HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  strlem1 Structured version   Visualization version   Unicode version

Theorem strlem1 29109
Description: Lemma for strong state theorem: if closed subspace  A is not contained in  B, there is a unit vector  u in their difference. (Contributed by NM, 25-Oct-1999.) (New usage is discouraged.)
Hypotheses
Ref Expression
strlem1.1  |-  A  e. 
CH
strlem1.2  |-  B  e. 
CH
Assertion
Ref Expression
strlem1  |-  ( -.  A  C_  B  ->  E. u  e.  ( A 
\  B ) (
normh `  u )  =  1 )
Distinct variable groups:    u, A    u, B

Proof of Theorem strlem1
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 neq0 3930 . . 3  |-  ( -.  ( A  \  B
)  =  (/)  <->  E. x  x  e.  ( A  \  B ) )
2 ssdif0 3942 . . 3  |-  ( A 
C_  B  <->  ( A  \  B )  =  (/) )
31, 2xchnxbir 323 . 2  |-  ( -.  A  C_  B  <->  E. x  x  e.  ( A  \  B ) )
4 eldifi 3732 . . . . . . . . . . 11  |-  ( x  e.  ( A  \  B )  ->  x  e.  A )
5 strlem1.1 . . . . . . . . . . . 12  |-  A  e. 
CH
65cheli 28089 . . . . . . . . . . 11  |-  ( x  e.  A  ->  x  e.  ~H )
7 normcl 27982 . . . . . . . . . . 11  |-  ( x  e.  ~H  ->  ( normh `  x )  e.  RR )
84, 6, 73syl 18 . . . . . . . . . 10  |-  ( x  e.  ( A  \  B )  ->  ( normh `  x )  e.  RR )
9 strlem1.2 . . . . . . . . . . . . . . . 16  |-  B  e. 
CH
10 ch0 28085 . . . . . . . . . . . . . . . 16  |-  ( B  e.  CH  ->  0h  e.  B )
119, 10ax-mp 5 . . . . . . . . . . . . . . 15  |-  0h  e.  B
12 eldifn 3733 . . . . . . . . . . . . . . 15  |-  ( 0h  e.  ( A  \  B )  ->  -.  0h  e.  B )
1311, 12mt2 191 . . . . . . . . . . . . . 14  |-  -.  0h  e.  ( A  \  B
)
14 eleq1 2689 . . . . . . . . . . . . . 14  |-  ( x  =  0h  ->  (
x  e.  ( A 
\  B )  <->  0h  e.  ( A  \  B ) ) )
1513, 14mtbiri 317 . . . . . . . . . . . . 13  |-  ( x  =  0h  ->  -.  x  e.  ( A  \  B ) )
1615con2i 134 . . . . . . . . . . . 12  |-  ( x  e.  ( A  \  B )  ->  -.  x  =  0h )
17 norm-i 27986 . . . . . . . . . . . . 13  |-  ( x  e.  ~H  ->  (
( normh `  x )  =  0  <->  x  =  0h ) )
184, 6, 173syl 18 . . . . . . . . . . . 12  |-  ( x  e.  ( A  \  B )  ->  (
( normh `  x )  =  0  <->  x  =  0h ) )
1916, 18mtbird 315 . . . . . . . . . . 11  |-  ( x  e.  ( A  \  B )  ->  -.  ( normh `  x )  =  0 )
2019neqned 2801 . . . . . . . . . 10  |-  ( x  e.  ( A  \  B )  ->  ( normh `  x )  =/=  0 )
218, 20rereccld 10852 . . . . . . . . 9  |-  ( x  e.  ( A  \  B )  ->  (
1  /  ( normh `  x ) )  e.  RR )
2221recnd 10068 . . . . . . . 8  |-  ( x  e.  ( A  \  B )  ->  (
1  /  ( normh `  x ) )  e.  CC )
235chshii 28084 . . . . . . . . . 10  |-  A  e.  SH
24 shmulcl 28075 . . . . . . . . . 10  |-  ( ( A  e.  SH  /\  ( 1  /  ( normh `  x ) )  e.  CC  /\  x  e.  A )  ->  (
( 1  /  ( normh `  x ) )  .h  x )  e.  A )
2523, 24mp3an1 1411 . . . . . . . . 9  |-  ( ( ( 1  /  ( normh `  x ) )  e.  CC  /\  x  e.  A )  ->  (
( 1  /  ( normh `  x ) )  .h  x )  e.  A )
2625ex 450 . . . . . . . 8  |-  ( ( 1  /  ( normh `  x ) )  e.  CC  ->  ( x  e.  A  ->  ( ( 1  /  ( normh `  x ) )  .h  x )  e.  A
) )
2722, 26syl 17 . . . . . . 7  |-  ( x  e.  ( A  \  B )  ->  (
x  e.  A  -> 
( ( 1  / 
( normh `  x )
)  .h  x )  e.  A ) )
288recnd 10068 . . . . . . . . . 10  |-  ( x  e.  ( A  \  B )  ->  ( normh `  x )  e.  CC )
299chshii 28084 . . . . . . . . . . . 12  |-  B  e.  SH
30 shmulcl 28075 . . . . . . . . . . . 12  |-  ( ( B  e.  SH  /\  ( normh `  x )  e.  CC  /\  ( ( 1  /  ( normh `  x ) )  .h  x )  e.  B
)  ->  ( ( normh `  x )  .h  ( ( 1  / 
( normh `  x )
)  .h  x ) )  e.  B )
3129, 30mp3an1 1411 . . . . . . . . . . 11  |-  ( ( ( normh `  x )  e.  CC  /\  ( ( 1  /  ( normh `  x ) )  .h  x )  e.  B
)  ->  ( ( normh `  x )  .h  ( ( 1  / 
( normh `  x )
)  .h  x ) )  e.  B )
3231ex 450 . . . . . . . . . 10  |-  ( (
normh `  x )  e.  CC  ->  ( (
( 1  /  ( normh `  x ) )  .h  x )  e.  B  ->  ( ( normh `  x )  .h  ( ( 1  / 
( normh `  x )
)  .h  x ) )  e.  B ) )
3328, 32syl 17 . . . . . . . . 9  |-  ( x  e.  ( A  \  B )  ->  (
( ( 1  / 
( normh `  x )
)  .h  x )  e.  B  ->  (
( normh `  x )  .h  ( ( 1  / 
( normh `  x )
)  .h  x ) )  e.  B ) )
3428, 20recidd 10796 . . . . . . . . . . . 12  |-  ( x  e.  ( A  \  B )  ->  (
( normh `  x )  x.  ( 1  /  ( normh `  x ) ) )  =  1 )
3534oveq1d 6665 . . . . . . . . . . 11  |-  ( x  e.  ( A  \  B )  ->  (
( ( normh `  x
)  x.  ( 1  /  ( normh `  x
) ) )  .h  x )  =  ( 1  .h  x ) )
364, 6syl 17 . . . . . . . . . . . 12  |-  ( x  e.  ( A  \  B )  ->  x  e.  ~H )
37 ax-hvmulass 27864 . . . . . . . . . . . 12  |-  ( ( ( normh `  x )  e.  CC  /\  ( 1  /  ( normh `  x
) )  e.  CC  /\  x  e.  ~H )  ->  ( ( ( normh `  x )  x.  (
1  /  ( normh `  x ) ) )  .h  x )  =  ( ( normh `  x
)  .h  ( ( 1  /  ( normh `  x ) )  .h  x ) ) )
3828, 22, 36, 37syl3anc 1326 . . . . . . . . . . 11  |-  ( x  e.  ( A  \  B )  ->  (
( ( normh `  x
)  x.  ( 1  /  ( normh `  x
) ) )  .h  x )  =  ( ( normh `  x )  .h  ( ( 1  / 
( normh `  x )
)  .h  x ) ) )
39 ax-hvmulid 27863 . . . . . . . . . . . 12  |-  ( x  e.  ~H  ->  (
1  .h  x )  =  x )
404, 6, 393syl 18 . . . . . . . . . . 11  |-  ( x  e.  ( A  \  B )  ->  (
1  .h  x )  =  x )
4135, 38, 403eqtr3d 2664 . . . . . . . . . 10  |-  ( x  e.  ( A  \  B )  ->  (
( normh `  x )  .h  ( ( 1  / 
( normh `  x )
)  .h  x ) )  =  x )
4241eleq1d 2686 . . . . . . . . 9  |-  ( x  e.  ( A  \  B )  ->  (
( ( normh `  x
)  .h  ( ( 1  /  ( normh `  x ) )  .h  x ) )  e.  B  <->  x  e.  B
) )
4333, 42sylibd 229 . . . . . . . 8  |-  ( x  e.  ( A  \  B )  ->  (
( ( 1  / 
( normh `  x )
)  .h  x )  e.  B  ->  x  e.  B ) )
4443con3d 148 . . . . . . 7  |-  ( x  e.  ( A  \  B )  ->  ( -.  x  e.  B  ->  -.  ( ( 1  /  ( normh `  x
) )  .h  x
)  e.  B ) )
4527, 44anim12d 586 . . . . . 6  |-  ( x  e.  ( A  \  B )  ->  (
( x  e.  A  /\  -.  x  e.  B
)  ->  ( (
( 1  /  ( normh `  x ) )  .h  x )  e.  A  /\  -.  (
( 1  /  ( normh `  x ) )  .h  x )  e.  B ) ) )
46 eldif 3584 . . . . . 6  |-  ( x  e.  ( A  \  B )  <->  ( x  e.  A  /\  -.  x  e.  B ) )
47 eldif 3584 . . . . . 6  |-  ( ( ( 1  /  ( normh `  x ) )  .h  x )  e.  ( A  \  B
)  <->  ( ( ( 1  /  ( normh `  x ) )  .h  x )  e.  A  /\  -.  ( ( 1  /  ( normh `  x
) )  .h  x
)  e.  B ) )
4845, 46, 473imtr4g 285 . . . . 5  |-  ( x  e.  ( A  \  B )  ->  (
x  e.  ( A 
\  B )  -> 
( ( 1  / 
( normh `  x )
)  .h  x )  e.  ( A  \  B ) ) )
4948pm2.43i 52 . . . 4  |-  ( x  e.  ( A  \  B )  ->  (
( 1  /  ( normh `  x ) )  .h  x )  e.  ( A  \  B
) )
50 norm-iii 27997 . . . . . 6  |-  ( ( ( 1  /  ( normh `  x ) )  e.  CC  /\  x  e.  ~H )  ->  ( normh `  ( ( 1  /  ( normh `  x
) )  .h  x
) )  =  ( ( abs `  (
1  /  ( normh `  x ) ) )  x.  ( normh `  x
) ) )
5122, 36, 50syl2anc 693 . . . . 5  |-  ( x  e.  ( A  \  B )  ->  ( normh `  ( ( 1  /  ( normh `  x
) )  .h  x
) )  =  ( ( abs `  (
1  /  ( normh `  x ) ) )  x.  ( normh `  x
) ) )
5215necon2ai 2823 . . . . . . . . 9  |-  ( x  e.  ( A  \  B )  ->  x  =/=  0h )
53 normgt0 27984 . . . . . . . . . 10  |-  ( x  e.  ~H  ->  (
x  =/=  0h  <->  0  <  (
normh `  x ) ) )
544, 6, 533syl 18 . . . . . . . . 9  |-  ( x  e.  ( A  \  B )  ->  (
x  =/=  0h  <->  0  <  (
normh `  x ) ) )
5552, 54mpbid 222 . . . . . . . 8  |-  ( x  e.  ( A  \  B )  ->  0  <  ( normh `  x )
)
56 1re 10039 . . . . . . . . 9  |-  1  e.  RR
57 0le1 10551 . . . . . . . . 9  |-  0  <_  1
58 divge0 10892 . . . . . . . . 9  |-  ( ( ( 1  e.  RR  /\  0  <_  1 )  /\  ( ( normh `  x )  e.  RR  /\  0  <  ( normh `  x ) ) )  ->  0  <_  (
1  /  ( normh `  x ) ) )
5956, 57, 58mpanl12 718 . . . . . . . 8  |-  ( ( ( normh `  x )  e.  RR  /\  0  < 
( normh `  x )
)  ->  0  <_  ( 1  /  ( normh `  x ) ) )
608, 55, 59syl2anc 693 . . . . . . 7  |-  ( x  e.  ( A  \  B )  ->  0  <_  ( 1  /  ( normh `  x ) ) )
6121, 60absidd 14161 . . . . . 6  |-  ( x  e.  ( A  \  B )  ->  ( abs `  ( 1  / 
( normh `  x )
) )  =  ( 1  /  ( normh `  x ) ) )
6261oveq1d 6665 . . . . 5  |-  ( x  e.  ( A  \  B )  ->  (
( abs `  (
1  /  ( normh `  x ) ) )  x.  ( normh `  x
) )  =  ( ( 1  /  ( normh `  x ) )  x.  ( normh `  x
) ) )
6328, 20recid2d 10797 . . . . 5  |-  ( x  e.  ( A  \  B )  ->  (
( 1  /  ( normh `  x ) )  x.  ( normh `  x
) )  =  1 )
6451, 62, 633eqtrd 2660 . . . 4  |-  ( x  e.  ( A  \  B )  ->  ( normh `  ( ( 1  /  ( normh `  x
) )  .h  x
) )  =  1 )
65 fveq2 6191 . . . . . 6  |-  ( u  =  ( ( 1  /  ( normh `  x
) )  .h  x
)  ->  ( normh `  u )  =  (
normh `  ( ( 1  /  ( normh `  x
) )  .h  x
) ) )
6665eqeq1d 2624 . . . . 5  |-  ( u  =  ( ( 1  /  ( normh `  x
) )  .h  x
)  ->  ( ( normh `  u )  =  1  <->  ( normh `  (
( 1  /  ( normh `  x ) )  .h  x ) )  =  1 ) )
6766rspcev 3309 . . . 4  |-  ( ( ( ( 1  / 
( normh `  x )
)  .h  x )  e.  ( A  \  B )  /\  ( normh `  ( ( 1  /  ( normh `  x
) )  .h  x
) )  =  1 )  ->  E. u  e.  ( A  \  B
) ( normh `  u
)  =  1 )
6849, 64, 67syl2anc 693 . . 3  |-  ( x  e.  ( A  \  B )  ->  E. u  e.  ( A  \  B
) ( normh `  u
)  =  1 )
6968exlimiv 1858 . 2  |-  ( E. x  x  e.  ( A  \  B )  ->  E. u  e.  ( A  \  B ) ( normh `  u )  =  1 )
703, 69sylbi 207 1  |-  ( -.  A  C_  B  ->  E. u  e.  ( A 
\  B ) (
normh `  u )  =  1 )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 196    /\ wa 384    = wceq 1483   E.wex 1704    e. wcel 1990    =/= wne 2794   E.wrex 2913    \ cdif 3571    C_ wss 3574   (/)c0 3915   class class class wbr 4653   ` cfv 5888  (class class class)co 6650   CCcc 9934   RRcr 9935   0cc0 9936   1c1 9937    x. cmul 9941    < clt 10074    <_ cle 10075    / cdiv 10684   abscabs 13974   ~Hchil 27776    .h csm 27778   normhcno 27780   0hc0v 27781   SHcsh 27785   CHcch 27786
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014  ax-hilex 27856  ax-hfvadd 27857  ax-hv0cl 27860  ax-hfvmul 27862  ax-hvmulid 27863  ax-hvmulass 27864  ax-hvmul0 27867  ax-hfi 27936  ax-his1 27939  ax-his3 27941  ax-his4 27942
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-sup 8348  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-2 11079  df-3 11080  df-n0 11293  df-z 11378  df-uz 11688  df-rp 11833  df-seq 12802  df-exp 12861  df-cj 13839  df-re 13840  df-im 13841  df-sqrt 13975  df-abs 13976  df-hnorm 27825  df-sh 28064  df-ch 28078
This theorem is referenced by:  stri  29116  hstri  29124
  Copyright terms: Public domain W3C validator