| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > cju | Structured version Visualization version Unicode version | ||
| Description: The complex conjugate of a complex number is unique. (Contributed by Mario Carneiro, 6-Nov-2013.) |
| Ref | Expression |
|---|---|
| cju |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cnre 10036 |
. . 3
| |
| 2 | recn 10026 |
. . . . . . 7
| |
| 3 | ax-icn 9995 |
. . . . . . . 8
| |
| 4 | recn 10026 |
. . . . . . . 8
| |
| 5 | mulcl 10020 |
. . . . . . . 8
| |
| 6 | 3, 4, 5 | sylancr 695 |
. . . . . . 7
|
| 7 | subcl 10280 |
. . . . . . 7
| |
| 8 | 2, 6, 7 | syl2an 494 |
. . . . . 6
|
| 9 | 2 | adantr 481 |
. . . . . . . 8
|
| 10 | 6 | adantl 482 |
. . . . . . . 8
|
| 11 | 9, 10, 9 | ppncand 10432 |
. . . . . . 7
|
| 12 | readdcl 10019 |
. . . . . . . . 9
| |
| 13 | 12 | anidms 677 |
. . . . . . . 8
|
| 14 | 13 | adantr 481 |
. . . . . . 7
|
| 15 | 11, 14 | eqeltrd 2701 |
. . . . . 6
|
| 16 | 9, 10, 10 | pnncand 10431 |
. . . . . . . . . 10
|
| 17 | 3 | a1i 11 |
. . . . . . . . . . 11
|
| 18 | 4 | adantl 482 |
. . . . . . . . . . 11
|
| 19 | 17, 18, 18 | adddid 10064 |
. . . . . . . . . 10
|
| 20 | 16, 19 | eqtr4d 2659 |
. . . . . . . . 9
|
| 21 | 20 | oveq2d 6666 |
. . . . . . . 8
|
| 22 | 18, 18 | addcld 10059 |
. . . . . . . . 9
|
| 23 | mulass 10024 |
. . . . . . . . . 10
| |
| 24 | 3, 3, 23 | mp3an12 1414 |
. . . . . . . . 9
|
| 25 | 22, 24 | syl 17 |
. . . . . . . 8
|
| 26 | 21, 25 | eqtr4d 2659 |
. . . . . . 7
|
| 27 | ixi 10656 |
. . . . . . . . 9
| |
| 28 | 1re 10039 |
. . . . . . . . . 10
| |
| 29 | 28 | renegcli 10342 |
. . . . . . . . 9
|
| 30 | 27, 29 | eqeltri 2697 |
. . . . . . . 8
|
| 31 | simpr 477 |
. . . . . . . . 9
| |
| 32 | 31, 31 | readdcld 10069 |
. . . . . . . 8
|
| 33 | remulcl 10021 |
. . . . . . . 8
| |
| 34 | 30, 32, 33 | sylancr 695 |
. . . . . . 7
|
| 35 | 26, 34 | eqeltrd 2701 |
. . . . . 6
|
| 36 | oveq2 6658 |
. . . . . . . . 9
| |
| 37 | 36 | eleq1d 2686 |
. . . . . . . 8
|
| 38 | oveq2 6658 |
. . . . . . . . . 10
| |
| 39 | 38 | oveq2d 6666 |
. . . . . . . . 9
|
| 40 | 39 | eleq1d 2686 |
. . . . . . . 8
|
| 41 | 37, 40 | anbi12d 747 |
. . . . . . 7
|
| 42 | 41 | rspcev 3309 |
. . . . . 6
|
| 43 | 8, 15, 35, 42 | syl12anc 1324 |
. . . . 5
|
| 44 | oveq1 6657 |
. . . . . . . 8
| |
| 45 | 44 | eleq1d 2686 |
. . . . . . 7
|
| 46 | oveq1 6657 |
. . . . . . . . 9
| |
| 47 | 46 | oveq2d 6666 |
. . . . . . . 8
|
| 48 | 47 | eleq1d 2686 |
. . . . . . 7
|
| 49 | 45, 48 | anbi12d 747 |
. . . . . 6
|
| 50 | 49 | rexbidv 3052 |
. . . . 5
|
| 51 | 43, 50 | syl5ibrcom 237 |
. . . 4
|
| 52 | 51 | rexlimivv 3036 |
. . 3
|
| 53 | 1, 52 | syl 17 |
. 2
|
| 54 | an4 865 |
. . . 4
| |
| 55 | resubcl 10345 |
. . . . . . 7
| |
| 56 | pnpcan 10320 |
. . . . . . . . 9
| |
| 57 | 56 | 3expb 1266 |
. . . . . . . 8
|
| 58 | 57 | eleq1d 2686 |
. . . . . . 7
|
| 59 | 55, 58 | syl5ib 234 |
. . . . . 6
|
| 60 | resubcl 10345 |
. . . . . . . 8
| |
| 61 | 60 | ancoms 469 |
. . . . . . 7
|
| 62 | 3 | a1i 11 |
. . . . . . . . . 10
|
| 63 | subcl 10280 |
. . . . . . . . . . 11
| |
| 64 | 63 | adantrl 752 |
. . . . . . . . . 10
|
| 65 | subcl 10280 |
. . . . . . . . . . 11
| |
| 66 | 65 | adantrr 753 |
. . . . . . . . . 10
|
| 67 | 62, 64, 66 | subdid 10486 |
. . . . . . . . 9
|
| 68 | nnncan1 10317 |
. . . . . . . . . . . 12
| |
| 69 | 68 | 3com23 1271 |
. . . . . . . . . . 11
|
| 70 | 69 | 3expb 1266 |
. . . . . . . . . 10
|
| 71 | 70 | oveq2d 6666 |
. . . . . . . . 9
|
| 72 | 67, 71 | eqtr3d 2658 |
. . . . . . . 8
|
| 73 | 72 | eleq1d 2686 |
. . . . . . 7
|
| 74 | 61, 73 | syl5ib 234 |
. . . . . 6
|
| 75 | 59, 74 | anim12d 586 |
. . . . 5
|
| 76 | rimul 11011 |
. . . . . 6
| |
| 77 | 76 | a1i 11 |
. . . . 5
|
| 78 | subeq0 10307 |
. . . . . . 7
| |
| 79 | 78 | biimpd 219 |
. . . . . 6
|
| 80 | 79 | adantl 482 |
. . . . 5
|
| 81 | 75, 77, 80 | 3syld 60 |
. . . 4
|
| 82 | 54, 81 | syl5bi 232 |
. . 3
|
| 83 | 82 | ralrimivva 2971 |
. 2
|
| 84 | oveq2 6658 |
. . . . 5
| |
| 85 | 84 | eleq1d 2686 |
. . . 4
|
| 86 | oveq2 6658 |
. . . . . 6
| |
| 87 | 86 | oveq2d 6666 |
. . . . 5
|
| 88 | 87 | eleq1d 2686 |
. . . 4
|
| 89 | 85, 88 | anbi12d 747 |
. . 3
|
| 90 | 89 | reu4 3400 |
. 2
|
| 91 | 53, 83, 90 | sylanbrc 698 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-sep 4781 ax-nul 4789 ax-pow 4843 ax-pr 4906 ax-un 6949 ax-resscn 9993 ax-1cn 9994 ax-icn 9995 ax-addcl 9996 ax-addrcl 9997 ax-mulcl 9998 ax-mulrcl 9999 ax-mulcom 10000 ax-addass 10001 ax-mulass 10002 ax-distr 10003 ax-i2m1 10004 ax-1ne0 10005 ax-1rid 10006 ax-rnegex 10007 ax-rrecex 10008 ax-cnre 10009 ax-pre-lttri 10010 ax-pre-lttrn 10011 ax-pre-ltadd 10012 ax-pre-mulgt0 10013 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3or 1038 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-nel 2898 df-ral 2917 df-rex 2918 df-reu 2919 df-rmo 2920 df-rab 2921 df-v 3202 df-sbc 3436 df-csb 3534 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-nul 3916 df-if 4087 df-pw 4160 df-sn 4178 df-pr 4180 df-op 4184 df-uni 4437 df-br 4654 df-opab 4713 df-mpt 4730 df-id 5024 df-po 5035 df-so 5036 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-rn 5125 df-res 5126 df-ima 5127 df-iota 5851 df-fun 5890 df-fn 5891 df-f 5892 df-f1 5893 df-fo 5894 df-f1o 5895 df-fv 5896 df-riota 6611 df-ov 6653 df-oprab 6654 df-mpt2 6655 df-er 7742 df-en 7956 df-dom 7957 df-sdom 7958 df-pnf 10076 df-mnf 10077 df-xr 10078 df-ltxr 10079 df-le 10080 df-sub 10268 df-neg 10269 df-div 10685 |
| This theorem is referenced by: cjth 13843 cjf 13844 remim 13857 |
| Copyright terms: Public domain | W3C validator |