A
)  /\  A. x  e.  A  ( x  =/=  (/)  ->  ( g `  x )  e.  x
) )  ->  (
y  e.  A  |->  ( g `  y ) )  e.  _V )
27 fveq2 6191 . . . . . . . 8  |-  ( y  =  x  ->  (
g `  y )  =  ( g `  x ) )
28 fvex 6201 . . . . . . . 8  |-  ( g `
 x )  e. 
_V
2927, 20, 28fvmpt 6282 . . . . . . 7  |-  ( x  e.  A  ->  (
( y  e.  A  |->  ( g `  y
) ) `  x
)  =  ( g `
 x ) )
3029eleq1d 2686 . . . . . 6  |-  ( x  e.  A  ->  (
( ( y  e.  A  |->  ( g `  y ) ) `  x )  e.  x  <->  ( g `  x )  e.  x ) )
3130ralbiia 2979 . . . . 5  |-  ( A. x  e.  A  (
( y  e.  A  |->  ( g `  y
) ) `  x
)  e.  x  <->  A. x  e.  A  ( g `  x )  e.  x
)
3212, 31sylibr 224 . . . 4  |-  ( ( ( U. A  e. 
dom  card  /\  -.  (/)  e.  A
)  /\  A. x  e.  A  ( x  =/=  (/)  ->  ( g `  x )  e.  x
) )  ->  A. x  e.  A  ( (
y  e.  A  |->  ( g `  y ) ) `  x )  e.  x )
3321, 32jca 554 . . 3  |-  ( ( ( U. A  e. 
dom  card  /\  -.  (/)  e.  A
)  /\  A. x  e.  A  ( x  =/=  (/)  ->  ( g `  x )  e.  x
) )  ->  (
( y  e.  A  |->  ( g `  y
) ) : A --> U. A  /\  A. x  e.  A  ( (
y  e.  A  |->  ( g `  y ) ) `  x )  e.  x ) )
34 feq1 6026 . . . . 5  |-  ( f  =  ( y  e.  A  |->  ( g `  y ) )  -> 
( f : A --> U. A  <->  ( y  e.  A  |->  ( g `  y ) ) : A --> U. A ) )
35 fveq1 6190 . . . . . . 7  |-  ( f  =  ( y  e.  A  |->  ( g `  y ) )  -> 
( f `  x
)  =  ( ( y  e.  A  |->  ( g `  y ) ) `  x ) )
3635eleq1d 2686 . . . . . 6  |-  ( f  =  ( y  e.  A  |->  ( g `  y ) )  -> 
( ( f `  x )  e.  x  <->  ( ( y  e.  A  |->  ( g `  y
) ) `  x
)  e.  x ) )
3736ralbidv 2986 . . . . 5  |-  ( f  =  ( y  e.  A  |->  ( g `  y ) )  -> 
( A. x  e.  A  ( f `  x )  e.  x  <->  A. x  e.  A  ( ( y  e.  A  |->  ( g `  y
) ) `  x
)  e.  x ) )
3834, 37anbi12d 747 . . . 4  |-  ( f  =  ( y  e.  A  |->  ( g `  y ) )  -> 
( ( f : A --> U. A  /\  A. x  e.  A  (
f `  x )  e.  x )  <->  ( (
y  e.  A  |->  ( g `  y ) ) : A --> U. A  /\  A. x  e.  A  ( ( y  e.  A  |->  ( g `  y ) ) `  x )  e.  x
) ) )
3938spcegv 3294 . . 3  |-  ( ( y  e.  A  |->  ( g `  y ) )  e.  _V  ->  ( ( ( y  e.  A  |->  ( g `  y ) ) : A --> U. A  /\  A. x  e.  A  (
( y  e.  A  |->  ( g `  y
) ) `  x
)  e.  x )  ->  E. f ( f : A --> U. A  /\  A. x  e.  A  ( f `  x
)  e.  x ) ) )
4026, 33, 39sylc 65 . 2  |-  ( ( ( U. A  e. 
dom  card  /\  -.  (/)  e.  A
)  /\  A. x  e.  A  ( x  =/=  (/)  ->  ( g `  x )  e.  x
) )  ->  E. f
( f : A --> U. A  /\  A. x  e.  A  ( f `  x )  e.  x
) )
415, 40exlimddv 1863 1  |-  ( ( U. A  e.  dom  card  /\  -.  (/)  e.  A )  ->  E. f ( f : A --> U. A  /\  A. x  e.  A  ( f `  x
)  e.  x ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 384    = wceq 1483   E.wex 1704    e. wcel 1990    =/= wne 2794   A.wral 2912   _Vcvv 3200   (/)c0 3915   U.cuni 4436    |-> cmpt 4729    We wwe 5072   dom cdm 5114   -->wf 5884   ` cfv 5888   cardccrd 8761
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-se 5074  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-ord 5726  df-on 5727  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-isom 5897  df-riota 6611  df-en 7956  df-card 8765
This theorem is referenced by:  numacn  8872  ac5b  9300  ac6num  9301
  Copyright terms: Public domain W3C validator