MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  alexsubb Structured version   Visualization version   Unicode version

Theorem alexsubb 21850
Description: Biconditional form of the Alexander Subbase Theorem alexsub 21849. (Contributed by Mario Carneiro, 27-Aug-2015.)
Assertion
Ref Expression
alexsubb  |-  ( ( X  e. UFL  /\  X  =  U. B )  -> 
( ( topGen `  ( fi `  B ) )  e.  Comp  <->  A. x  e.  ~P  B ( X  = 
U. x  ->  E. y  e.  ( ~P x  i^i 
Fin ) X  = 
U. y ) ) )
Distinct variable groups:    x, y, B    x, X, y

Proof of Theorem alexsubb
Dummy variables  w  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2622 . . . . 5  |-  U. ( topGen `
 ( fi `  B ) )  = 
U. ( topGen `  ( fi `  B ) )
21iscmp 21191 . . . 4  |-  ( (
topGen `  ( fi `  B ) )  e. 
Comp 
<->  ( ( topGen `  ( fi `  B ) )  e.  Top  /\  A. x  e.  ~P  ( topGen `
 ( fi `  B ) ) ( U. ( topGen `  ( fi `  B ) )  =  U. x  ->  E. y  e.  ( ~P x  i^i  Fin ) U. ( topGen `  ( fi `  B ) )  = 
U. y ) ) )
32simprbi 480 . . 3  |-  ( (
topGen `  ( fi `  B ) )  e. 
Comp  ->  A. x  e.  ~P  ( topGen `  ( fi `  B ) ) ( U. ( topGen `  ( fi `  B ) )  =  U. x  ->  E. y  e.  ( ~P x  i^i  Fin ) U. ( topGen `  ( fi `  B ) )  = 
U. y ) )
4 simpr 477 . . . . . . . . . . 11  |-  ( ( X  e. UFL  /\  X  =  U. B )  ->  X  =  U. B )
5 elex 3212 . . . . . . . . . . . 12  |-  ( X  e. UFL  ->  X  e.  _V )
65adantr 481 . . . . . . . . . . 11  |-  ( ( X  e. UFL  /\  X  =  U. B )  ->  X  e.  _V )
74, 6eqeltrrd 2702 . . . . . . . . . 10  |-  ( ( X  e. UFL  /\  X  =  U. B )  ->  U. B  e.  _V )
8 uniexb 6973 . . . . . . . . . 10  |-  ( B  e.  _V  <->  U. B  e. 
_V )
97, 8sylibr 224 . . . . . . . . 9  |-  ( ( X  e. UFL  /\  X  =  U. B )  ->  B  e.  _V )
10 fiuni 8334 . . . . . . . . 9  |-  ( B  e.  _V  ->  U. B  =  U. ( fi `  B ) )
119, 10syl 17 . . . . . . . 8  |-  ( ( X  e. UFL  /\  X  =  U. B )  ->  U. B  =  U. ( fi `  B ) )
12 fibas 20781 . . . . . . . . 9  |-  ( fi
`  B )  e.  TopBases
13 unitg 20771 . . . . . . . . 9  |-  ( ( fi `  B )  e.  TopBases  ->  U. ( topGen `  ( fi `  B ) )  =  U. ( fi
`  B ) )
1412, 13mp1i 13 . . . . . . . 8  |-  ( ( X  e. UFL  /\  X  =  U. B )  ->  U. ( topGen `  ( fi `  B ) )  = 
U. ( fi `  B ) )
1511, 4, 143eqtr4d 2666 . . . . . . 7  |-  ( ( X  e. UFL  /\  X  =  U. B )  ->  X  =  U. ( topGen `
 ( fi `  B ) ) )
1615eqeq1d 2624 . . . . . 6  |-  ( ( X  e. UFL  /\  X  =  U. B )  -> 
( X  =  U. x 
<-> 
U. ( topGen `  ( fi `  B ) )  =  U. x ) )
1715eqeq1d 2624 . . . . . . 7  |-  ( ( X  e. UFL  /\  X  =  U. B )  -> 
( X  =  U. y 
<-> 
U. ( topGen `  ( fi `  B ) )  =  U. y ) )
1817rexbidv 3052 . . . . . 6  |-  ( ( X  e. UFL  /\  X  =  U. B )  -> 
( E. y  e.  ( ~P x  i^i 
Fin ) X  = 
U. y  <->  E. y  e.  ( ~P x  i^i 
Fin ) U. ( topGen `
 ( fi `  B ) )  = 
U. y ) )
1916, 18imbi12d 334 . . . . 5  |-  ( ( X  e. UFL  /\  X  =  U. B )  -> 
( ( X  = 
U. x  ->  E. y  e.  ( ~P x  i^i 
Fin ) X  = 
U. y )  <->  ( U. ( topGen `  ( fi `  B ) )  = 
U. x  ->  E. y  e.  ( ~P x  i^i 
Fin ) U. ( topGen `
 ( fi `  B ) )  = 
U. y ) ) )
2019ralbidv 2986 . . . 4  |-  ( ( X  e. UFL  /\  X  =  U. B )  -> 
( A. x  e. 
~P  ( topGen `  ( fi `  B ) ) ( X  =  U. x  ->  E. y  e.  ( ~P x  i^i  Fin ) X  =  U. y )  <->  A. x  e.  ~P  ( topGen `  ( fi `  B ) ) ( U. ( topGen `  ( fi `  B
) )  =  U. x  ->  E. y  e.  ( ~P x  i^i  Fin ) U. ( topGen `  ( fi `  B ) )  =  U. y ) ) )
21 ssfii 8325 . . . . . . . 8  |-  ( B  e.  _V  ->  B  C_  ( fi `  B
) )
229, 21syl 17 . . . . . . 7  |-  ( ( X  e. UFL  /\  X  =  U. B )  ->  B  C_  ( fi `  B ) )
23 bastg 20770 . . . . . . . 8  |-  ( ( fi `  B )  e.  TopBases  ->  ( fi `  B )  C_  ( topGen `
 ( fi `  B ) ) )
2412, 23ax-mp 5 . . . . . . 7  |-  ( fi
`  B )  C_  ( topGen `  ( fi `  B ) )
2522, 24syl6ss 3615 . . . . . 6  |-  ( ( X  e. UFL  /\  X  =  U. B )  ->  B  C_  ( topGen `  ( fi `  B ) ) )
26 sspwb 4917 . . . . . 6  |-  ( B 
C_  ( topGen `  ( fi `  B ) )  <->  ~P B  C_  ~P ( topGen `
 ( fi `  B ) ) )
2725, 26sylib 208 . . . . 5  |-  ( ( X  e. UFL  /\  X  =  U. B )  ->  ~P B  C_  ~P ( topGen `
 ( fi `  B ) ) )
28 ssralv 3666 . . . . 5  |-  ( ~P B  C_  ~P ( topGen `
 ( fi `  B ) )  -> 
( A. x  e. 
~P  ( topGen `  ( fi `  B ) ) ( X  =  U. x  ->  E. y  e.  ( ~P x  i^i  Fin ) X  =  U. y )  ->  A. x  e.  ~P  B ( X  =  U. x  ->  E. y  e.  ( ~P x  i^i  Fin ) X  =  U. y
) ) )
2927, 28syl 17 . . . 4  |-  ( ( X  e. UFL  /\  X  =  U. B )  -> 
( A. x  e. 
~P  ( topGen `  ( fi `  B ) ) ( X  =  U. x  ->  E. y  e.  ( ~P x  i^i  Fin ) X  =  U. y )  ->  A. x  e.  ~P  B ( X  =  U. x  ->  E. y  e.  ( ~P x  i^i  Fin ) X  =  U. y
) ) )
3020, 29sylbird 250 . . 3  |-  ( ( X  e. UFL  /\  X  =  U. B )  -> 
( A. x  e. 
~P  ( topGen `  ( fi `  B ) ) ( U. ( topGen `  ( fi `  B
) )  =  U. x  ->  E. y  e.  ( ~P x  i^i  Fin ) U. ( topGen `  ( fi `  B ) )  =  U. y )  ->  A. x  e.  ~P  B ( X  = 
U. x  ->  E. y  e.  ( ~P x  i^i 
Fin ) X  = 
U. y ) ) )
313, 30syl5 34 . 2  |-  ( ( X  e. UFL  /\  X  =  U. B )  -> 
( ( topGen `  ( fi `  B ) )  e.  Comp  ->  A. x  e.  ~P  B ( X  =  U. x  ->  E. y  e.  ( ~P x  i^i  Fin ) X  =  U. y
) ) )
32 simpll 790 . . . 4  |-  ( ( ( X  e. UFL  /\  X  =  U. B )  /\  A. x  e. 
~P  B ( X  =  U. x  ->  E. y  e.  ( ~P x  i^i  Fin ) X  =  U. y
) )  ->  X  e. UFL )
33 simplr 792 . . . 4  |-  ( ( ( X  e. UFL  /\  X  =  U. B )  /\  A. x  e. 
~P  B ( X  =  U. x  ->  E. y  e.  ( ~P x  i^i  Fin ) X  =  U. y
) )  ->  X  =  U. B )
34 eqidd 2623 . . . 4  |-  ( ( ( X  e. UFL  /\  X  =  U. B )  /\  A. x  e. 
~P  B ( X  =  U. x  ->  E. y  e.  ( ~P x  i^i  Fin ) X  =  U. y
) )  ->  ( topGen `
 ( fi `  B ) )  =  ( topGen `  ( fi `  B ) ) )
35 selpw 4165 . . . . . . 7  |-  ( z  e.  ~P B  <->  z  C_  B )
36 unieq 4444 . . . . . . . . . . 11  |-  ( x  =  z  ->  U. x  =  U. z )
3736eqeq2d 2632 . . . . . . . . . 10  |-  ( x  =  z  ->  ( X  =  U. x  <->  X  =  U. z ) )
38 pweq 4161 . . . . . . . . . . . 12  |-  ( x  =  z  ->  ~P x  =  ~P z
)
3938ineq1d 3813 . . . . . . . . . . 11  |-  ( x  =  z  ->  ( ~P x  i^i  Fin )  =  ( ~P z  i^i  Fin ) )
4039rexeqdv 3145 . . . . . . . . . 10  |-  ( x  =  z  ->  ( E. y  e.  ( ~P x  i^i  Fin ) X  =  U. y  <->  E. y  e.  ( ~P z  i^i  Fin ) X  =  U. y
) )
4137, 40imbi12d 334 . . . . . . . . 9  |-  ( x  =  z  ->  (
( X  =  U. x  ->  E. y  e.  ( ~P x  i^i  Fin ) X  =  U. y )  <->  ( X  =  U. z  ->  E. y  e.  ( ~P z  i^i 
Fin ) X  = 
U. y ) ) )
4241rspccv 3306 . . . . . . . 8  |-  ( A. x  e.  ~P  B
( X  =  U. x  ->  E. y  e.  ( ~P x  i^i  Fin ) X  =  U. y )  ->  (
z  e.  ~P B  ->  ( X  =  U. z  ->  E. y  e.  ( ~P z  i^i  Fin ) X  =  U. y ) ) )
4342adantl 482 . . . . . . 7  |-  ( ( ( X  e. UFL  /\  X  =  U. B )  /\  A. x  e. 
~P  B ( X  =  U. x  ->  E. y  e.  ( ~P x  i^i  Fin ) X  =  U. y
) )  ->  (
z  e.  ~P B  ->  ( X  =  U. z  ->  E. y  e.  ( ~P z  i^i  Fin ) X  =  U. y ) ) )
4435, 43syl5bir 233 . . . . . 6  |-  ( ( ( X  e. UFL  /\  X  =  U. B )  /\  A. x  e. 
~P  B ( X  =  U. x  ->  E. y  e.  ( ~P x  i^i  Fin ) X  =  U. y
) )  ->  (
z  C_  B  ->  ( X  =  U. z  ->  E. y  e.  ( ~P z  i^i  Fin ) X  =  U. y ) ) )
4544imp32 449 . . . . 5  |-  ( ( ( ( X  e. UFL  /\  X  =  U. B )  /\  A. x  e.  ~P  B
( X  =  U. x  ->  E. y  e.  ( ~P x  i^i  Fin ) X  =  U. y ) )  /\  ( z  C_  B  /\  X  =  U. z ) )  ->  E. y  e.  ( ~P z  i^i  Fin ) X  =  U. y
)
46 unieq 4444 . . . . . . 7  |-  ( y  =  w  ->  U. y  =  U. w )
4746eqeq2d 2632 . . . . . 6  |-  ( y  =  w  ->  ( X  =  U. y  <->  X  =  U. w ) )
4847cbvrexv 3172 . . . . 5  |-  ( E. y  e.  ( ~P z  i^i  Fin ) X  =  U. y  <->  E. w  e.  ( ~P z  i^i  Fin ) X  =  U. w
)
4945, 48sylib 208 . . . 4  |-  ( ( ( ( X  e. UFL  /\  X  =  U. B )  /\  A. x  e.  ~P  B
( X  =  U. x  ->  E. y  e.  ( ~P x  i^i  Fin ) X  =  U. y ) )  /\  ( z  C_  B  /\  X  =  U. z ) )  ->  E. w  e.  ( ~P z  i^i  Fin ) X  =  U. w
)
5032, 33, 34, 49alexsub 21849 . . 3  |-  ( ( ( X  e. UFL  /\  X  =  U. B )  /\  A. x  e. 
~P  B ( X  =  U. x  ->  E. y  e.  ( ~P x  i^i  Fin ) X  =  U. y
) )  ->  ( topGen `
 ( fi `  B ) )  e. 
Comp )
5150ex 450 . 2  |-  ( ( X  e. UFL  /\  X  =  U. B )  -> 
( A. x  e. 
~P  B ( X  =  U. x  ->  E. y  e.  ( ~P x  i^i  Fin ) X  =  U. y
)  ->  ( topGen `  ( fi `  B
) )  e.  Comp ) )
5231, 51impbid 202 1  |-  ( ( X  e. UFL  /\  X  =  U. B )  -> 
( ( topGen `  ( fi `  B ) )  e.  Comp  <->  A. x  e.  ~P  B ( X  = 
U. x  ->  E. y  e.  ( ~P x  i^i 
Fin ) X  = 
U. y ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    /\ wa 384    = wceq 1483    e. wcel 1990   A.wral 2912   E.wrex 2913   _Vcvv 3200    i^i cin 3573    C_ wss 3574   ~Pcpw 4158   U.cuni 4436   ` cfv 5888   Fincfn 7955   ficfi 8316   topGenctg 16098   Topctop 20698   TopBasesctb 20749   Compccmp 21189  UFLcufl 21704
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-iin 4523  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-2o 7561  df-oadd 7564  df-er 7742  df-map 7859  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-fi 8317  df-topgen 16104  df-fbas 19743  df-fg 19744  df-top 20699  df-topon 20716  df-bases 20750  df-cld 20823  df-ntr 20824  df-cls 20825  df-nei 20902  df-cmp 21190  df-fil 21650  df-ufil 21705  df-ufl 21706  df-flim 21743  df-fcls 21745
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator