![]() |
Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > HSE Home > Th. List > chshii | Structured version Visualization version Unicode version |
Description: A closed subspace is a subspace. (Contributed by NM, 19-Oct-1999.) (New usage is discouraged.) |
Ref | Expression |
---|---|
chshi.1 |
![]() ![]() ![]() ![]() |
Ref | Expression |
---|---|
chshii |
![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | chshi.1 |
. 2
![]() ![]() ![]() ![]() | |
2 | chsh 28081 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
3 | 1, 2 | ax-mp 5 |
1
![]() ![]() ![]() ![]() |
Colors of variables: wff setvar class |
Syntax hints: ![]() ![]() ![]() |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 |
This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-rex 2918 df-rab 2921 df-v 3202 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-nul 3916 df-if 4087 df-sn 4178 df-pr 4180 df-op 4184 df-uni 4437 df-br 4654 df-opab 4713 df-xp 5120 df-cnv 5122 df-dm 5124 df-rn 5125 df-res 5126 df-ima 5127 df-iota 5851 df-fv 5896 df-ov 6653 df-ch 28078 |
This theorem is referenced by: chssii 28088 helsh 28102 h0elsh 28113 hhsscms 28136 hhssbn 28137 hhsshl 28138 chocunii 28160 shsleji 28229 shjshcli 28235 pjhthlem1 28250 pjhthlem2 28251 omlsii 28262 ococi 28264 pjoc1i 28290 chne0i 28312 chocini 28313 chjcli 28316 chsleji 28317 chseli 28318 chunssji 28326 chjcomi 28327 chub1i 28328 chlubi 28330 chlej1i 28332 chlej2i 28333 h1de2bi 28413 h1de2ctlem 28414 spansnpji 28437 spanunsni 28438 h1datomi 28440 pjoml2i 28444 qlaxr3i 28495 osumi 28501 osumcor2i 28503 spansnji 28505 spansnm0i 28509 nonbooli 28510 spansncvi 28511 5oai 28520 3oalem2 28522 3oalem5 28525 3oalem6 28526 pjaddii 28534 pjmulii 28536 pjss2i 28539 pjssmii 28540 pj0i 28552 pjocini 28557 pjjsi 28559 pjpythi 28581 mayete3i 28587 pjnmopi 29007 pjimai 29035 pjclem4 29058 pj3si 29066 sto1i 29095 stlei 29099 strlem1 29109 hatomici 29218 hatomistici 29221 atomli 29241 chirredlem3 29251 sumdmdii 29274 sumdmdlem 29277 sumdmdlem2 29278 |
Copyright terms: Public domain | W3C validator |