| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > cmpcovf | Structured version Visualization version Unicode version | ||
| Description: Combine cmpcov 21192 with ac6sfi 8204 to show the existence of a function that indexes the elements that are generating the open cover. (Contributed by Mario Carneiro, 14-Sep-2014.) |
| Ref | Expression |
|---|---|
| iscmp.1 |
|
| cmpcovf.2 |
|
| Ref | Expression |
|---|---|
| cmpcovf |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpl 473 |
. 2
| |
| 2 | iscmp.1 |
. . 3
| |
| 3 | 2 | cmpcov2 21193 |
. 2
|
| 4 | elfpw 8268 |
. . . 4
| |
| 5 | simplrl 800 |
. . . . . . . 8
| |
| 6 | selpw 4165 |
. . . . . . . 8
| |
| 7 | 5, 6 | sylibr 224 |
. . . . . . 7
|
| 8 | simplrr 801 |
. . . . . . 7
| |
| 9 | 7, 8 | elind 3798 |
. . . . . 6
|
| 10 | simprl 794 |
. . . . . 6
| |
| 11 | simprr 796 |
. . . . . . 7
| |
| 12 | cmpcovf.2 |
. . . . . . . 8
| |
| 13 | 12 | ac6sfi 8204 |
. . . . . . 7
|
| 14 | 8, 11, 13 | syl2anc 693 |
. . . . . 6
|
| 15 | unieq 4444 |
. . . . . . . . 9
| |
| 16 | 15 | eqeq2d 2632 |
. . . . . . . 8
|
| 17 | feq2 6027 |
. . . . . . . . . 10
| |
| 18 | raleq 3138 |
. . . . . . . . . 10
| |
| 19 | 17, 18 | anbi12d 747 |
. . . . . . . . 9
|
| 20 | 19 | exbidv 1850 |
. . . . . . . 8
|
| 21 | 16, 20 | anbi12d 747 |
. . . . . . 7
|
| 22 | 21 | rspcev 3309 |
. . . . . 6
|
| 23 | 9, 10, 14, 22 | syl12anc 1324 |
. . . . 5
|
| 24 | 23 | ex 450 |
. . . 4
|
| 25 | 4, 24 | sylan2b 492 |
. . 3
|
| 26 | 25 | rexlimdva 3031 |
. 2
|
| 27 | 1, 3, 26 | sylc 65 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-sep 4781 ax-nul 4789 ax-pow 4843 ax-pr 4906 ax-un 6949 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3or 1038 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-ral 2917 df-rex 2918 df-rab 2921 df-v 3202 df-sbc 3436 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-pss 3590 df-nul 3916 df-if 4087 df-pw 4160 df-sn 4178 df-pr 4180 df-tp 4182 df-op 4184 df-uni 4437 df-br 4654 df-opab 4713 df-tr 4753 df-id 5024 df-eprel 5029 df-po 5035 df-so 5036 df-fr 5073 df-we 5075 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-rn 5125 df-res 5126 df-ima 5127 df-ord 5726 df-on 5727 df-lim 5728 df-suc 5729 df-iota 5851 df-fun 5890 df-fn 5891 df-f 5892 df-f1 5893 df-fo 5894 df-f1o 5895 df-fv 5896 df-om 7066 df-1o 7560 df-er 7742 df-en 7956 df-fin 7959 df-cmp 21190 |
| This theorem is referenced by: txtube 21443 txcmplem1 21444 txcmplem2 21445 xkococnlem 21462 cnheibor 22754 heicant 33444 |
| Copyright terms: Public domain | W3C validator |