MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cantnf0 Structured version   Visualization version   Unicode version

Theorem cantnf0 8572
Description: The value of the zero function. (Contributed by Mario Carneiro, 30-May-2015.)
Hypotheses
Ref Expression
cantnfs.s  |-  S  =  dom  ( A CNF  B
)
cantnfs.a  |-  ( ph  ->  A  e.  On )
cantnfs.b  |-  ( ph  ->  B  e.  On )
cantnf0.a  |-  ( ph  -> 
(/)  e.  A )
Assertion
Ref Expression
cantnf0  |-  ( ph  ->  ( ( A CNF  B
) `  ( B  X.  { (/) } ) )  =  (/) )

Proof of Theorem cantnf0
Dummy variables  k 
z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 cantnfs.s . . 3  |-  S  =  dom  ( A CNF  B
)
2 cantnfs.a . . 3  |-  ( ph  ->  A  e.  On )
3 cantnfs.b . . 3  |-  ( ph  ->  B  e.  On )
4 eqid 2622 . . 3  |- OrdIso (  _E  ,  ( ( B  X.  { (/) } ) supp  (/) ) )  = OrdIso (  _E  ,  ( ( B  X.  { (/) } ) supp  (/) ) )
5 cantnf0.a . . . . 5  |-  ( ph  -> 
(/)  e.  A )
6 fconst6g 6094 . . . . 5  |-  ( (/)  e.  A  ->  ( B  X.  { (/) } ) : B --> A )
75, 6syl 17 . . . 4  |-  ( ph  ->  ( B  X.  { (/)
} ) : B --> A )
83, 5fczfsuppd 8293 . . . 4  |-  ( ph  ->  ( B  X.  { (/)
} ) finSupp  (/) )
91, 2, 3cantnfs 8563 . . . 4  |-  ( ph  ->  ( ( B  X.  { (/) } )  e.  S  <->  ( ( B  X.  { (/) } ) : B --> A  /\  ( B  X.  { (/) } ) finSupp  (/) ) ) )
107, 8, 9mpbir2and 957 . . 3  |-  ( ph  ->  ( B  X.  { (/)
} )  e.  S
)
11 eqid 2622 . . 3  |- seq𝜔 ( ( k  e. 
_V ,  z  e. 
_V  |->  ( ( ( A  ^o  (OrdIso (  _E  ,  ( ( B  X.  { (/) } ) supp  (/) ) ) `  k
) )  .o  (
( B  X.  { (/)
} ) `  (OrdIso (  _E  ,  (
( B  X.  { (/)
} ) supp  (/) ) ) `
 k ) ) )  +o  z ) ) ,  (/) )  = seq𝜔 ( ( k  e.  _V ,  z  e.  _V  |->  ( ( ( A  ^o  (OrdIso (  _E  ,  ( ( B  X.  { (/) } ) supp  (/) ) ) `  k
) )  .o  (
( B  X.  { (/)
} ) `  (OrdIso (  _E  ,  (
( B  X.  { (/)
} ) supp  (/) ) ) `
 k ) ) )  +o  z ) ) ,  (/) )
121, 2, 3, 4, 10, 11cantnfval 8565 . 2  |-  ( ph  ->  ( ( A CNF  B
) `  ( B  X.  { (/) } ) )  =  (seq𝜔 ( ( k  e. 
_V ,  z  e. 
_V  |->  ( ( ( A  ^o  (OrdIso (  _E  ,  ( ( B  X.  { (/) } ) supp  (/) ) ) `  k
) )  .o  (
( B  X.  { (/)
} ) `  (OrdIso (  _E  ,  (
( B  X.  { (/)
} ) supp  (/) ) ) `
 k ) ) )  +o  z ) ) ,  (/) ) `  dom OrdIso (  _E  ,  ( ( B  X.  { (/)
} ) supp  (/) ) ) ) )
13 eqidd 2623 . . . . . . 7  |-  ( ph  ->  ( B  X.  { (/)
} )  =  ( B  X.  { (/) } ) )
14 0ex 4790 . . . . . . . . 9  |-  (/)  e.  _V
15 fnconstg 6093 . . . . . . . . 9  |-  ( (/)  e.  _V  ->  ( B  X.  { (/) } )  Fn  B )
1614, 15mp1i 13 . . . . . . . 8  |-  ( ph  ->  ( B  X.  { (/)
} )  Fn  B
)
1714a1i 11 . . . . . . . 8  |-  ( ph  -> 
(/)  e.  _V )
18 fnsuppeq0 7323 . . . . . . . 8  |-  ( ( ( B  X.  { (/)
} )  Fn  B  /\  B  e.  On  /\  (/)  e.  _V )  -> 
( ( ( B  X.  { (/) } ) supp  (/) )  =  (/)  <->  ( B  X.  { (/) } )  =  ( B  X.  { (/)
} ) ) )
1916, 3, 17, 18syl3anc 1326 . . . . . . 7  |-  ( ph  ->  ( ( ( B  X.  { (/) } ) supp  (/) )  =  (/)  <->  ( B  X.  { (/) } )  =  ( B  X.  { (/)
} ) ) )
2013, 19mpbird 247 . . . . . 6  |-  ( ph  ->  ( ( B  X.  { (/) } ) supp  (/) )  =  (/) )
21 oieq2 8418 . . . . . 6  |-  ( ( ( B  X.  { (/)
} ) supp  (/) )  =  (/)  -> OrdIso (  _E  ,  ( ( B  X.  { (/)
} ) supp  (/) ) )  = OrdIso (  _E  ,  (/) ) )
2220, 21syl 17 . . . . 5  |-  ( ph  -> OrdIso (  _E  ,  ( ( B  X.  { (/)
} ) supp  (/) ) )  = OrdIso (  _E  ,  (/) ) )
2322dmeqd 5326 . . . 4  |-  ( ph  ->  dom OrdIso (  _E  , 
( ( B  X.  { (/) } ) supp  (/) ) )  =  dom OrdIso (  _E  ,  (/) ) )
24 we0 5109 . . . . . 6  |-  _E  We  (/)
25 eqid 2622 . . . . . . 7  |- OrdIso (  _E  ,  (/) )  = OrdIso (  _E  ,  (/) )
2625oien 8443 . . . . . 6  |-  ( (
(/)  e.  _V  /\  _E  We  (/) )  ->  dom OrdIso (  _E  ,  (/) )  ~~  (/) )
2714, 24, 26mp2an 708 . . . . 5  |-  dom OrdIso (  _E  ,  (/) )  ~~  (/)
28 en0 8019 . . . . 5  |-  ( dom OrdIso (  _E  ,  (/) )  ~~  (/)  <->  dom OrdIso (  _E  ,  (/) )  =  (/) )
2927, 28mpbi 220 . . . 4  |-  dom OrdIso (  _E  ,  (/) )  =  (/)
3023, 29syl6eq 2672 . . 3  |-  ( ph  ->  dom OrdIso (  _E  , 
( ( B  X.  { (/) } ) supp  (/) ) )  =  (/) )
3130fveq2d 6195 . 2  |-  ( ph  ->  (seq𝜔 ( ( k  e. 
_V ,  z  e. 
_V  |->  ( ( ( A  ^o  (OrdIso (  _E  ,  ( ( B  X.  { (/) } ) supp  (/) ) ) `  k
) )  .o  (
( B  X.  { (/)
} ) `  (OrdIso (  _E  ,  (
( B  X.  { (/)
} ) supp  (/) ) ) `
 k ) ) )  +o  z ) ) ,  (/) ) `  dom OrdIso (  _E  ,  ( ( B  X.  { (/)
} ) supp  (/) ) ) )  =  (seq𝜔 ( ( k  e.  _V , 
z  e.  _V  |->  ( ( ( A  ^o  (OrdIso (  _E  ,  ( ( B  X.  { (/)
} ) supp  (/) ) ) `
 k ) )  .o  ( ( B  X.  { (/) } ) `
 (OrdIso (  _E  ,  ( ( B  X.  { (/) } ) supp  (/) ) ) `  k
) ) )  +o  z ) ) ,  (/) ) `  (/) ) )
3211seqom0g 7551 . . 3  |-  ( (/)  e.  _V  ->  (seq𝜔 ( ( k  e. 
_V ,  z  e. 
_V  |->  ( ( ( A  ^o  (OrdIso (  _E  ,  ( ( B  X.  { (/) } ) supp  (/) ) ) `  k
) )  .o  (
( B  X.  { (/)
} ) `  (OrdIso (  _E  ,  (
( B  X.  { (/)
} ) supp  (/) ) ) `
 k ) ) )  +o  z ) ) ,  (/) ) `  (/) )  =  (/) )
3314, 32mp1i 13 . 2  |-  ( ph  ->  (seq𝜔 ( ( k  e. 
_V ,  z  e. 
_V  |->  ( ( ( A  ^o  (OrdIso (  _E  ,  ( ( B  X.  { (/) } ) supp  (/) ) ) `  k
) )  .o  (
( B  X.  { (/)
} ) `  (OrdIso (  _E  ,  (
( B  X.  { (/)
} ) supp  (/) ) ) `
 k ) ) )  +o  z ) ) ,  (/) ) `  (/) )  =  (/) )
3412, 31, 333eqtrd 2660 1  |-  ( ph  ->  ( ( A CNF  B
) `  ( B  X.  { (/) } ) )  =  (/) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    = wceq 1483    e. wcel 1990   _Vcvv 3200   (/)c0 3915   {csn 4177   class class class wbr 4653    _E cep 5028    We wwe 5072    X. cxp 5112   dom cdm 5114   Oncon0 5723    Fn wfn 5883   -->wf 5884   ` cfv 5888  (class class class)co 6650    |-> cmpt2 6652   supp csupp 7295  seq𝜔cseqom 7542    +o coa 7557    .o comu 7558    ^o coe 7559    ~~ cen 7952   finSupp cfsupp 8275  OrdIsocoi 8414   CNF ccnf 8558
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-fal 1489  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-se 5074  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-isom 5897  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-2nd 7169  df-supp 7296  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-seqom 7543  df-map 7859  df-en 7956  df-fin 7959  df-fsupp 8276  df-oi 8415  df-cnf 8559
This theorem is referenced by:  cnfcom2lem  8598
  Copyright terms: Public domain W3C validator