Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  aomclem1 Structured version   Visualization version   Unicode version

Theorem aomclem1 37624
Description: Lemma for dfac11 37632. This is the beginning of the proof that multiple choice is equivalent to choice. Our goal is to construct, by transfinite recursion, a well-ordering of  ( R1 `  A ). In what follows,  A is the index of the rank we wish to well-order,  z is the collection of well-orderings constructed so far,  dom  z is the set of ordinal indexes of constructed ranks i.e. the next rank to construct, and  y is a postulated multiple-choice function.

Successor case 1, define a simple ordering from the well-ordered predecessor. (Contributed by Stefan O'Rear, 18-Jan-2015.)

Hypotheses
Ref Expression
aomclem1.b  |-  B  =  { <. a ,  b
>.  |  E. c  e.  ( R1 `  U. dom  z ) ( ( c  e.  b  /\  -.  c  e.  a
)  /\  A. d  e.  ( R1 `  U. dom  z ) ( d ( z `  U. dom  z ) c  -> 
( d  e.  a  <-> 
d  e.  b ) ) ) }
aomclem1.on  |-  ( ph  ->  dom  z  e.  On )
aomclem1.su  |-  ( ph  ->  dom  z  =  suc  U.
dom  z )
aomclem1.we  |-  ( ph  ->  A. a  e.  dom  z ( z `  a )  We  ( R1 `  a ) )
Assertion
Ref Expression
aomclem1  |-  ( ph  ->  B  Or  ( R1
`  dom  z )
)
Distinct variable group:    z, a, b, c, d
Allowed substitution hints:    ph( z, a, b, c, d)    B( z, a, b, c, d)

Proof of Theorem aomclem1
StepHypRef Expression
1 fvex 6201 . . 3  |-  ( R1
`  U. dom  z )  e.  _V
2 vex 3203 . . . . . . . 8  |-  z  e. 
_V
32dmex 7099 . . . . . . 7  |-  dom  z  e.  _V
43uniex 6953 . . . . . 6  |-  U. dom  z  e.  _V
54sucid 5804 . . . . 5  |-  U. dom  z  e.  suc  U. dom  z
6 aomclem1.su . . . . 5  |-  ( ph  ->  dom  z  =  suc  U.
dom  z )
75, 6syl5eleqr 2708 . . . 4  |-  ( ph  ->  U. dom  z  e. 
dom  z )
8 aomclem1.we . . . 4  |-  ( ph  ->  A. a  e.  dom  z ( z `  a )  We  ( R1 `  a ) )
9 fveq2 6191 . . . . . 6  |-  ( a  =  U. dom  z  ->  ( z `  a
)  =  ( z `
 U. dom  z
) )
10 fveq2 6191 . . . . . 6  |-  ( a  =  U. dom  z  ->  ( R1 `  a
)  =  ( R1
`  U. dom  z ) )
119, 10weeq12d 37610 . . . . 5  |-  ( a  =  U. dom  z  ->  ( ( z `  a )  We  ( R1 `  a )  <->  ( z `  U. dom  z )  We  ( R1 `  U. dom  z ) ) )
1211rspcva 3307 . . . 4  |-  ( ( U. dom  z  e. 
dom  z  /\  A. a  e.  dom  z ( z `  a )  We  ( R1 `  a ) )  -> 
( z `  U. dom  z )  We  ( R1 `  U. dom  z
) )
137, 8, 12syl2anc 693 . . 3  |-  ( ph  ->  ( z `  U. dom  z )  We  ( R1 `  U. dom  z
) )
14 aomclem1.b . . . 4  |-  B  =  { <. a ,  b
>.  |  E. c  e.  ( R1 `  U. dom  z ) ( ( c  e.  b  /\  -.  c  e.  a
)  /\  A. d  e.  ( R1 `  U. dom  z ) ( d ( z `  U. dom  z ) c  -> 
( d  e.  a  <-> 
d  e.  b ) ) ) }
1514wepwso 37613 . . 3  |-  ( ( ( R1 `  U. dom  z )  e.  _V  /\  ( z `  U. dom  z )  We  ( R1 `  U. dom  z
) )  ->  B  Or  ~P ( R1 `  U. dom  z ) )
161, 13, 15sylancr 695 . 2  |-  ( ph  ->  B  Or  ~P ( R1 `  U. dom  z
) )
176fveq2d 6195 . . . 4  |-  ( ph  ->  ( R1 `  dom  z )  =  ( R1 `  suc  U. dom  z ) )
18 aomclem1.on . . . . 5  |-  ( ph  ->  dom  z  e.  On )
19 onuni 6993 . . . . 5  |-  ( dom  z  e.  On  ->  U.
dom  z  e.  On )
20 r1suc 8633 . . . . 5  |-  ( U. dom  z  e.  On  ->  ( R1 `  suc  U.
dom  z )  =  ~P ( R1 `  U. dom  z ) )
2118, 19, 203syl 18 . . . 4  |-  ( ph  ->  ( R1 `  suc  U.
dom  z )  =  ~P ( R1 `  U. dom  z ) )
2217, 21eqtrd 2656 . . 3  |-  ( ph  ->  ( R1 `  dom  z )  =  ~P ( R1 `  U. dom  z ) )
23 soeq2 5055 . . 3  |-  ( ( R1 `  dom  z
)  =  ~P ( R1 `  U. dom  z
)  ->  ( B  Or  ( R1 `  dom  z )  <->  B  Or  ~P ( R1 `  U. dom  z ) ) )
2422, 23syl 17 . 2  |-  ( ph  ->  ( B  Or  ( R1 `  dom  z )  <-> 
B  Or  ~P ( R1 `  U. dom  z
) ) )
2516, 24mpbird 247 1  |-  ( ph  ->  B  Or  ( R1
`  dom  z )
)
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 196    /\ wa 384    = wceq 1483    e. wcel 1990   A.wral 2912   E.wrex 2913   _Vcvv 3200   ~Pcpw 4158   U.cuni 4436   class class class wbr 4653   {copab 4712    Or wor 5034    We wwe 5072   dom cdm 5114   Oncon0 5723   suc csuc 5725   ` cfv 5888   R1cr1 8625
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-isom 5897  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-2o 7561  df-map 7859  df-r1 8627
This theorem is referenced by:  aomclem2  37625
  Copyright terms: Public domain W3C validator