Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  aomclem2 Structured version   Visualization version   Unicode version

Theorem aomclem2 37625
Description: Lemma for dfac11 37632. Successor case 2, a choice function for subsets of  ( R1 `  dom  z ). (Contributed by Stefan O'Rear, 18-Jan-2015.)
Hypotheses
Ref Expression
aomclem2.b  |-  B  =  { <. a ,  b
>.  |  E. c  e.  ( R1 `  U. dom  z ) ( ( c  e.  b  /\  -.  c  e.  a
)  /\  A. d  e.  ( R1 `  U. dom  z ) ( d ( z `  U. dom  z ) c  -> 
( d  e.  a  <-> 
d  e.  b ) ) ) }
aomclem2.c  |-  C  =  ( a  e.  _V  |->  sup ( ( y `  a ) ,  ( R1 `  dom  z
) ,  B ) )
aomclem2.on  |-  ( ph  ->  dom  z  e.  On )
aomclem2.su  |-  ( ph  ->  dom  z  =  suc  U.
dom  z )
aomclem2.we  |-  ( ph  ->  A. a  e.  dom  z ( z `  a )  We  ( R1 `  a ) )
aomclem2.a  |-  ( ph  ->  A  e.  On )
aomclem2.za  |-  ( ph  ->  dom  z  C_  A
)
aomclem2.y  |-  ( ph  ->  A. a  e.  ~P  ( R1 `  A ) ( a  =/=  (/)  ->  (
y `  a )  e.  ( ( ~P a  i^i  Fin )  \  { (/)
} ) ) )
Assertion
Ref Expression
aomclem2  |-  ( ph  ->  A. a  e.  ~P  ( R1 `  dom  z
) ( a  =/=  (/)  ->  ( C `  a )  e.  a ) )
Distinct variable groups:    y, z,
a, b, c, d    ph, a
Allowed substitution hints:    ph( y, z, b, c, d)    A( y, z, a, b, c, d)    B( y, z, a, b, c, d)    C( y, z, a, b, c, d)

Proof of Theorem aomclem2
StepHypRef Expression
1 vex 3203 . . . . 5  |-  a  e. 
_V
2 aomclem2.y . . . . . . . . . 10  |-  ( ph  ->  A. a  e.  ~P  ( R1 `  A ) ( a  =/=  (/)  ->  (
y `  a )  e.  ( ( ~P a  i^i  Fin )  \  { (/)
} ) ) )
3 aomclem2.on . . . . . . . . . . . . . 14  |-  ( ph  ->  dom  z  e.  On )
4 aomclem2.a . . . . . . . . . . . . . 14  |-  ( ph  ->  A  e.  On )
53, 4jca 554 . . . . . . . . . . . . 13  |-  ( ph  ->  ( dom  z  e.  On  /\  A  e.  On ) )
6 aomclem2.za . . . . . . . . . . . . 13  |-  ( ph  ->  dom  z  C_  A
)
7 r1ord3 8645 . . . . . . . . . . . . 13  |-  ( ( dom  z  e.  On  /\  A  e.  On )  ->  ( dom  z  C_  A  ->  ( R1 ` 
dom  z )  C_  ( R1 `  A ) ) )
85, 6, 7sylc 65 . . . . . . . . . . . 12  |-  ( ph  ->  ( R1 `  dom  z )  C_  ( R1 `  A ) )
9 sspwb 4917 . . . . . . . . . . . 12  |-  ( ( R1 `  dom  z
)  C_  ( R1 `  A )  <->  ~P ( R1 `  dom  z ) 
C_  ~P ( R1 `  A ) )
108, 9sylib 208 . . . . . . . . . . 11  |-  ( ph  ->  ~P ( R1 `  dom  z )  C_  ~P ( R1 `  A ) )
1110sseld 3602 . . . . . . . . . 10  |-  ( ph  ->  ( a  e.  ~P ( R1 `  dom  z
)  ->  a  e.  ~P ( R1 `  A
) ) )
12 rsp 2929 . . . . . . . . . 10  |-  ( A. a  e.  ~P  ( R1 `  A ) ( a  =/=  (/)  ->  (
y `  a )  e.  ( ( ~P a  i^i  Fin )  \  { (/)
} ) )  -> 
( a  e.  ~P ( R1 `  A )  ->  ( a  =/=  (/)  ->  ( y `  a )  e.  ( ( ~P a  i^i 
Fin )  \  { (/)
} ) ) ) )
132, 11, 12sylsyld 61 . . . . . . . . 9  |-  ( ph  ->  ( a  e.  ~P ( R1 `  dom  z
)  ->  ( a  =/=  (/)  ->  ( y `  a )  e.  ( ( ~P a  i^i 
Fin )  \  { (/)
} ) ) ) )
14133imp 1256 . . . . . . . 8  |-  ( (
ph  /\  a  e.  ~P ( R1 `  dom  z )  /\  a  =/=  (/) )  ->  (
y `  a )  e.  ( ( ~P a  i^i  Fin )  \  { (/)
} ) )
1514eldifad 3586 . . . . . . 7  |-  ( (
ph  /\  a  e.  ~P ( R1 `  dom  z )  /\  a  =/=  (/) )  ->  (
y `  a )  e.  ( ~P a  i^i 
Fin ) )
16 inss1 3833 . . . . . . . . 9  |-  ( ~P a  i^i  Fin )  C_ 
~P a
1716sseli 3599 . . . . . . . 8  |-  ( ( y `  a )  e.  ( ~P a  i^i  Fin )  ->  (
y `  a )  e.  ~P a )
1817elpwid 4170 . . . . . . 7  |-  ( ( y `  a )  e.  ( ~P a  i^i  Fin )  ->  (
y `  a )  C_  a )
1915, 18syl 17 . . . . . 6  |-  ( (
ph  /\  a  e.  ~P ( R1 `  dom  z )  /\  a  =/=  (/) )  ->  (
y `  a )  C_  a )
20 aomclem2.b . . . . . . . . 9  |-  B  =  { <. a ,  b
>.  |  E. c  e.  ( R1 `  U. dom  z ) ( ( c  e.  b  /\  -.  c  e.  a
)  /\  A. d  e.  ( R1 `  U. dom  z ) ( d ( z `  U. dom  z ) c  -> 
( d  e.  a  <-> 
d  e.  b ) ) ) }
21 aomclem2.su . . . . . . . . 9  |-  ( ph  ->  dom  z  =  suc  U.
dom  z )
22 aomclem2.we . . . . . . . . 9  |-  ( ph  ->  A. a  e.  dom  z ( z `  a )  We  ( R1 `  a ) )
2320, 3, 21, 22aomclem1 37624 . . . . . . . 8  |-  ( ph  ->  B  Or  ( R1
`  dom  z )
)
24233ad2ant1 1082 . . . . . . 7  |-  ( (
ph  /\  a  e.  ~P ( R1 `  dom  z )  /\  a  =/=  (/) )  ->  B  Or  ( R1 `  dom  z ) )
25 inss2 3834 . . . . . . . 8  |-  ( ~P a  i^i  Fin )  C_ 
Fin
2625, 15sseldi 3601 . . . . . . 7  |-  ( (
ph  /\  a  e.  ~P ( R1 `  dom  z )  /\  a  =/=  (/) )  ->  (
y `  a )  e.  Fin )
27 eldifsni 4320 . . . . . . . 8  |-  ( ( y `  a )  e.  ( ( ~P a  i^i  Fin )  \  { (/) } )  -> 
( y `  a
)  =/=  (/) )
2814, 27syl 17 . . . . . . 7  |-  ( (
ph  /\  a  e.  ~P ( R1 `  dom  z )  /\  a  =/=  (/) )  ->  (
y `  a )  =/=  (/) )
29 elpwi 4168 . . . . . . . . 9  |-  ( a  e.  ~P ( R1
`  dom  z )  ->  a  C_  ( R1 ` 
dom  z ) )
30293ad2ant2 1083 . . . . . . . 8  |-  ( (
ph  /\  a  e.  ~P ( R1 `  dom  z )  /\  a  =/=  (/) )  ->  a  C_  ( R1 `  dom  z ) )
3119, 30sstrd 3613 . . . . . . 7  |-  ( (
ph  /\  a  e.  ~P ( R1 `  dom  z )  /\  a  =/=  (/) )  ->  (
y `  a )  C_  ( R1 `  dom  z ) )
32 fisupcl 8375 . . . . . . 7  |-  ( ( B  Or  ( R1
`  dom  z )  /\  ( ( y `  a )  e.  Fin  /\  ( y `  a
)  =/=  (/)  /\  (
y `  a )  C_  ( R1 `  dom  z ) ) )  ->  sup ( ( y `
 a ) ,  ( R1 `  dom  z ) ,  B
)  e.  ( y `
 a ) )
3324, 26, 28, 31, 32syl13anc 1328 . . . . . 6  |-  ( (
ph  /\  a  e.  ~P ( R1 `  dom  z )  /\  a  =/=  (/) )  ->  sup ( ( y `  a ) ,  ( R1 `  dom  z
) ,  B )  e.  ( y `  a ) )
3419, 33sseldd 3604 . . . . 5  |-  ( (
ph  /\  a  e.  ~P ( R1 `  dom  z )  /\  a  =/=  (/) )  ->  sup ( ( y `  a ) ,  ( R1 `  dom  z
) ,  B )  e.  a )
35 aomclem2.c . . . . . 6  |-  C  =  ( a  e.  _V  |->  sup ( ( y `  a ) ,  ( R1 `  dom  z
) ,  B ) )
3635fvmpt2 6291 . . . . 5  |-  ( ( a  e.  _V  /\  sup ( ( y `  a ) ,  ( R1 `  dom  z
) ,  B )  e.  a )  -> 
( C `  a
)  =  sup (
( y `  a
) ,  ( R1
`  dom  z ) ,  B ) )
371, 34, 36sylancr 695 . . . 4  |-  ( (
ph  /\  a  e.  ~P ( R1 `  dom  z )  /\  a  =/=  (/) )  ->  ( C `  a )  =  sup ( ( y `
 a ) ,  ( R1 `  dom  z ) ,  B
) )
3837, 34eqeltrd 2701 . . 3  |-  ( (
ph  /\  a  e.  ~P ( R1 `  dom  z )  /\  a  =/=  (/) )  ->  ( C `  a )  e.  a )
39383exp 1264 . 2  |-  ( ph  ->  ( a  e.  ~P ( R1 `  dom  z
)  ->  ( a  =/=  (/)  ->  ( C `  a )  e.  a ) ) )
4039ralrimiv 2965 1  |-  ( ph  ->  A. a  e.  ~P  ( R1 `  dom  z
) ( a  =/=  (/)  ->  ( C `  a )  e.  a ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 196    /\ wa 384    /\ w3a 1037    = wceq 1483    e. wcel 1990    =/= wne 2794   A.wral 2912   E.wrex 2913   _Vcvv 3200    \ cdif 3571    i^i cin 3573    C_ wss 3574   (/)c0 3915   ~Pcpw 4158   {csn 4177   U.cuni 4436   class class class wbr 4653   {copab 4712    |-> cmpt 4729    Or wor 5034    We wwe 5072   dom cdm 5114   Oncon0 5723   suc csuc 5725   ` cfv 5888   Fincfn 7955   supcsup 8346   R1cr1 8625
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-isom 5897  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-2o 7561  df-er 7742  df-map 7859  df-en 7956  df-fin 7959  df-sup 8348  df-r1 8627
This theorem is referenced by:  aomclem3  37626
  Copyright terms: Public domain W3C validator