MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  axdclem Structured version   Visualization version   Unicode version

Theorem axdclem 9341
Description: Lemma for axdc 9343. (Contributed by Mario Carneiro, 25-Jan-2013.)
Hypothesis
Ref Expression
axdclem.1  |-  F  =  ( rec ( ( y  e.  _V  |->  ( g `  { z  |  y x z } ) ) ,  s )  |`  om )
Assertion
Ref Expression
axdclem  |-  ( ( A. y  e.  ~P  dom  x ( y  =/=  (/)  ->  ( g `  y )  e.  y )  /\  ran  x  C_ 
dom  x  /\  E. z ( F `  K ) x z )  ->  ( K  e.  om  ->  ( F `  K ) x ( F `  suc  K
) ) )
Distinct variable groups:    y, F, z    y, K, z    y,
g    y, s    x, y, z
Allowed substitution hints:    F( x, g, s)    K( x, g, s)

Proof of Theorem axdclem
Dummy variable  w is distinct from all other variables.
StepHypRef Expression
1 neeq1 2856 . . . . . . 7  |-  ( y  =  { z  |  ( F `  K
) x z }  ->  ( y  =/=  (/) 
<->  { z  |  ( F `  K ) x z }  =/=  (/) ) )
2 abn0 3954 . . . . . . 7  |-  ( { z  |  ( F `
 K ) x z }  =/=  (/)  <->  E. z
( F `  K
) x z )
31, 2syl6bb 276 . . . . . 6  |-  ( y  =  { z  |  ( F `  K
) x z }  ->  ( y  =/=  (/) 
<->  E. z ( F `
 K ) x z ) )
4 eleq2 2690 . . . . . . . . 9  |-  ( y  =  { z  |  ( F `  K
) x z }  ->  ( ( g `
 y )  e.  y  <->  ( g `  y )  e.  {
z  |  ( F `
 K ) x z } ) )
5 breq2 4657 . . . . . . . . . . 11  |-  ( w  =  z  ->  (
( F `  K
) x w  <->  ( F `  K ) x z ) )
65cbvabv 2747 . . . . . . . . . 10  |-  { w  |  ( F `  K ) x w }  =  { z  |  ( F `  K ) x z }
76eleq2i 2693 . . . . . . . . 9  |-  ( ( g `  y )  e.  { w  |  ( F `  K
) x w }  <->  ( g `  y )  e.  { z  |  ( F `  K
) x z } )
84, 7syl6bbr 278 . . . . . . . 8  |-  ( y  =  { z  |  ( F `  K
) x z }  ->  ( ( g `
 y )  e.  y  <->  ( g `  y )  e.  {
w  |  ( F `
 K ) x w } ) )
9 fvex 6201 . . . . . . . . 9  |-  ( g `
 y )  e. 
_V
10 breq2 4657 . . . . . . . . 9  |-  ( w  =  ( g `  y )  ->  (
( F `  K
) x w  <->  ( F `  K ) x ( g `  y ) ) )
119, 10elab 3350 . . . . . . . 8  |-  ( ( g `  y )  e.  { w  |  ( F `  K
) x w }  <->  ( F `  K ) x ( g `  y ) )
128, 11syl6bb 276 . . . . . . 7  |-  ( y  =  { z  |  ( F `  K
) x z }  ->  ( ( g `
 y )  e.  y  <->  ( F `  K ) x ( g `  y ) ) )
13 fveq2 6191 . . . . . . . 8  |-  ( y  =  { z  |  ( F `  K
) x z }  ->  ( g `  y )  =  ( g `  { z  |  ( F `  K ) x z } ) )
1413breq2d 4665 . . . . . . 7  |-  ( y  =  { z  |  ( F `  K
) x z }  ->  ( ( F `
 K ) x ( g `  y
)  <->  ( F `  K ) x ( g `  { z  |  ( F `  K ) x z } ) ) )
1512, 14bitrd 268 . . . . . 6  |-  ( y  =  { z  |  ( F `  K
) x z }  ->  ( ( g `
 y )  e.  y  <->  ( F `  K ) x ( g `  { z  |  ( F `  K ) x z } ) ) )
163, 15imbi12d 334 . . . . 5  |-  ( y  =  { z  |  ( F `  K
) x z }  ->  ( ( y  =/=  (/)  ->  ( g `  y )  e.  y )  <->  ( E. z
( F `  K
) x z  -> 
( F `  K
) x ( g `
 { z  |  ( F `  K
) x z } ) ) ) )
1716rspcv 3305 . . . 4  |-  ( { z  |  ( F `
 K ) x z }  e.  ~P dom  x  ->  ( A. y  e.  ~P  dom  x
( y  =/=  (/)  ->  (
g `  y )  e.  y )  ->  ( E. z ( F `  K ) x z  ->  ( F `  K ) x ( g `  { z  |  ( F `  K ) x z } ) ) ) )
18 fvex 6201 . . . . . . . 8  |-  ( F `
 K )  e. 
_V
19 vex 3203 . . . . . . . 8  |-  z  e. 
_V
2018, 19brelrn 5356 . . . . . . 7  |-  ( ( F `  K ) x z  ->  z  e.  ran  x )
2120abssi 3677 . . . . . 6  |-  { z  |  ( F `  K ) x z }  C_  ran  x
22 sstr 3611 . . . . . 6  |-  ( ( { z  |  ( F `  K ) x z }  C_  ran  x  /\  ran  x  C_ 
dom  x )  ->  { z  |  ( F `  K ) x z }  C_  dom  x )
2321, 22mpan 706 . . . . 5  |-  ( ran  x  C_  dom  x  ->  { z  |  ( F `  K ) x z }  C_  dom  x )
24 vex 3203 . . . . . . 7  |-  x  e. 
_V
2524dmex 7099 . . . . . 6  |-  dom  x  e.  _V
2625elpw2 4828 . . . . 5  |-  ( { z  |  ( F `
 K ) x z }  e.  ~P dom  x  <->  { z  |  ( F `  K ) x z }  C_  dom  x )
2723, 26sylibr 224 . . . 4  |-  ( ran  x  C_  dom  x  ->  { z  |  ( F `  K ) x z }  e.  ~P dom  x )
2817, 27syl11 33 . . 3  |-  ( A. y  e.  ~P  dom  x
( y  =/=  (/)  ->  (
g `  y )  e.  y )  ->  ( ran  x  C_  dom  x  -> 
( E. z ( F `  K ) x z  ->  ( F `  K )
x ( g `  { z  |  ( F `  K ) x z } ) ) ) )
29283imp 1256 . 2  |-  ( ( A. y  e.  ~P  dom  x ( y  =/=  (/)  ->  ( g `  y )  e.  y )  /\  ran  x  C_ 
dom  x  /\  E. z ( F `  K ) x z )  ->  ( F `  K ) x ( g `  { z  |  ( F `  K ) x z } ) )
30 fvex 6201 . . . 4  |-  ( g `
 { z  |  ( F `  K
) x z } )  e.  _V
31 nfcv 2764 . . . . 5  |-  F/_ y
s
32 nfcv 2764 . . . . 5  |-  F/_ y K
33 nfcv 2764 . . . . 5  |-  F/_ y
( g `  {
z  |  ( F `
 K ) x z } )
34 axdclem.1 . . . . 5  |-  F  =  ( rec ( ( y  e.  _V  |->  ( g `  { z  |  y x z } ) ) ,  s )  |`  om )
35 breq1 4656 . . . . . . 7  |-  ( y  =  ( F `  K )  ->  (
y x z  <->  ( F `  K ) x z ) )
3635abbidv 2741 . . . . . 6  |-  ( y  =  ( F `  K )  ->  { z  |  y x z }  =  { z  |  ( F `  K ) x z } )
3736fveq2d 6195 . . . . 5  |-  ( y  =  ( F `  K )  ->  (
g `  { z  |  y x z } )  =  ( g `  { z  |  ( F `  K ) x z } ) )
3831, 32, 33, 34, 37frsucmpt 7533 . . . 4  |-  ( ( K  e.  om  /\  ( g `  {
z  |  ( F `
 K ) x z } )  e. 
_V )  ->  ( F `  suc  K )  =  ( g `  { z  |  ( F `  K ) x z } ) )
3930, 38mpan2 707 . . 3  |-  ( K  e.  om  ->  ( F `  suc  K )  =  ( g `  { z  |  ( F `  K ) x z } ) )
4039breq2d 4665 . 2  |-  ( K  e.  om  ->  (
( F `  K
) x ( F `
 suc  K )  <->  ( F `  K ) x ( g `  { z  |  ( F `  K ) x z } ) ) )
4129, 40syl5ibrcom 237 1  |-  ( ( A. y  e.  ~P  dom  x ( y  =/=  (/)  ->  ( g `  y )  e.  y )  /\  ran  x  C_ 
dom  x  /\  E. z ( F `  K ) x z )  ->  ( K  e.  om  ->  ( F `  K ) x ( F `  suc  K
) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ w3a 1037    = wceq 1483   E.wex 1704    e. wcel 1990   {cab 2608    =/= wne 2794   A.wral 2912   _Vcvv 3200    C_ wss 3574   (/)c0 3915   ~Pcpw 4158   class class class wbr 4653    |-> cmpt 4729   dom cdm 5114   ran crn 5115    |` cres 5116   suc csuc 5725   ` cfv 5888   omcom 7065   reccrdg 7505
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-om 7066  df-wrecs 7407  df-recs 7468  df-rdg 7506
This theorem is referenced by:  axdclem2  9342
  Copyright terms: Public domain W3C validator