MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  numacn Structured version   Visualization version   Unicode version

Theorem numacn 8872
Description: A well-orderable set has choice sequences of every length. (Contributed by Mario Carneiro, 31-Aug-2015.)
Assertion
Ref Expression
numacn  |-  ( A  e.  V  ->  ( X  e.  dom  card  ->  X  e. AC  A ) )

Proof of Theorem numacn
Dummy variables  f 
g  h  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elex 3212 . 2  |-  ( A  e.  V  ->  A  e.  _V )
2 simpll 790 . . . . . . . 8  |-  ( ( ( X  e.  dom  card  /\  A  e.  _V )  /\  f  e.  ( ( ~P X  \  { (/) } )  ^m  A ) )  ->  X  e.  dom  card )
3 elmapi 7879 . . . . . . . . . . . 12  |-  ( f  e.  ( ( ~P X  \  { (/) } )  ^m  A )  ->  f : A --> ( ~P X  \  { (/)
} ) )
43adantl 482 . . . . . . . . . . 11  |-  ( ( ( X  e.  dom  card  /\  A  e.  _V )  /\  f  e.  ( ( ~P X  \  { (/) } )  ^m  A ) )  -> 
f : A --> ( ~P X  \  { (/) } ) )
5 frn 6053 . . . . . . . . . . 11  |-  ( f : A --> ( ~P X  \  { (/) } )  ->  ran  f  C_  ( ~P X  \  { (/)
} ) )
64, 5syl 17 . . . . . . . . . 10  |-  ( ( ( X  e.  dom  card  /\  A  e.  _V )  /\  f  e.  ( ( ~P X  \  { (/) } )  ^m  A ) )  ->  ran  f  C_  ( ~P X  \  { (/) } ) )
76difss2d 3740 . . . . . . . . 9  |-  ( ( ( X  e.  dom  card  /\  A  e.  _V )  /\  f  e.  ( ( ~P X  \  { (/) } )  ^m  A ) )  ->  ran  f  C_  ~P X
)
8 sspwuni 4611 . . . . . . . . 9  |-  ( ran  f  C_  ~P X  <->  U.
ran  f  C_  X
)
97, 8sylib 208 . . . . . . . 8  |-  ( ( ( X  e.  dom  card  /\  A  e.  _V )  /\  f  e.  ( ( ~P X  \  { (/) } )  ^m  A ) )  ->  U. ran  f  C_  X
)
10 ssnum 8862 . . . . . . . 8  |-  ( ( X  e.  dom  card  /\ 
U. ran  f  C_  X )  ->  U. ran  f  e.  dom  card )
112, 9, 10syl2anc 693 . . . . . . 7  |-  ( ( ( X  e.  dom  card  /\  A  e.  _V )  /\  f  e.  ( ( ~P X  \  { (/) } )  ^m  A ) )  ->  U. ran  f  e.  dom  card )
12 ssdifin0 4050 . . . . . . . . 9  |-  ( ran  f  C_  ( ~P X  \  { (/) } )  ->  ( ran  f  i^i  { (/) } )  =  (/) )
136, 12syl 17 . . . . . . . 8  |-  ( ( ( X  e.  dom  card  /\  A  e.  _V )  /\  f  e.  ( ( ~P X  \  { (/) } )  ^m  A ) )  -> 
( ran  f  i^i  {
(/) } )  =  (/) )
14 disjsn 4246 . . . . . . . 8  |-  ( ( ran  f  i^i  { (/)
} )  =  (/)  <->  -.  (/) 
e.  ran  f )
1513, 14sylib 208 . . . . . . 7  |-  ( ( ( X  e.  dom  card  /\  A  e.  _V )  /\  f  e.  ( ( ~P X  \  { (/) } )  ^m  A ) )  ->  -.  (/)  e.  ran  f
)
16 ac5num 8859 . . . . . . 7  |-  ( ( U. ran  f  e. 
dom  card  /\  -.  (/)  e.  ran  f )  ->  E. h
( h : ran  f
--> U. ran  f  /\  A. y  e.  ran  f
( h `  y
)  e.  y ) )
1711, 15, 16syl2anc 693 . . . . . 6  |-  ( ( ( X  e.  dom  card  /\  A  e.  _V )  /\  f  e.  ( ( ~P X  \  { (/) } )  ^m  A ) )  ->  E. h ( h : ran  f --> U. ran  f  /\  A. y  e. 
ran  f ( h `
 y )  e.  y ) )
18 simpllr 799 . . . . . . 7  |-  ( ( ( ( X  e. 
dom  card  /\  A  e.  _V )  /\  f  e.  ( ( ~P X  \  { (/) } )  ^m  A ) )  /\  ( h : ran  f
--> U. ran  f  /\  A. y  e.  ran  f
( h `  y
)  e.  y ) )  ->  A  e.  _V )
19 ffn 6045 . . . . . . . . . . 11  |-  ( f : A --> ( ~P X  \  { (/) } )  ->  f  Fn  A )
204, 19syl 17 . . . . . . . . . 10  |-  ( ( ( X  e.  dom  card  /\  A  e.  _V )  /\  f  e.  ( ( ~P X  \  { (/) } )  ^m  A ) )  -> 
f  Fn  A )
21 fveq2 6191 . . . . . . . . . . . 12  |-  ( y  =  ( f `  x )  ->  (
h `  y )  =  ( h `  ( f `  x
) ) )
22 id 22 . . . . . . . . . . . 12  |-  ( y  =  ( f `  x )  ->  y  =  ( f `  x ) )
2321, 22eleq12d 2695 . . . . . . . . . . 11  |-  ( y  =  ( f `  x )  ->  (
( h `  y
)  e.  y  <->  ( h `  ( f `  x
) )  e.  ( f `  x ) ) )
2423ralrn 6362 . . . . . . . . . 10  |-  ( f  Fn  A  ->  ( A. y  e.  ran  f ( h `  y )  e.  y  <->  A. x  e.  A  ( h `  (
f `  x )
)  e.  ( f `
 x ) ) )
2520, 24syl 17 . . . . . . . . 9  |-  ( ( ( X  e.  dom  card  /\  A  e.  _V )  /\  f  e.  ( ( ~P X  \  { (/) } )  ^m  A ) )  -> 
( A. y  e. 
ran  f ( h `
 y )  e.  y  <->  A. x  e.  A  ( h `  (
f `  x )
)  e.  ( f `
 x ) ) )
2625biimpa 501 . . . . . . . 8  |-  ( ( ( ( X  e. 
dom  card  /\  A  e.  _V )  /\  f  e.  ( ( ~P X  \  { (/) } )  ^m  A ) )  /\  A. y  e.  ran  f
( h `  y
)  e.  y )  ->  A. x  e.  A  ( h `  (
f `  x )
)  e.  ( f `
 x ) )
2726adantrl 752 . . . . . . 7  |-  ( ( ( ( X  e. 
dom  card  /\  A  e.  _V )  /\  f  e.  ( ( ~P X  \  { (/) } )  ^m  A ) )  /\  ( h : ran  f
--> U. ran  f  /\  A. y  e.  ran  f
( h `  y
)  e.  y ) )  ->  A. x  e.  A  ( h `  ( f `  x
) )  e.  ( f `  x ) )
28 acnlem 8871 . . . . . . 7  |-  ( ( A  e.  _V  /\  A. x  e.  A  ( h `  ( f `
 x ) )  e.  ( f `  x ) )  ->  E. g A. x  e.  A  ( g `  x )  e.  ( f `  x ) )
2918, 27, 28syl2anc 693 . . . . . 6  |-  ( ( ( ( X  e. 
dom  card  /\  A  e.  _V )  /\  f  e.  ( ( ~P X  \  { (/) } )  ^m  A ) )  /\  ( h : ran  f
--> U. ran  f  /\  A. y  e.  ran  f
( h `  y
)  e.  y ) )  ->  E. g A. x  e.  A  ( g `  x
)  e.  ( f `
 x ) )
3017, 29exlimddv 1863 . . . . 5  |-  ( ( ( X  e.  dom  card  /\  A  e.  _V )  /\  f  e.  ( ( ~P X  \  { (/) } )  ^m  A ) )  ->  E. g A. x  e.  A  ( g `  x )  e.  ( f `  x ) )
3130ralrimiva 2966 . . . 4  |-  ( ( X  e.  dom  card  /\  A  e.  _V )  ->  A. f  e.  ( ( ~P X  \  { (/) } )  ^m  A ) E. g A. x  e.  A  ( g `  x
)  e.  ( f `
 x ) )
32 isacn 8867 . . . 4  |-  ( ( X  e.  dom  card  /\  A  e.  _V )  ->  ( X  e. AC  A  <->  A. f  e.  ( ( ~P X  \  { (/) } )  ^m  A ) E. g A. x  e.  A  ( g `  x
)  e.  ( f `
 x ) ) )
3331, 32mpbird 247 . . 3  |-  ( ( X  e.  dom  card  /\  A  e.  _V )  ->  X  e. AC  A )
3433expcom 451 . 2  |-  ( A  e.  _V  ->  ( X  e.  dom  card  ->  X  e. AC  A ) )
351, 34syl 17 1  |-  ( A  e.  V  ->  ( X  e.  dom  card  ->  X  e. AC  A ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 196    /\ wa 384    = wceq 1483   E.wex 1704    e. wcel 1990   A.wral 2912   _Vcvv 3200    \ cdif 3571    i^i cin 3573    C_ wss 3574   (/)c0 3915   ~Pcpw 4158   {csn 4177   U.cuni 4436   dom cdm 5114   ran crn 5115    Fn wfn 5883   -->wf 5884   ` cfv 5888  (class class class)co 6650    ^m cmap 7857   cardccrd 8761  AC wacn 8764
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-se 5074  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-isom 5897  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-er 7742  df-map 7859  df-en 7956  df-dom 7957  df-card 8765  df-acn 8768
This theorem is referenced by:  acnnum  8875  fodomnum  8880  acacni  8962  dfac13  8964  iundom  9364  iunctb  9396
  Copyright terms: Public domain W3C validator