| Mathbox for Stefan O'Rear |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > aomclem2 | Structured version Visualization version Unicode version | ||
| Description: Lemma for dfac11 37632. Successor case 2, a choice function for
subsets of
|
| Ref | Expression |
|---|---|
| aomclem2.b |
|
| aomclem2.c |
|
| aomclem2.on |
|
| aomclem2.su |
|
| aomclem2.we |
|
| aomclem2.a |
|
| aomclem2.za |
|
| aomclem2.y |
|
| Ref | Expression |
|---|---|
| aomclem2 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | vex 3203 |
. . . . 5
| |
| 2 | aomclem2.y |
. . . . . . . . . 10
| |
| 3 | aomclem2.on |
. . . . . . . . . . . . . 14
| |
| 4 | aomclem2.a |
. . . . . . . . . . . . . 14
| |
| 5 | 3, 4 | jca 554 |
. . . . . . . . . . . . 13
|
| 6 | aomclem2.za |
. . . . . . . . . . . . 13
| |
| 7 | r1ord3 8645 |
. . . . . . . . . . . . 13
| |
| 8 | 5, 6, 7 | sylc 65 |
. . . . . . . . . . . 12
|
| 9 | sspwb 4917 |
. . . . . . . . . . . 12
| |
| 10 | 8, 9 | sylib 208 |
. . . . . . . . . . 11
|
| 11 | 10 | sseld 3602 |
. . . . . . . . . 10
|
| 12 | rsp 2929 |
. . . . . . . . . 10
| |
| 13 | 2, 11, 12 | sylsyld 61 |
. . . . . . . . 9
|
| 14 | 13 | 3imp 1256 |
. . . . . . . 8
|
| 15 | 14 | eldifad 3586 |
. . . . . . 7
|
| 16 | inss1 3833 |
. . . . . . . . 9
| |
| 17 | 16 | sseli 3599 |
. . . . . . . 8
|
| 18 | 17 | elpwid 4170 |
. . . . . . 7
|
| 19 | 15, 18 | syl 17 |
. . . . . 6
|
| 20 | aomclem2.b |
. . . . . . . . 9
| |
| 21 | aomclem2.su |
. . . . . . . . 9
| |
| 22 | aomclem2.we |
. . . . . . . . 9
| |
| 23 | 20, 3, 21, 22 | aomclem1 37624 |
. . . . . . . 8
|
| 24 | 23 | 3ad2ant1 1082 |
. . . . . . 7
|
| 25 | inss2 3834 |
. . . . . . . 8
| |
| 26 | 25, 15 | sseldi 3601 |
. . . . . . 7
|
| 27 | eldifsni 4320 |
. . . . . . . 8
| |
| 28 | 14, 27 | syl 17 |
. . . . . . 7
|
| 29 | elpwi 4168 |
. . . . . . . . 9
| |
| 30 | 29 | 3ad2ant2 1083 |
. . . . . . . 8
|
| 31 | 19, 30 | sstrd 3613 |
. . . . . . 7
|
| 32 | fisupcl 8375 |
. . . . . . 7
| |
| 33 | 24, 26, 28, 31, 32 | syl13anc 1328 |
. . . . . 6
|
| 34 | 19, 33 | sseldd 3604 |
. . . . 5
|
| 35 | aomclem2.c |
. . . . . 6
| |
| 36 | 35 | fvmpt2 6291 |
. . . . 5
|
| 37 | 1, 34, 36 | sylancr 695 |
. . . 4
|
| 38 | 37, 34 | eqeltrd 2701 |
. . 3
|
| 39 | 38 | 3exp 1264 |
. 2
|
| 40 | 39 | ralrimiv 2965 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-rep 4771 ax-sep 4781 ax-nul 4789 ax-pow 4843 ax-pr 4906 ax-un 6949 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3or 1038 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-ral 2917 df-rex 2918 df-reu 2919 df-rmo 2920 df-rab 2921 df-v 3202 df-sbc 3436 df-csb 3534 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-pss 3590 df-nul 3916 df-if 4087 df-pw 4160 df-sn 4178 df-pr 4180 df-tp 4182 df-op 4184 df-uni 4437 df-iun 4522 df-br 4654 df-opab 4713 df-mpt 4730 df-tr 4753 df-id 5024 df-eprel 5029 df-po 5035 df-so 5036 df-fr 5073 df-we 5075 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-rn 5125 df-res 5126 df-ima 5127 df-pred 5680 df-ord 5726 df-on 5727 df-lim 5728 df-suc 5729 df-iota 5851 df-fun 5890 df-fn 5891 df-f 5892 df-f1 5893 df-fo 5894 df-f1o 5895 df-fv 5896 df-isom 5897 df-riota 6611 df-ov 6653 df-oprab 6654 df-mpt2 6655 df-om 7066 df-1st 7168 df-2nd 7169 df-wrecs 7407 df-recs 7468 df-rdg 7506 df-1o 7560 df-2o 7561 df-er 7742 df-map 7859 df-en 7956 df-fin 7959 df-sup 8348 df-r1 8627 |
| This theorem is referenced by: aomclem3 37626 |
| Copyright terms: Public domain | W3C validator |