| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > clatleglb | Structured version Visualization version Unicode version | ||
| Description: Two ways of expressing "less than or equal to the greatest lower bound." (Contributed by NM, 5-Dec-2011.) |
| Ref | Expression |
|---|---|
| clatglb.b |
|
| clatglb.l |
|
| clatglb.g |
|
| Ref | Expression |
|---|---|
| clatleglb |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | clatglb.b |
. . . . . . 7
| |
| 2 | clatglb.l |
. . . . . . 7
| |
| 3 | clatglb.g |
. . . . . . 7
| |
| 4 | 1, 2, 3 | clatglble 17125 |
. . . . . 6
|
| 5 | 4 | 3expa 1265 |
. . . . 5
|
| 6 | 5 | 3adantl2 1218 |
. . . 4
|
| 7 | simpl1 1064 |
. . . . . 6
| |
| 8 | clatl 17116 |
. . . . . 6
| |
| 9 | 7, 8 | syl 17 |
. . . . 5
|
| 10 | simpl2 1065 |
. . . . 5
| |
| 11 | 1, 3 | clatglbcl 17114 |
. . . . . . 7
|
| 12 | 11 | 3adant2 1080 |
. . . . . 6
|
| 13 | 12 | adantr 481 |
. . . . 5
|
| 14 | ssel 3597 |
. . . . . . 7
| |
| 15 | 14 | 3ad2ant3 1084 |
. . . . . 6
|
| 16 | 15 | imp 445 |
. . . . 5
|
| 17 | 1, 2 | lattr 17056 |
. . . . 5
|
| 18 | 9, 10, 13, 16, 17 | syl13anc 1328 |
. . . 4
|
| 19 | 6, 18 | mpan2d 710 |
. . 3
|
| 20 | 19 | ralrimdva 2969 |
. 2
|
| 21 | 1, 2, 3 | clatglb 17124 |
. . . . . . 7
|
| 22 | 21 | simprd 479 |
. . . . . 6
|
| 23 | breq1 4656 |
. . . . . . . . 9
| |
| 24 | 23 | ralbidv 2986 |
. . . . . . . 8
|
| 25 | breq1 4656 |
. . . . . . . 8
| |
| 26 | 24, 25 | imbi12d 334 |
. . . . . . 7
|
| 27 | 26 | rspccv 3306 |
. . . . . 6
|
| 28 | 22, 27 | syl 17 |
. . . . 5
|
| 29 | 28 | ex 450 |
. . . 4
|
| 30 | 29 | com23 86 |
. . 3
|
| 31 | 30 | 3imp 1256 |
. 2
|
| 32 | 20, 31 | impbid 202 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-rep 4771 ax-sep 4781 ax-nul 4789 ax-pow 4843 ax-pr 4906 ax-un 6949 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-ral 2917 df-rex 2918 df-reu 2919 df-rab 2921 df-v 3202 df-sbc 3436 df-csb 3534 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-nul 3916 df-if 4087 df-pw 4160 df-sn 4178 df-pr 4180 df-op 4184 df-uni 4437 df-iun 4522 df-br 4654 df-opab 4713 df-mpt 4730 df-id 5024 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-rn 5125 df-res 5126 df-ima 5127 df-iota 5851 df-fun 5890 df-fn 5891 df-f 5892 df-f1 5893 df-fo 5894 df-f1o 5895 df-fv 5896 df-riota 6611 df-oprab 6654 df-poset 16946 df-lub 16974 df-glb 16975 df-join 16976 df-meet 16977 df-lat 17046 df-clat 17108 |
| This theorem is referenced by: clatglbss 17127 pmapglbx 35055 diaglbN 36344 dihglblem2N 36583 dihglbcpreN 36589 dihglblem6 36629 dochvalr 36646 |
| Copyright terms: Public domain | W3C validator |