MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  txcmplem2 Structured version   Visualization version   Unicode version

Theorem txcmplem2 21445
Description: Lemma for txcmp 21446. (Contributed by Mario Carneiro, 14-Sep-2014.)
Hypotheses
Ref Expression
txcmp.x  |-  X  = 
U. R
txcmp.y  |-  Y  = 
U. S
txcmp.r  |-  ( ph  ->  R  e.  Comp )
txcmp.s  |-  ( ph  ->  S  e.  Comp )
txcmp.w  |-  ( ph  ->  W  C_  ( R  tX  S ) )
txcmp.u  |-  ( ph  ->  ( X  X.  Y
)  =  U. W
)
Assertion
Ref Expression
txcmplem2  |-  ( ph  ->  E. v  e.  ( ~P W  i^i  Fin ) ( X  X.  Y )  =  U. v )
Distinct variable groups:    v, S    v, Y    v, W    v, X
Allowed substitution hints:    ph( v)    R( v)

Proof of Theorem txcmplem2
Dummy variables  f  u  x  w  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 txcmp.s . . 3  |-  ( ph  ->  S  e.  Comp )
2 txcmp.x . . . . 5  |-  X  = 
U. R
3 txcmp.y . . . . 5  |-  Y  = 
U. S
4 txcmp.r . . . . . 6  |-  ( ph  ->  R  e.  Comp )
54adantr 481 . . . . 5  |-  ( (
ph  /\  x  e.  Y )  ->  R  e.  Comp )
61adantr 481 . . . . 5  |-  ( (
ph  /\  x  e.  Y )  ->  S  e.  Comp )
7 txcmp.w . . . . . 6  |-  ( ph  ->  W  C_  ( R  tX  S ) )
87adantr 481 . . . . 5  |-  ( (
ph  /\  x  e.  Y )  ->  W  C_  ( R  tX  S
) )
9 txcmp.u . . . . . 6  |-  ( ph  ->  ( X  X.  Y
)  =  U. W
)
109adantr 481 . . . . 5  |-  ( (
ph  /\  x  e.  Y )  ->  ( X  X.  Y )  = 
U. W )
11 simpr 477 . . . . 5  |-  ( (
ph  /\  x  e.  Y )  ->  x  e.  Y )
122, 3, 5, 6, 8, 10, 11txcmplem1 21444 . . . 4  |-  ( (
ph  /\  x  e.  Y )  ->  E. u  e.  S  ( x  e.  u  /\  E. v  e.  ( ~P W  i^i  Fin ) ( X  X.  u )  C_  U. v
) )
1312ralrimiva 2966 . . 3  |-  ( ph  ->  A. x  e.  Y  E. u  e.  S  ( x  e.  u  /\  E. v  e.  ( ~P W  i^i  Fin ) ( X  X.  u )  C_  U. v
) )
14 unieq 4444 . . . . 5  |-  ( v  =  ( f `  u )  ->  U. v  =  U. ( f `  u ) )
1514sseq2d 3633 . . . 4  |-  ( v  =  ( f `  u )  ->  (
( X  X.  u
)  C_  U. v  <->  ( X  X.  u ) 
C_  U. ( f `  u ) ) )
163, 15cmpcovf 21194 . . 3  |-  ( ( S  e.  Comp  /\  A. x  e.  Y  E. u  e.  S  (
x  e.  u  /\  E. v  e.  ( ~P W  i^i  Fin )
( X  X.  u
)  C_  U. v
) )  ->  E. w  e.  ( ~P S  i^i  Fin ) ( Y  = 
U. w  /\  E. f ( f : w --> ( ~P W  i^i  Fin )  /\  A. u  e.  w  ( X  X.  u )  C_  U. ( f `  u
) ) ) )
171, 13, 16syl2anc 693 . 2  |-  ( ph  ->  E. w  e.  ( ~P S  i^i  Fin ) ( Y  = 
U. w  /\  E. f ( f : w --> ( ~P W  i^i  Fin )  /\  A. u  e.  w  ( X  X.  u )  C_  U. ( f `  u
) ) ) )
18 simprrl 804 . . . . . . . . . . 11  |-  ( ( ( ph  /\  w  e.  ( ~P S  i^i  Fin ) )  /\  ( Y  =  U. w  /\  ( f : w --> ( ~P W  i^i  Fin )  /\  A. u  e.  w  ( X  X.  u )  C_  U. (
f `  u )
) ) )  -> 
f : w --> ( ~P W  i^i  Fin )
)
19 ffn 6045 . . . . . . . . . . 11  |-  ( f : w --> ( ~P W  i^i  Fin )  ->  f  Fn  w )
20 fniunfv 6505 . . . . . . . . . . 11  |-  ( f  Fn  w  ->  U_ z  e.  w  ( f `  z )  =  U. ran  f )
2118, 19, 203syl 18 . . . . . . . . . 10  |-  ( ( ( ph  /\  w  e.  ( ~P S  i^i  Fin ) )  /\  ( Y  =  U. w  /\  ( f : w --> ( ~P W  i^i  Fin )  /\  A. u  e.  w  ( X  X.  u )  C_  U. (
f `  u )
) ) )  ->  U_ z  e.  w  ( f `  z
)  =  U. ran  f )
22 frn 6053 . . . . . . . . . . . . 13  |-  ( f : w --> ( ~P W  i^i  Fin )  ->  ran  f  C_  ( ~P W  i^i  Fin )
)
2318, 22syl 17 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  w  e.  ( ~P S  i^i  Fin ) )  /\  ( Y  =  U. w  /\  ( f : w --> ( ~P W  i^i  Fin )  /\  A. u  e.  w  ( X  X.  u )  C_  U. (
f `  u )
) ) )  ->  ran  f  C_  ( ~P W  i^i  Fin )
)
24 inss1 3833 . . . . . . . . . . . 12  |-  ( ~P W  i^i  Fin )  C_ 
~P W
2523, 24syl6ss 3615 . . . . . . . . . . 11  |-  ( ( ( ph  /\  w  e.  ( ~P S  i^i  Fin ) )  /\  ( Y  =  U. w  /\  ( f : w --> ( ~P W  i^i  Fin )  /\  A. u  e.  w  ( X  X.  u )  C_  U. (
f `  u )
) ) )  ->  ran  f  C_  ~P W
)
26 sspwuni 4611 . . . . . . . . . . 11  |-  ( ran  f  C_  ~P W  <->  U.
ran  f  C_  W
)
2725, 26sylib 208 . . . . . . . . . 10  |-  ( ( ( ph  /\  w  e.  ( ~P S  i^i  Fin ) )  /\  ( Y  =  U. w  /\  ( f : w --> ( ~P W  i^i  Fin )  /\  A. u  e.  w  ( X  X.  u )  C_  U. (
f `  u )
) ) )  ->  U. ran  f  C_  W
)
2821, 27eqsstrd 3639 . . . . . . . . 9  |-  ( ( ( ph  /\  w  e.  ( ~P S  i^i  Fin ) )  /\  ( Y  =  U. w  /\  ( f : w --> ( ~P W  i^i  Fin )  /\  A. u  e.  w  ( X  X.  u )  C_  U. (
f `  u )
) ) )  ->  U_ z  e.  w  ( f `  z
)  C_  W )
29 vex 3203 . . . . . . . . . . 11  |-  w  e. 
_V
30 fvex 6201 . . . . . . . . . . 11  |-  ( f `
 z )  e. 
_V
3129, 30iunex 7147 . . . . . . . . . 10  |-  U_ z  e.  w  ( f `  z )  e.  _V
3231elpw 4164 . . . . . . . . 9  |-  ( U_ z  e.  w  (
f `  z )  e.  ~P W  <->  U_ z  e.  w  ( f `  z )  C_  W
)
3328, 32sylibr 224 . . . . . . . 8  |-  ( ( ( ph  /\  w  e.  ( ~P S  i^i  Fin ) )  /\  ( Y  =  U. w  /\  ( f : w --> ( ~P W  i^i  Fin )  /\  A. u  e.  w  ( X  X.  u )  C_  U. (
f `  u )
) ) )  ->  U_ z  e.  w  ( f `  z
)  e.  ~P W
)
34 inss2 3834 . . . . . . . . . 10  |-  ( ~P S  i^i  Fin )  C_ 
Fin
35 simplr 792 . . . . . . . . . 10  |-  ( ( ( ph  /\  w  e.  ( ~P S  i^i  Fin ) )  /\  ( Y  =  U. w  /\  ( f : w --> ( ~P W  i^i  Fin )  /\  A. u  e.  w  ( X  X.  u )  C_  U. (
f `  u )
) ) )  ->  w  e.  ( ~P S  i^i  Fin ) )
3634, 35sseldi 3601 . . . . . . . . 9  |-  ( ( ( ph  /\  w  e.  ( ~P S  i^i  Fin ) )  /\  ( Y  =  U. w  /\  ( f : w --> ( ~P W  i^i  Fin )  /\  A. u  e.  w  ( X  X.  u )  C_  U. (
f `  u )
) ) )  ->  w  e.  Fin )
37 inss2 3834 . . . . . . . . . . 11  |-  ( ~P W  i^i  Fin )  C_ 
Fin
38 fss 6056 . . . . . . . . . . 11  |-  ( ( f : w --> ( ~P W  i^i  Fin )  /\  ( ~P W  i^i  Fin )  C_  Fin )  ->  f : w --> Fin )
3918, 37, 38sylancl 694 . . . . . . . . . 10  |-  ( ( ( ph  /\  w  e.  ( ~P S  i^i  Fin ) )  /\  ( Y  =  U. w  /\  ( f : w --> ( ~P W  i^i  Fin )  /\  A. u  e.  w  ( X  X.  u )  C_  U. (
f `  u )
) ) )  -> 
f : w --> Fin )
40 ffvelrn 6357 . . . . . . . . . . 11  |-  ( ( f : w --> Fin  /\  z  e.  w )  ->  ( f `  z
)  e.  Fin )
4140ralrimiva 2966 . . . . . . . . . 10  |-  ( f : w --> Fin  ->  A. z  e.  w  ( f `  z )  e.  Fin )
4239, 41syl 17 . . . . . . . . 9  |-  ( ( ( ph  /\  w  e.  ( ~P S  i^i  Fin ) )  /\  ( Y  =  U. w  /\  ( f : w --> ( ~P W  i^i  Fin )  /\  A. u  e.  w  ( X  X.  u )  C_  U. (
f `  u )
) ) )  ->  A. z  e.  w  ( f `  z
)  e.  Fin )
43 iunfi 8254 . . . . . . . . 9  |-  ( ( w  e.  Fin  /\  A. z  e.  w  ( f `  z )  e.  Fin )  ->  U_ z  e.  w  ( f `  z
)  e.  Fin )
4436, 42, 43syl2anc 693 . . . . . . . 8  |-  ( ( ( ph  /\  w  e.  ( ~P S  i^i  Fin ) )  /\  ( Y  =  U. w  /\  ( f : w --> ( ~P W  i^i  Fin )  /\  A. u  e.  w  ( X  X.  u )  C_  U. (
f `  u )
) ) )  ->  U_ z  e.  w  ( f `  z
)  e.  Fin )
4533, 44elind 3798 . . . . . . 7  |-  ( ( ( ph  /\  w  e.  ( ~P S  i^i  Fin ) )  /\  ( Y  =  U. w  /\  ( f : w --> ( ~P W  i^i  Fin )  /\  A. u  e.  w  ( X  X.  u )  C_  U. (
f `  u )
) ) )  ->  U_ z  e.  w  ( f `  z
)  e.  ( ~P W  i^i  Fin )
)
46 simprl 794 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  w  e.  ( ~P S  i^i  Fin ) )  /\  ( Y  =  U. w  /\  ( f : w --> ( ~P W  i^i  Fin )  /\  A. u  e.  w  ( X  X.  u )  C_  U. (
f `  u )
) ) )  ->  Y  =  U. w
)
47 uniiun 4573 . . . . . . . . . . . . 13  |-  U. w  =  U_ z  e.  w  z
4846, 47syl6eq 2672 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  w  e.  ( ~P S  i^i  Fin ) )  /\  ( Y  =  U. w  /\  ( f : w --> ( ~P W  i^i  Fin )  /\  A. u  e.  w  ( X  X.  u )  C_  U. (
f `  u )
) ) )  ->  Y  =  U_ z  e.  w  z )
4948xpeq2d 5139 . . . . . . . . . . 11  |-  ( ( ( ph  /\  w  e.  ( ~P S  i^i  Fin ) )  /\  ( Y  =  U. w  /\  ( f : w --> ( ~P W  i^i  Fin )  /\  A. u  e.  w  ( X  X.  u )  C_  U. (
f `  u )
) ) )  -> 
( X  X.  Y
)  =  ( X  X.  U_ z  e.  w  z ) )
50 xpiundi 5173 . . . . . . . . . . 11  |-  ( X  X.  U_ z  e.  w  z )  = 
U_ z  e.  w  ( X  X.  z
)
5149, 50syl6eq 2672 . . . . . . . . . 10  |-  ( ( ( ph  /\  w  e.  ( ~P S  i^i  Fin ) )  /\  ( Y  =  U. w  /\  ( f : w --> ( ~P W  i^i  Fin )  /\  A. u  e.  w  ( X  X.  u )  C_  U. (
f `  u )
) ) )  -> 
( X  X.  Y
)  =  U_ z  e.  w  ( X  X.  z ) )
52 simprrr 805 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  w  e.  ( ~P S  i^i  Fin ) )  /\  ( Y  =  U. w  /\  ( f : w --> ( ~P W  i^i  Fin )  /\  A. u  e.  w  ( X  X.  u )  C_  U. (
f `  u )
) ) )  ->  A. u  e.  w  ( X  X.  u
)  C_  U. (
f `  u )
)
53 xpeq2 5129 . . . . . . . . . . . . . 14  |-  ( u  =  z  ->  ( X  X.  u )  =  ( X  X.  z
) )
54 fveq2 6191 . . . . . . . . . . . . . . 15  |-  ( u  =  z  ->  (
f `  u )  =  ( f `  z ) )
5554unieqd 4446 . . . . . . . . . . . . . 14  |-  ( u  =  z  ->  U. (
f `  u )  =  U. ( f `  z ) )
5653, 55sseq12d 3634 . . . . . . . . . . . . 13  |-  ( u  =  z  ->  (
( X  X.  u
)  C_  U. (
f `  u )  <->  ( X  X.  z ) 
C_  U. ( f `  z ) ) )
5756cbvralv 3171 . . . . . . . . . . . 12  |-  ( A. u  e.  w  ( X  X.  u )  C_  U. ( f `  u
)  <->  A. z  e.  w  ( X  X.  z
)  C_  U. (
f `  z )
)
5852, 57sylib 208 . . . . . . . . . . 11  |-  ( ( ( ph  /\  w  e.  ( ~P S  i^i  Fin ) )  /\  ( Y  =  U. w  /\  ( f : w --> ( ~P W  i^i  Fin )  /\  A. u  e.  w  ( X  X.  u )  C_  U. (
f `  u )
) ) )  ->  A. z  e.  w  ( X  X.  z
)  C_  U. (
f `  z )
)
59 ss2iun 4536 . . . . . . . . . . 11  |-  ( A. z  e.  w  ( X  X.  z )  C_  U. ( f `  z
)  ->  U_ z  e.  w  ( X  X.  z )  C_  U_ z  e.  w  U. (
f `  z )
)
6058, 59syl 17 . . . . . . . . . 10  |-  ( ( ( ph  /\  w  e.  ( ~P S  i^i  Fin ) )  /\  ( Y  =  U. w  /\  ( f : w --> ( ~P W  i^i  Fin )  /\  A. u  e.  w  ( X  X.  u )  C_  U. (
f `  u )
) ) )  ->  U_ z  e.  w  ( X  X.  z
)  C_  U_ z  e.  w  U. ( f `
 z ) )
6151, 60eqsstrd 3639 . . . . . . . . 9  |-  ( ( ( ph  /\  w  e.  ( ~P S  i^i  Fin ) )  /\  ( Y  =  U. w  /\  ( f : w --> ( ~P W  i^i  Fin )  /\  A. u  e.  w  ( X  X.  u )  C_  U. (
f `  u )
) ) )  -> 
( X  X.  Y
)  C_  U_ z  e.  w  U. ( f `
 z ) )
6218ffvelrnda 6359 . . . . . . . . . . . . . 14  |-  ( ( ( ( ph  /\  w  e.  ( ~P S  i^i  Fin ) )  /\  ( Y  = 
U. w  /\  (
f : w --> ( ~P W  i^i  Fin )  /\  A. u  e.  w  ( X  X.  u
)  C_  U. (
f `  u )
) ) )  /\  z  e.  w )  ->  ( f `  z
)  e.  ( ~P W  i^i  Fin )
)
6324, 62sseldi 3601 . . . . . . . . . . . . 13  |-  ( ( ( ( ph  /\  w  e.  ( ~P S  i^i  Fin ) )  /\  ( Y  = 
U. w  /\  (
f : w --> ( ~P W  i^i  Fin )  /\  A. u  e.  w  ( X  X.  u
)  C_  U. (
f `  u )
) ) )  /\  z  e.  w )  ->  ( f `  z
)  e.  ~P W
)
64 elpwi 4168 . . . . . . . . . . . . 13  |-  ( ( f `  z )  e.  ~P W  -> 
( f `  z
)  C_  W )
65 uniss 4458 . . . . . . . . . . . . 13  |-  ( ( f `  z ) 
C_  W  ->  U. (
f `  z )  C_ 
U. W )
6663, 64, 653syl 18 . . . . . . . . . . . 12  |-  ( ( ( ( ph  /\  w  e.  ( ~P S  i^i  Fin ) )  /\  ( Y  = 
U. w  /\  (
f : w --> ( ~P W  i^i  Fin )  /\  A. u  e.  w  ( X  X.  u
)  C_  U. (
f `  u )
) ) )  /\  z  e.  w )  ->  U. ( f `  z )  C_  U. W
)
679ad3antrrr 766 . . . . . . . . . . . 12  |-  ( ( ( ( ph  /\  w  e.  ( ~P S  i^i  Fin ) )  /\  ( Y  = 
U. w  /\  (
f : w --> ( ~P W  i^i  Fin )  /\  A. u  e.  w  ( X  X.  u
)  C_  U. (
f `  u )
) ) )  /\  z  e.  w )  ->  ( X  X.  Y
)  =  U. W
)
6866, 67sseqtr4d 3642 . . . . . . . . . . 11  |-  ( ( ( ( ph  /\  w  e.  ( ~P S  i^i  Fin ) )  /\  ( Y  = 
U. w  /\  (
f : w --> ( ~P W  i^i  Fin )  /\  A. u  e.  w  ( X  X.  u
)  C_  U. (
f `  u )
) ) )  /\  z  e.  w )  ->  U. ( f `  z )  C_  ( X  X.  Y ) )
6968ralrimiva 2966 . . . . . . . . . 10  |-  ( ( ( ph  /\  w  e.  ( ~P S  i^i  Fin ) )  /\  ( Y  =  U. w  /\  ( f : w --> ( ~P W  i^i  Fin )  /\  A. u  e.  w  ( X  X.  u )  C_  U. (
f `  u )
) ) )  ->  A. z  e.  w  U. ( f `  z
)  C_  ( X  X.  Y ) )
70 iunss 4561 . . . . . . . . . 10  |-  ( U_ z  e.  w  U. ( f `  z
)  C_  ( X  X.  Y )  <->  A. z  e.  w  U. (
f `  z )  C_  ( X  X.  Y
) )
7169, 70sylibr 224 . . . . . . . . 9  |-  ( ( ( ph  /\  w  e.  ( ~P S  i^i  Fin ) )  /\  ( Y  =  U. w  /\  ( f : w --> ( ~P W  i^i  Fin )  /\  A. u  e.  w  ( X  X.  u )  C_  U. (
f `  u )
) ) )  ->  U_ z  e.  w  U. ( f `  z
)  C_  ( X  X.  Y ) )
7261, 71eqssd 3620 . . . . . . . 8  |-  ( ( ( ph  /\  w  e.  ( ~P S  i^i  Fin ) )  /\  ( Y  =  U. w  /\  ( f : w --> ( ~P W  i^i  Fin )  /\  A. u  e.  w  ( X  X.  u )  C_  U. (
f `  u )
) ) )  -> 
( X  X.  Y
)  =  U_ z  e.  w  U. (
f `  z )
)
73 iuncom4 4528 . . . . . . . 8  |-  U_ z  e.  w  U. (
f `  z )  =  U. U_ z  e.  w  ( f `  z )
7472, 73syl6eq 2672 . . . . . . 7  |-  ( ( ( ph  /\  w  e.  ( ~P S  i^i  Fin ) )  /\  ( Y  =  U. w  /\  ( f : w --> ( ~P W  i^i  Fin )  /\  A. u  e.  w  ( X  X.  u )  C_  U. (
f `  u )
) ) )  -> 
( X  X.  Y
)  =  U. U_ z  e.  w  (
f `  z )
)
75 unieq 4444 . . . . . . . . 9  |-  ( v  =  U_ z  e.  w  ( f `  z )  ->  U. v  =  U. U_ z  e.  w  ( f `  z ) )
7675eqeq2d 2632 . . . . . . . 8  |-  ( v  =  U_ z  e.  w  ( f `  z )  ->  (
( X  X.  Y
)  =  U. v  <->  ( X  X.  Y )  =  U. U_ z  e.  w  ( f `  z ) ) )
7776rspcev 3309 . . . . . . 7  |-  ( (
U_ z  e.  w  ( f `  z
)  e.  ( ~P W  i^i  Fin )  /\  ( X  X.  Y
)  =  U. U_ z  e.  w  (
f `  z )
)  ->  E. v  e.  ( ~P W  i^i  Fin ) ( X  X.  Y )  =  U. v )
7845, 74, 77syl2anc 693 . . . . . 6  |-  ( ( ( ph  /\  w  e.  ( ~P S  i^i  Fin ) )  /\  ( Y  =  U. w  /\  ( f : w --> ( ~P W  i^i  Fin )  /\  A. u  e.  w  ( X  X.  u )  C_  U. (
f `  u )
) ) )  ->  E. v  e.  ( ~P W  i^i  Fin )
( X  X.  Y
)  =  U. v
)
7978expr 643 . . . . 5  |-  ( ( ( ph  /\  w  e.  ( ~P S  i^i  Fin ) )  /\  Y  =  U. w )  -> 
( ( f : w --> ( ~P W  i^i  Fin )  /\  A. u  e.  w  ( X  X.  u )  C_  U. ( f `  u
) )  ->  E. v  e.  ( ~P W  i^i  Fin ) ( X  X.  Y )  =  U. v ) )
8079exlimdv 1861 . . . 4  |-  ( ( ( ph  /\  w  e.  ( ~P S  i^i  Fin ) )  /\  Y  =  U. w )  -> 
( E. f ( f : w --> ( ~P W  i^i  Fin )  /\  A. u  e.  w  ( X  X.  u
)  C_  U. (
f `  u )
)  ->  E. v  e.  ( ~P W  i^i  Fin ) ( X  X.  Y )  =  U. v ) )
8180expimpd 629 . . 3  |-  ( (
ph  /\  w  e.  ( ~P S  i^i  Fin ) )  ->  (
( Y  =  U. w  /\  E. f ( f : w --> ( ~P W  i^i  Fin )  /\  A. u  e.  w  ( X  X.  u
)  C_  U. (
f `  u )
) )  ->  E. v  e.  ( ~P W  i^i  Fin ) ( X  X.  Y )  =  U. v ) )
8281rexlimdva 3031 . 2  |-  ( ph  ->  ( E. w  e.  ( ~P S  i^i  Fin ) ( Y  = 
U. w  /\  E. f ( f : w --> ( ~P W  i^i  Fin )  /\  A. u  e.  w  ( X  X.  u )  C_  U. ( f `  u
) ) )  ->  E. v  e.  ( ~P W  i^i  Fin )
( X  X.  Y
)  =  U. v
) )
8317, 82mpd 15 1  |-  ( ph  ->  E. v  e.  ( ~P W  i^i  Fin ) ( X  X.  Y )  =  U. v )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 384    = wceq 1483   E.wex 1704    e. wcel 1990   A.wral 2912   E.wrex 2913    i^i cin 3573    C_ wss 3574   ~Pcpw 4158   U.cuni 4436   U_ciun 4520    X. cxp 5112   ran crn 5115    Fn wfn 5883   -->wf 5884   ` cfv 5888  (class class class)co 6650   Fincfn 7955   Compccmp 21189    tX ctx 21363
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-iin 4523  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-oadd 7564  df-er 7742  df-en 7956  df-dom 7957  df-fin 7959  df-topgen 16104  df-top 20699  df-bases 20750  df-cmp 21190  df-tx 21365
This theorem is referenced by:  txcmp  21446
  Copyright terms: Public domain W3C validator