MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pwcfsdom Structured version   Visualization version   Unicode version

Theorem pwcfsdom 9405
Description: A corollary of Konig's Theorem konigth 9391. Theorem 11.28 of [TakeutiZaring] p. 108. (Contributed by Mario Carneiro, 20-Mar-2013.)
Hypothesis
Ref Expression
pwcfsdom.1  |-  H  =  ( y  e.  ( cf `  ( aleph `  A ) )  |->  (har
`  ( f `  y ) ) )
Assertion
Ref Expression
pwcfsdom  |-  ( aleph `  A )  ~<  (
( aleph `  A )  ^m  ( cf `  ( aleph `  A ) ) )
Distinct variable group:    A, f, y
Allowed substitution hints:    H( y, f)

Proof of Theorem pwcfsdom
Dummy variables  w  z  x are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 onzsl 7046 . . . 4  |-  ( A  e.  On  <->  ( A  =  (/)  \/  E. x  e.  On  A  =  suc  x  \/  ( A  e.  _V  /\  Lim  A
) ) )
21biimpi 206 . . 3  |-  ( A  e.  On  ->  ( A  =  (/)  \/  E. x  e.  On  A  =  suc  x  \/  ( A  e.  _V  /\  Lim  A ) ) )
3 cfom 9086 . . . . . . 7  |-  ( cf ` 
om )  =  om
4 aleph0 8889 . . . . . . . 8  |-  ( aleph `  (/) )  =  om
54fveq2i 6194 . . . . . . 7  |-  ( cf `  ( aleph `  (/) ) )  =  ( cf `  om )
63, 5, 43eqtr4i 2654 . . . . . 6  |-  ( cf `  ( aleph `  (/) ) )  =  ( aleph `  (/) )
7 fveq2 6191 . . . . . . 7  |-  ( A  =  (/)  ->  ( aleph `  A )  =  (
aleph `  (/) ) )
87fveq2d 6195 . . . . . 6  |-  ( A  =  (/)  ->  ( cf `  ( aleph `  A )
)  =  ( cf `  ( aleph `  (/) ) ) )
96, 8, 73eqtr4a 2682 . . . . 5  |-  ( A  =  (/)  ->  ( cf `  ( aleph `  A )
)  =  ( aleph `  A ) )
10 fvex 6201 . . . . . . . . 9  |-  ( aleph `  A )  e.  _V
1110canth2 8113 . . . . . . . 8  |-  ( aleph `  A )  ~<  ~P ( aleph `  A )
1210pw2en 8067 . . . . . . . 8  |-  ~P ( aleph `  A )  ~~  ( 2o  ^m  ( aleph `  A ) )
13 sdomentr 8094 . . . . . . . 8  |-  ( ( ( aleph `  A )  ~<  ~P ( aleph `  A
)  /\  ~P ( aleph `  A )  ~~  ( 2o  ^m  ( aleph `  A ) ) )  ->  ( aleph `  A )  ~<  ( 2o  ^m  ( aleph `  A
) ) )
1411, 12, 13mp2an 708 . . . . . . 7  |-  ( aleph `  A )  ~<  ( 2o  ^m  ( aleph `  A
) )
15 alephon 8892 . . . . . . . . 9  |-  ( aleph `  A )  e.  On
16 alephgeom 8905 . . . . . . . . . 10  |-  ( A  e.  On  <->  om  C_  ( aleph `  A ) )
17 omelon 8543 . . . . . . . . . . . 12  |-  om  e.  On
18 2onn 7720 . . . . . . . . . . . 12  |-  2o  e.  om
19 onelss 5766 . . . . . . . . . . . 12  |-  ( om  e.  On  ->  ( 2o  e.  om  ->  2o  C_ 
om ) )
2017, 18, 19mp2 9 . . . . . . . . . . 11  |-  2o  C_  om
21 sstr 3611 . . . . . . . . . . 11  |-  ( ( 2o  C_  om  /\  om  C_  ( aleph `  A )
)  ->  2o  C_  ( aleph `  A ) )
2220, 21mpan 706 . . . . . . . . . 10  |-  ( om  C_  ( aleph `  A )  ->  2o  C_  ( aleph `  A ) )
2316, 22sylbi 207 . . . . . . . . 9  |-  ( A  e.  On  ->  2o  C_  ( aleph `  A )
)
24 ssdomg 8001 . . . . . . . . 9  |-  ( (
aleph `  A )  e.  On  ->  ( 2o  C_  ( aleph `  A )  ->  2o  ~<_  ( aleph `  A
) ) )
2515, 23, 24mpsyl 68 . . . . . . . 8  |-  ( A  e.  On  ->  2o  ~<_  ( aleph `  A )
)
26 mapdom1 8125 . . . . . . . 8  |-  ( 2o  ~<_  ( aleph `  A )  ->  ( 2o  ^m  ( aleph `  A ) )  ~<_  ( ( aleph `  A
)  ^m  ( aleph `  A ) ) )
2725, 26syl 17 . . . . . . 7  |-  ( A  e.  On  ->  ( 2o  ^m  ( aleph `  A
) )  ~<_  ( (
aleph `  A )  ^m  ( aleph `  A )
) )
28 sdomdomtr 8093 . . . . . . 7  |-  ( ( ( aleph `  A )  ~<  ( 2o  ^m  ( aleph `  A ) )  /\  ( 2o  ^m  ( aleph `  A )
)  ~<_  ( ( aleph `  A )  ^m  ( aleph `  A ) ) )  ->  ( aleph `  A )  ~<  (
( aleph `  A )  ^m  ( aleph `  A )
) )
2914, 27, 28sylancr 695 . . . . . 6  |-  ( A  e.  On  ->  ( aleph `  A )  ~< 
( ( aleph `  A
)  ^m  ( aleph `  A ) ) )
30 oveq2 6658 . . . . . . 7  |-  ( ( cf `  ( aleph `  A ) )  =  ( aleph `  A )  ->  ( ( aleph `  A
)  ^m  ( cf `  ( aleph `  A )
) )  =  ( ( aleph `  A )  ^m  ( aleph `  A )
) )
3130breq2d 4665 . . . . . 6  |-  ( ( cf `  ( aleph `  A ) )  =  ( aleph `  A )  ->  ( ( aleph `  A
)  ~<  ( ( aleph `  A )  ^m  ( cf `  ( aleph `  A
) ) )  <->  ( aleph `  A )  ~<  (
( aleph `  A )  ^m  ( aleph `  A )
) ) )
3229, 31syl5ibrcom 237 . . . . 5  |-  ( A  e.  On  ->  (
( cf `  ( aleph `  A ) )  =  ( aleph `  A
)  ->  ( aleph `  A )  ~<  (
( aleph `  A )  ^m  ( cf `  ( aleph `  A ) ) ) ) )
339, 32syl5 34 . . . 4  |-  ( A  e.  On  ->  ( A  =  (/)  ->  ( aleph `  A )  ~< 
( ( aleph `  A
)  ^m  ( cf `  ( aleph `  A )
) ) ) )
34 alephreg 9404 . . . . . . 7  |-  ( cf `  ( aleph `  suc  x ) )  =  ( aleph ` 
suc  x )
35 fveq2 6191 . . . . . . . 8  |-  ( A  =  suc  x  -> 
( aleph `  A )  =  ( aleph `  suc  x ) )
3635fveq2d 6195 . . . . . . 7  |-  ( A  =  suc  x  -> 
( cf `  ( aleph `  A ) )  =  ( cf `  ( aleph `  suc  x ) ) )
3734, 36, 353eqtr4a 2682 . . . . . 6  |-  ( A  =  suc  x  -> 
( cf `  ( aleph `  A ) )  =  ( aleph `  A
) )
3837rexlimivw 3029 . . . . 5  |-  ( E. x  e.  On  A  =  suc  x  ->  ( cf `  ( aleph `  A
) )  =  (
aleph `  A ) )
3938, 32syl5 34 . . . 4  |-  ( A  e.  On  ->  ( E. x  e.  On  A  =  suc  x  -> 
( aleph `  A )  ~<  ( ( aleph `  A
)  ^m  ( cf `  ( aleph `  A )
) ) ) )
40 cfsmo 9093 . . . . . 6  |-  ( (
aleph `  A )  e.  On  ->  E. f
( f : ( cf `  ( aleph `  A ) ) --> (
aleph `  A )  /\  Smo  f  /\  A. z  e.  ( aleph `  A ) E. w  e.  ( cf `  ( aleph `  A
) ) z  C_  ( f `  w
) ) )
41 limelon 5788 . . . . . . . . . . 11  |-  ( ( A  e.  _V  /\  Lim  A )  ->  A  e.  On )
42 ffn 6045 . . . . . . . . . . . . . . . 16  |-  ( f : ( cf `  ( aleph `  A ) ) --> ( aleph `  A )  ->  f  Fn  ( cf `  ( aleph `  A )
) )
43 fnrnfv 6242 . . . . . . . . . . . . . . . . 17  |-  ( f  Fn  ( cf `  ( aleph `  A ) )  ->  ran  f  =  { y  |  E. x  e.  ( cf `  ( aleph `  A )
) y  =  ( f `  x ) } )
4443unieqd 4446 . . . . . . . . . . . . . . . 16  |-  ( f  Fn  ( cf `  ( aleph `  A ) )  ->  U. ran  f  = 
U. { y  |  E. x  e.  ( cf `  ( aleph `  A ) ) y  =  ( f `  x ) } )
4542, 44syl 17 . . . . . . . . . . . . . . 15  |-  ( f : ( cf `  ( aleph `  A ) ) --> ( aleph `  A )  ->  U. ran  f  = 
U. { y  |  E. x  e.  ( cf `  ( aleph `  A ) ) y  =  ( f `  x ) } )
46 fvex 6201 . . . . . . . . . . . . . . . 16  |-  ( f `
 x )  e. 
_V
4746dfiun2 4554 . . . . . . . . . . . . . . 15  |-  U_ x  e.  ( cf `  ( aleph `  A ) ) ( f `  x
)  =  U. {
y  |  E. x  e.  ( cf `  ( aleph `  A ) ) y  =  ( f `
 x ) }
4845, 47syl6eqr 2674 . . . . . . . . . . . . . 14  |-  ( f : ( cf `  ( aleph `  A ) ) --> ( aleph `  A )  ->  U. ran  f  = 
U_ x  e.  ( cf `  ( aleph `  A ) ) ( f `  x ) )
4948ad2antrl 764 . . . . . . . . . . . . 13  |-  ( ( A  e.  On  /\  ( f : ( cf `  ( aleph `  A ) ) --> (
aleph `  A )  /\  A. z  e.  ( aleph `  A ) E. w  e.  ( cf `  ( aleph `  A ) ) z  C_  ( f `  w ) ) )  ->  U. ran  f  = 
U_ x  e.  ( cf `  ( aleph `  A ) ) ( f `  x ) )
50 fnfvelrn 6356 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( f  Fn  ( cf `  ( aleph `  A )
)  /\  w  e.  ( cf `  ( aleph `  A ) ) )  ->  ( f `  w )  e.  ran  f )
5142, 50sylan 488 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( f : ( cf `  ( aleph `  A )
) --> ( aleph `  A
)  /\  w  e.  ( cf `  ( aleph `  A ) ) )  ->  ( f `  w )  e.  ran  f )
52 sseq2 3627 . . . . . . . . . . . . . . . . . . . . 21  |-  ( y  =  ( f `  w )  ->  (
z  C_  y  <->  z  C_  ( f `  w
) ) )
5352rspcev 3309 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( f `  w
)  e.  ran  f  /\  z  C_  ( f `
 w ) )  ->  E. y  e.  ran  f  z  C_  y )
5451, 53sylan 488 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( f : ( cf `  ( aleph `  A ) ) --> (
aleph `  A )  /\  w  e.  ( cf `  ( aleph `  A )
) )  /\  z  C_  ( f `  w
) )  ->  E. y  e.  ran  f  z  C_  y )
5554ex 450 . . . . . . . . . . . . . . . . . 18  |-  ( ( f : ( cf `  ( aleph `  A )
) --> ( aleph `  A
)  /\  w  e.  ( cf `  ( aleph `  A ) ) )  ->  ( z  C_  ( f `  w
)  ->  E. y  e.  ran  f  z  C_  y ) )
5655rexlimdva 3031 . . . . . . . . . . . . . . . . 17  |-  ( f : ( cf `  ( aleph `  A ) ) --> ( aleph `  A )  ->  ( E. w  e.  ( cf `  ( aleph `  A ) ) z  C_  ( f `  w )  ->  E. y  e.  ran  f  z  C_  y ) )
5756ralimdv 2963 . . . . . . . . . . . . . . . 16  |-  ( f : ( cf `  ( aleph `  A ) ) --> ( aleph `  A )  ->  ( A. z  e.  ( aleph `  A ) E. w  e.  ( cf `  ( aleph `  A
) ) z  C_  ( f `  w
)  ->  A. z  e.  ( aleph `  A ) E. y  e.  ran  f  z  C_  y ) )
5857imp 445 . . . . . . . . . . . . . . 15  |-  ( ( f : ( cf `  ( aleph `  A )
) --> ( aleph `  A
)  /\  A. z  e.  ( aleph `  A ) E. w  e.  ( cf `  ( aleph `  A
) ) z  C_  ( f `  w
) )  ->  A. z  e.  ( aleph `  A ) E. y  e.  ran  f  z  C_  y )
5958adantl 482 . . . . . . . . . . . . . 14  |-  ( ( A  e.  On  /\  ( f : ( cf `  ( aleph `  A ) ) --> (
aleph `  A )  /\  A. z  e.  ( aleph `  A ) E. w  e.  ( cf `  ( aleph `  A ) ) z  C_  ( f `  w ) ) )  ->  A. z  e.  (
aleph `  A ) E. y  e.  ran  f 
z  C_  y )
60 alephislim 8906 . . . . . . . . . . . . . . . 16  |-  ( A  e.  On  <->  Lim  ( aleph `  A ) )
6160biimpi 206 . . . . . . . . . . . . . . 15  |-  ( A  e.  On  ->  Lim  ( aleph `  A )
)
62 frn 6053 . . . . . . . . . . . . . . . 16  |-  ( f : ( cf `  ( aleph `  A ) ) --> ( aleph `  A )  ->  ran  f  C_  ( aleph `  A ) )
6362adantr 481 . . . . . . . . . . . . . . 15  |-  ( ( f : ( cf `  ( aleph `  A )
) --> ( aleph `  A
)  /\  A. z  e.  ( aleph `  A ) E. w  e.  ( cf `  ( aleph `  A
) ) z  C_  ( f `  w
) )  ->  ran  f  C_  ( aleph `  A
) )
64 coflim 9083 . . . . . . . . . . . . . . 15  |-  ( ( Lim  ( aleph `  A
)  /\  ran  f  C_  ( aleph `  A )
)  ->  ( U. ran  f  =  ( aleph `  A )  <->  A. z  e.  ( aleph `  A ) E. y  e.  ran  f  z  C_  y ) )
6561, 63, 64syl2an 494 . . . . . . . . . . . . . 14  |-  ( ( A  e.  On  /\  ( f : ( cf `  ( aleph `  A ) ) --> (
aleph `  A )  /\  A. z  e.  ( aleph `  A ) E. w  e.  ( cf `  ( aleph `  A ) ) z  C_  ( f `  w ) ) )  ->  ( U. ran  f  =  ( aleph `  A )  <->  A. z  e.  ( aleph `  A ) E. y  e.  ran  f  z  C_  y ) )
6659, 65mpbird 247 . . . . . . . . . . . . 13  |-  ( ( A  e.  On  /\  ( f : ( cf `  ( aleph `  A ) ) --> (
aleph `  A )  /\  A. z  e.  ( aleph `  A ) E. w  e.  ( cf `  ( aleph `  A ) ) z  C_  ( f `  w ) ) )  ->  U. ran  f  =  ( aleph `  A )
)
6749, 66eqtr3d 2658 . . . . . . . . . . . 12  |-  ( ( A  e.  On  /\  ( f : ( cf `  ( aleph `  A ) ) --> (
aleph `  A )  /\  A. z  e.  ( aleph `  A ) E. w  e.  ( cf `  ( aleph `  A ) ) z  C_  ( f `  w ) ) )  ->  U_ x  e.  ( cf `  ( aleph `  A ) ) ( f `  x )  =  ( aleph `  A
) )
68 ffvelrn 6357 . . . . . . . . . . . . . . . . 17  |-  ( ( f : ( cf `  ( aleph `  A )
) --> ( aleph `  A
)  /\  x  e.  ( cf `  ( aleph `  A ) ) )  ->  ( f `  x )  e.  (
aleph `  A ) )
6915oneli 5835 . . . . . . . . . . . . . . . . 17  |-  ( ( f `  x )  e.  ( aleph `  A
)  ->  ( f `  x )  e.  On )
70 harcard 8804 . . . . . . . . . . . . . . . . . . 19  |-  ( card `  (har `  ( f `  x ) ) )  =  (har `  (
f `  x )
)
71 iscard 8801 . . . . . . . . . . . . . . . . . . . 20  |-  ( (
card `  (har `  (
f `  x )
) )  =  (har
`  ( f `  x ) )  <->  ( (har `  ( f `  x
) )  e.  On  /\ 
A. y  e.  (har
`  ( f `  x ) ) y 
~<  (har `  ( f `  x ) ) ) )
7271simprbi 480 . . . . . . . . . . . . . . . . . . 19  |-  ( (
card `  (har `  (
f `  x )
) )  =  (har
`  ( f `  x ) )  ->  A. y  e.  (har `  ( f `  x
) ) y  ~< 
(har `  ( f `  x ) ) )
7370, 72ax-mp 5 . . . . . . . . . . . . . . . . . 18  |-  A. y  e.  (har `  ( f `  x ) ) y 
~<  (har `  ( f `  x ) )
74 domrefg 7990 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( f `  x )  e.  _V  ->  (
f `  x )  ~<_  ( f `  x
) )
7546, 74ax-mp 5 . . . . . . . . . . . . . . . . . . 19  |-  ( f `
 x )  ~<_  ( f `  x )
76 elharval 8468 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( f `  x )  e.  (har `  (
f `  x )
)  <->  ( ( f `
 x )  e.  On  /\  ( f `
 x )  ~<_  ( f `  x ) ) )
7776biimpri 218 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( f `  x
)  e.  On  /\  ( f `  x
)  ~<_  ( f `  x ) )  -> 
( f `  x
)  e.  (har `  ( f `  x
) ) )
7875, 77mpan2 707 . . . . . . . . . . . . . . . . . 18  |-  ( ( f `  x )  e.  On  ->  (
f `  x )  e.  (har `  ( f `  x ) ) )
79 breq1 4656 . . . . . . . . . . . . . . . . . . 19  |-  ( y  =  ( f `  x )  ->  (
y  ~<  (har `  (
f `  x )
)  <->  ( f `  x )  ~<  (har `  ( f `  x
) ) ) )
8079rspccv 3306 . . . . . . . . . . . . . . . . . 18  |-  ( A. y  e.  (har `  (
f `  x )
) y  ~<  (har `  ( f `  x
) )  ->  (
( f `  x
)  e.  (har `  ( f `  x
) )  ->  (
f `  x )  ~<  (har `  ( f `  x ) ) ) )
8173, 78, 80mpsyl 68 . . . . . . . . . . . . . . . . 17  |-  ( ( f `  x )  e.  On  ->  (
f `  x )  ~<  (har `  ( f `  x ) ) )
8268, 69, 813syl 18 . . . . . . . . . . . . . . . 16  |-  ( ( f : ( cf `  ( aleph `  A )
) --> ( aleph `  A
)  /\  x  e.  ( cf `  ( aleph `  A ) ) )  ->  ( f `  x )  ~<  (har `  ( f `  x
) ) )
83 harcl 8466 . . . . . . . . . . . . . . . . . . 19  |-  (har `  ( f `  x
) )  e.  On
84 fveq2 6191 . . . . . . . . . . . . . . . . . . . . 21  |-  ( y  =  x  ->  (
f `  y )  =  ( f `  x ) )
8584fveq2d 6195 . . . . . . . . . . . . . . . . . . . 20  |-  ( y  =  x  ->  (har `  ( f `  y
) )  =  (har
`  ( f `  x ) ) )
86 pwcfsdom.1 . . . . . . . . . . . . . . . . . . . 20  |-  H  =  ( y  e.  ( cf `  ( aleph `  A ) )  |->  (har
`  ( f `  y ) ) )
8785, 86fvmptg 6280 . . . . . . . . . . . . . . . . . . 19  |-  ( ( x  e.  ( cf `  ( aleph `  A )
)  /\  (har `  (
f `  x )
)  e.  On )  ->  ( H `  x )  =  (har
`  ( f `  x ) ) )
8883, 87mpan2 707 . . . . . . . . . . . . . . . . . 18  |-  ( x  e.  ( cf `  ( aleph `  A ) )  ->  ( H `  x )  =  (har
`  ( f `  x ) ) )
8988breq2d 4665 . . . . . . . . . . . . . . . . 17  |-  ( x  e.  ( cf `  ( aleph `  A ) )  ->  ( ( f `
 x )  ~< 
( H `  x
)  <->  ( f `  x )  ~<  (har `  ( f `  x
) ) ) )
9089adantl 482 . . . . . . . . . . . . . . . 16  |-  ( ( f : ( cf `  ( aleph `  A )
) --> ( aleph `  A
)  /\  x  e.  ( cf `  ( aleph `  A ) ) )  ->  ( ( f `
 x )  ~< 
( H `  x
)  <->  ( f `  x )  ~<  (har `  ( f `  x
) ) ) )
9182, 90mpbird 247 . . . . . . . . . . . . . . 15  |-  ( ( f : ( cf `  ( aleph `  A )
) --> ( aleph `  A
)  /\  x  e.  ( cf `  ( aleph `  A ) ) )  ->  ( f `  x )  ~<  ( H `  x )
)
9291ralrimiva 2966 . . . . . . . . . . . . . 14  |-  ( f : ( cf `  ( aleph `  A ) ) --> ( aleph `  A )  ->  A. x  e.  ( cf `  ( aleph `  A ) ) ( f `  x ) 
~<  ( H `  x
) )
93 fvex 6201 . . . . . . . . . . . . . . 15  |-  ( cf `  ( aleph `  A )
)  e.  _V
94 eqid 2622 . . . . . . . . . . . . . . 15  |-  U_ x  e.  ( cf `  ( aleph `  A ) ) ( f `  x
)  =  U_ x  e.  ( cf `  ( aleph `  A ) ) ( f `  x
)
95 eqid 2622 . . . . . . . . . . . . . . 15  |-  X_ x  e.  ( cf `  ( aleph `  A ) ) ( H `  x
)  =  X_ x  e.  ( cf `  ( aleph `  A ) ) ( H `  x
)
9693, 94, 95konigth 9391 . . . . . . . . . . . . . 14  |-  ( A. x  e.  ( cf `  ( aleph `  A )
) ( f `  x )  ~<  ( H `  x )  ->  U_ x  e.  ( cf `  ( aleph `  A ) ) ( f `  x ) 
~<  X_ x  e.  ( cf `  ( aleph `  A ) ) ( H `  x ) )
9792, 96syl 17 . . . . . . . . . . . . 13  |-  ( f : ( cf `  ( aleph `  A ) ) --> ( aleph `  A )  ->  U_ x  e.  ( cf `  ( aleph `  A ) ) ( f `  x ) 
~<  X_ x  e.  ( cf `  ( aleph `  A ) ) ( H `  x ) )
9897ad2antrl 764 . . . . . . . . . . . 12  |-  ( ( A  e.  On  /\  ( f : ( cf `  ( aleph `  A ) ) --> (
aleph `  A )  /\  A. z  e.  ( aleph `  A ) E. w  e.  ( cf `  ( aleph `  A ) ) z  C_  ( f `  w ) ) )  ->  U_ x  e.  ( cf `  ( aleph `  A ) ) ( f `  x ) 
~<  X_ x  e.  ( cf `  ( aleph `  A ) ) ( H `  x ) )
9967, 98eqbrtrrd 4677 . . . . . . . . . . 11  |-  ( ( A  e.  On  /\  ( f : ( cf `  ( aleph `  A ) ) --> (
aleph `  A )  /\  A. z  e.  ( aleph `  A ) E. w  e.  ( cf `  ( aleph `  A ) ) z  C_  ( f `  w ) ) )  ->  ( aleph `  A
)  ~<  X_ x  e.  ( cf `  ( aleph `  A ) ) ( H `  x ) )
10041, 99sylan 488 . . . . . . . . . 10  |-  ( ( ( A  e.  _V  /\ 
Lim  A )  /\  ( f : ( cf `  ( aleph `  A ) ) --> (
aleph `  A )  /\  A. z  e.  ( aleph `  A ) E. w  e.  ( cf `  ( aleph `  A ) ) z  C_  ( f `  w ) ) )  ->  ( aleph `  A
)  ~<  X_ x  e.  ( cf `  ( aleph `  A ) ) ( H `  x ) )
101 ovex 6678 . . . . . . . . . . . 12  |-  ( (
aleph `  A )  ^m  ( cf `  ( aleph `  A ) ) )  e.  _V
10268ex 450 . . . . . . . . . . . . . . . 16  |-  ( f : ( cf `  ( aleph `  A ) ) --> ( aleph `  A )  ->  ( x  e.  ( cf `  ( aleph `  A ) )  -> 
( f `  x
)  e.  ( aleph `  A ) ) )
103 alephlim 8890 . . . . . . . . . . . . . . . . . 18  |-  ( ( A  e.  _V  /\  Lim  A )  ->  ( aleph `  A )  = 
U_ y  e.  A  ( aleph `  y )
)
104103eleq2d 2687 . . . . . . . . . . . . . . . . 17  |-  ( ( A  e.  _V  /\  Lim  A )  ->  (
( f `  x
)  e.  ( aleph `  A )  <->  ( f `  x )  e.  U_ y  e.  A  ( aleph `  y ) ) )
105 eliun 4524 . . . . . . . . . . . . . . . . . . 19  |-  ( ( f `  x )  e.  U_ y  e.  A  ( aleph `  y
)  <->  E. y  e.  A  ( f `  x
)  e.  ( aleph `  y ) )
106 alephcard 8893 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( card `  ( aleph `  y )
)  =  ( aleph `  y )
107106eleq2i 2693 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ( f `  x )  e.  ( card `  ( aleph `  y ) )  <-> 
( f `  x
)  e.  ( aleph `  y ) )
108 cardsdomelir 8799 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ( f `  x )  e.  ( card `  ( aleph `  y ) )  ->  ( f `  x )  ~<  ( aleph `  y ) )
109107, 108sylbir 225 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( f `  x )  e.  ( aleph `  y
)  ->  ( f `  x )  ~<  ( aleph `  y ) )
110 elharval 8468 . . . . . . . . . . . . . . . . . . . . . . . . . . 27  |-  ( (
aleph `  y )  e.  (har `  ( f `  x ) )  <->  ( ( aleph `  y )  e.  On  /\  ( aleph `  y )  ~<_  ( f `
 x ) ) )
111110simprbi 480 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( (
aleph `  y )  e.  (har `  ( f `  x ) )  -> 
( aleph `  y )  ~<_  ( f `  x
) )
112 domnsym 8086 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( (
aleph `  y )  ~<_  ( f `  x )  ->  -.  ( f `  x )  ~<  ( aleph `  y ) )
113111, 112syl 17 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( (
aleph `  y )  e.  (har `  ( f `  x ) )  ->  -.  ( f `  x
)  ~<  ( aleph `  y
) )
114113con2i 134 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ( f `  x ) 
~<  ( aleph `  y )  ->  -.  ( aleph `  y
)  e.  (har `  ( f `  x
) ) )
115 alephon 8892 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( aleph `  y )  e.  On
116 ontri1 5757 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( ( (har `  ( f `  x ) )  e.  On  /\  ( aleph `  y )  e.  On )  ->  ( (har `  ( f `  x
) )  C_  ( aleph `  y )  <->  -.  ( aleph `  y )  e.  (har `  ( f `  x ) ) ) )
11783, 115, 116mp2an 708 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( (har
`  ( f `  x ) )  C_  ( aleph `  y )  <->  -.  ( aleph `  y )  e.  (har `  ( f `  x ) ) )
118114, 117sylibr 224 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( f `  x ) 
~<  ( aleph `  y )  ->  (har `  ( f `  x ) )  C_  ( aleph `  y )
)
119109, 118syl 17 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( f `  x )  e.  ( aleph `  y
)  ->  (har `  (
f `  x )
)  C_  ( aleph `  y ) )
120 alephord2i 8900 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( A  e.  On  ->  (
y  e.  A  -> 
( aleph `  y )  e.  ( aleph `  A )
) )
121120imp 445 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( A  e.  On  /\  y  e.  A )  ->  ( aleph `  y )  e.  ( aleph `  A )
)
122 ontr2 5772 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( (har `  ( f `  x ) )  e.  On  /\  ( aleph `  A )  e.  On )  ->  ( ( (har
`  ( f `  x ) )  C_  ( aleph `  y )  /\  ( aleph `  y )  e.  ( aleph `  A )
)  ->  (har `  (
f `  x )
)  e.  ( aleph `  A ) ) )
12383, 15, 122mp2an 708 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( (har `  ( f `  x ) )  C_  ( aleph `  y )  /\  ( aleph `  y )  e.  ( aleph `  A )
)  ->  (har `  (
f `  x )
)  e.  ( aleph `  A ) )
124119, 121, 123syl2anr 495 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( A  e.  On  /\  y  e.  A )  /\  ( f `  x )  e.  (
aleph `  y ) )  ->  (har `  (
f `  x )
)  e.  ( aleph `  A ) )
125124exp31 630 . . . . . . . . . . . . . . . . . . . 20  |-  ( A  e.  On  ->  (
y  e.  A  -> 
( ( f `  x )  e.  (
aleph `  y )  -> 
(har `  ( f `  x ) )  e.  ( aleph `  A )
) ) )
126125rexlimdv 3030 . . . . . . . . . . . . . . . . . . 19  |-  ( A  e.  On  ->  ( E. y  e.  A  ( f `  x
)  e.  ( aleph `  y )  ->  (har `  ( f `  x
) )  e.  (
aleph `  A ) ) )
127105, 126syl5bi 232 . . . . . . . . . . . . . . . . . 18  |-  ( A  e.  On  ->  (
( f `  x
)  e.  U_ y  e.  A  ( aleph `  y )  ->  (har `  ( f `  x
) )  e.  (
aleph `  A ) ) )
12841, 127syl 17 . . . . . . . . . . . . . . . . 17  |-  ( ( A  e.  _V  /\  Lim  A )  ->  (
( f `  x
)  e.  U_ y  e.  A  ( aleph `  y )  ->  (har `  ( f `  x
) )  e.  (
aleph `  A ) ) )
129104, 128sylbid 230 . . . . . . . . . . . . . . . 16  |-  ( ( A  e.  _V  /\  Lim  A )  ->  (
( f `  x
)  e.  ( aleph `  A )  ->  (har `  ( f `  x
) )  e.  (
aleph `  A ) ) )
130102, 129sylan9r 690 . . . . . . . . . . . . . . 15  |-  ( ( ( A  e.  _V  /\ 
Lim  A )  /\  f : ( cf `  ( aleph `  A ) ) --> ( aleph `  A )
)  ->  ( x  e.  ( cf `  ( aleph `  A ) )  ->  (har `  (
f `  x )
)  e.  ( aleph `  A ) ) )
131130imp 445 . . . . . . . . . . . . . 14  |-  ( ( ( ( A  e. 
_V  /\  Lim  A )  /\  f : ( cf `  ( aleph `  A ) ) --> (
aleph `  A ) )  /\  x  e.  ( cf `  ( aleph `  A ) ) )  ->  (har `  (
f `  x )
)  e.  ( aleph `  A ) )
13285cbvmptv 4750 . . . . . . . . . . . . . . 15  |-  ( y  e.  ( cf `  ( aleph `  A ) ) 
|->  (har `  ( f `  y ) ) )  =  ( x  e.  ( cf `  ( aleph `  A ) ) 
|->  (har `  ( f `  x ) ) )
13386, 132eqtri 2644 . . . . . . . . . . . . . 14  |-  H  =  ( x  e.  ( cf `  ( aleph `  A ) )  |->  (har
`  ( f `  x ) ) )
134131, 133fmptd 6385 . . . . . . . . . . . . 13  |-  ( ( ( A  e.  _V  /\ 
Lim  A )  /\  f : ( cf `  ( aleph `  A ) ) --> ( aleph `  A )
)  ->  H :
( cf `  ( aleph `  A ) ) --> ( aleph `  A )
)
135 ffvelrn 6357 . . . . . . . . . . . . . . 15  |-  ( ( H : ( cf `  ( aleph `  A )
) --> ( aleph `  A
)  /\  x  e.  ( cf `  ( aleph `  A ) ) )  ->  ( H `  x )  e.  (
aleph `  A ) )
136 onelss 5766 . . . . . . . . . . . . . . 15  |-  ( (
aleph `  A )  e.  On  ->  ( ( H `  x )  e.  ( aleph `  A )  ->  ( H `  x
)  C_  ( aleph `  A ) ) )
13715, 135, 136mpsyl 68 . . . . . . . . . . . . . 14  |-  ( ( H : ( cf `  ( aleph `  A )
) --> ( aleph `  A
)  /\  x  e.  ( cf `  ( aleph `  A ) ) )  ->  ( H `  x )  C_  ( aleph `  A ) )
138137ralrimiva 2966 . . . . . . . . . . . . 13  |-  ( H : ( cf `  ( aleph `  A ) ) --> ( aleph `  A )  ->  A. x  e.  ( cf `  ( aleph `  A ) ) ( H `  x ) 
C_  ( aleph `  A
) )
139 ss2ixp 7921 . . . . . . . . . . . . . 14  |-  ( A. x  e.  ( cf `  ( aleph `  A )
) ( H `  x )  C_  ( aleph `  A )  ->  X_ x  e.  ( cf `  ( aleph `  A )
) ( H `  x )  C_  X_ x  e.  ( cf `  ( aleph `  A ) ) ( aleph `  A )
)
14093, 10ixpconst 7918 . . . . . . . . . . . . . 14  |-  X_ x  e.  ( cf `  ( aleph `  A ) ) ( aleph `  A )  =  ( ( aleph `  A )  ^m  ( cf `  ( aleph `  A
) ) )
141139, 140syl6sseq 3651 . . . . . . . . . . . . 13  |-  ( A. x  e.  ( cf `  ( aleph `  A )
) ( H `  x )  C_  ( aleph `  A )  ->  X_ x  e.  ( cf `  ( aleph `  A )
) ( H `  x )  C_  (
( aleph `  A )  ^m  ( cf `  ( aleph `  A ) ) ) )
142134, 138, 1413syl 18 . . . . . . . . . . . 12  |-  ( ( ( A  e.  _V  /\ 
Lim  A )  /\  f : ( cf `  ( aleph `  A ) ) --> ( aleph `  A )
)  ->  X_ x  e.  ( cf `  ( aleph `  A ) ) ( H `  x
)  C_  ( ( aleph `  A )  ^m  ( cf `  ( aleph `  A ) ) ) )
143 ssdomg 8001 . . . . . . . . . . . 12  |-  ( ( ( aleph `  A )  ^m  ( cf `  ( aleph `  A ) ) )  e.  _V  ->  (
X_ x  e.  ( cf `  ( aleph `  A ) ) ( H `  x ) 
C_  ( ( aleph `  A )  ^m  ( cf `  ( aleph `  A
) ) )  ->  X_ x  e.  ( cf `  ( aleph `  A )
) ( H `  x )  ~<_  ( (
aleph `  A )  ^m  ( cf `  ( aleph `  A ) ) ) ) )
144101, 142, 143mpsyl 68 . . . . . . . . . . 11  |-  ( ( ( A  e.  _V  /\ 
Lim  A )  /\  f : ( cf `  ( aleph `  A ) ) --> ( aleph `  A )
)  ->  X_ x  e.  ( cf `  ( aleph `  A ) ) ( H `  x
)  ~<_  ( ( aleph `  A )  ^m  ( cf `  ( aleph `  A
) ) ) )
145144adantrr 753 . . . . . . . . . 10  |-  ( ( ( A  e.  _V  /\ 
Lim  A )  /\  ( f : ( cf `  ( aleph `  A ) ) --> (
aleph `  A )  /\  A. z  e.  ( aleph `  A ) E. w  e.  ( cf `  ( aleph `  A ) ) z  C_  ( f `  w ) ) )  ->  X_ x  e.  ( cf `  ( aleph `  A ) ) ( H `  x )  ~<_  ( ( aleph `  A
)  ^m  ( cf `  ( aleph `  A )
) ) )
146 sdomdomtr 8093 . . . . . . . . . 10  |-  ( ( ( aleph `  A )  ~< 
X_ x  e.  ( cf `  ( aleph `  A ) ) ( H `  x )  /\  X_ x  e.  ( cf `  ( aleph `  A ) ) ( H `  x )  ~<_  ( ( aleph `  A
)  ^m  ( cf `  ( aleph `  A )
) ) )  -> 
( aleph `  A )  ~<  ( ( aleph `  A
)  ^m  ( cf `  ( aleph `  A )
) ) )
147100, 145, 146syl2anc 693 . . . . . . . . 9  |-  ( ( ( A  e.  _V  /\ 
Lim  A )  /\  ( f : ( cf `  ( aleph `  A ) ) --> (
aleph `  A )  /\  A. z  e.  ( aleph `  A ) E. w  e.  ( cf `  ( aleph `  A ) ) z  C_  ( f `  w ) ) )  ->  ( aleph `  A
)  ~<  ( ( aleph `  A )  ^m  ( cf `  ( aleph `  A
) ) ) )
148147expcom 451 . . . . . . . 8  |-  ( ( f : ( cf `  ( aleph `  A )
) --> ( aleph `  A
)  /\  A. z  e.  ( aleph `  A ) E. w  e.  ( cf `  ( aleph `  A
) ) z  C_  ( f `  w
) )  ->  (
( A  e.  _V  /\ 
Lim  A )  -> 
( aleph `  A )  ~<  ( ( aleph `  A
)  ^m  ( cf `  ( aleph `  A )
) ) ) )
1491483adant2 1080 . . . . . . 7  |-  ( ( f : ( cf `  ( aleph `  A )
) --> ( aleph `  A
)  /\  Smo  f  /\  A. z  e.  ( aleph `  A ) E. w  e.  ( cf `  ( aleph `  A ) ) z  C_  ( f `  w ) )  -> 
( ( A  e. 
_V  /\  Lim  A )  ->  ( aleph `  A
)  ~<  ( ( aleph `  A )  ^m  ( cf `  ( aleph `  A
) ) ) ) )
150149exlimiv 1858 . . . . . 6  |-  ( E. f ( f : ( cf `  ( aleph `  A ) ) --> ( aleph `  A )  /\  Smo  f  /\  A. z  e.  ( aleph `  A ) E. w  e.  ( cf `  ( aleph `  A ) ) z  C_  ( f `  w ) )  -> 
( ( A  e. 
_V  /\  Lim  A )  ->  ( aleph `  A
)  ~<  ( ( aleph `  A )  ^m  ( cf `  ( aleph `  A
) ) ) ) )
15115, 40, 150mp2b 10 . . . . 5  |-  ( ( A  e.  _V  /\  Lim  A )  ->  ( aleph `  A )  ~< 
( ( aleph `  A
)  ^m  ( cf `  ( aleph `  A )
) ) )
152151a1i 11 . . . 4  |-  ( A  e.  On  ->  (
( A  e.  _V  /\ 
Lim  A )  -> 
( aleph `  A )  ~<  ( ( aleph `  A
)  ^m  ( cf `  ( aleph `  A )
) ) ) )
15333, 39, 1523jaod 1392 . . 3  |-  ( A  e.  On  ->  (
( A  =  (/)  \/ 
E. x  e.  On  A  =  suc  x  \/  ( A  e.  _V  /\ 
Lim  A ) )  ->  ( aleph `  A
)  ~<  ( ( aleph `  A )  ^m  ( cf `  ( aleph `  A
) ) ) ) )
1542, 153mpd 15 . 2  |-  ( A  e.  On  ->  ( aleph `  A )  ~< 
( ( aleph `  A
)  ^m  ( cf `  ( aleph `  A )
) ) )
155 alephfnon 8888 . . . . 5  |-  aleph  Fn  On
156 fndm 5990 . . . . 5  |-  ( aleph  Fn  On  ->  dom  aleph  =  On )
157155, 156ax-mp 5 . . . 4  |-  dom  aleph  =  On
158157eleq2i 2693 . . 3  |-  ( A  e.  dom  aleph  <->  A  e.  On )
159 ndmfv 6218 . . . 4  |-  ( -.  A  e.  dom  aleph  ->  ( aleph `  A )  =  (/) )
160 1n0 7575 . . . . . 6  |-  1o  =/=  (/)
161 1on 7567 . . . . . . . 8  |-  1o  e.  On
162161elexi 3213 . . . . . . 7  |-  1o  e.  _V
1631620sdom 8091 . . . . . 6  |-  ( (/)  ~<  1o 
<->  1o  =/=  (/) )
164160, 163mpbir 221 . . . . 5  |-  (/)  ~<  1o
165 id 22 . . . . . 6  |-  ( (
aleph `  A )  =  (/)  ->  ( aleph `  A
)  =  (/) )
166 fveq2 6191 . . . . . . . . 9  |-  ( (
aleph `  A )  =  (/)  ->  ( cf `  ( aleph `  A ) )  =  ( cf `  (/) ) )
167 cf0 9073 . . . . . . . . 9  |-  ( cf `  (/) )  =  (/)
168166, 167syl6eq 2672 . . . . . . . 8  |-  ( (
aleph `  A )  =  (/)  ->  ( cf `  ( aleph `  A ) )  =  (/) )
169165, 168oveq12d 6668 . . . . . . 7  |-  ( (
aleph `  A )  =  (/)  ->  ( ( aleph `  A )  ^m  ( cf `  ( aleph `  A
) ) )  =  ( (/)  ^m  (/) ) )
170 0ex 4790 . . . . . . . 8  |-  (/)  e.  _V
171 map0e 7895 . . . . . . . 8  |-  ( (/)  e.  _V  ->  ( (/)  ^m  (/) )  =  1o )
172170, 171ax-mp 5 . . . . . . 7  |-  ( (/)  ^m  (/) )  =  1o
173169, 172syl6eq 2672 . . . . . 6  |-  ( (
aleph `  A )  =  (/)  ->  ( ( aleph `  A )  ^m  ( cf `  ( aleph `  A
) ) )  =  1o )
174165, 173breq12d 4666 . . . . 5  |-  ( (
aleph `  A )  =  (/)  ->  ( ( aleph `  A )  ~<  (
( aleph `  A )  ^m  ( cf `  ( aleph `  A ) ) )  <->  (/)  ~<  1o )
)
175164, 174mpbiri 248 . . . 4  |-  ( (
aleph `  A )  =  (/)  ->  ( aleph `  A
)  ~<  ( ( aleph `  A )  ^m  ( cf `  ( aleph `  A
) ) ) )
176159, 175syl 17 . . 3  |-  ( -.  A  e.  dom  aleph  ->  ( aleph `  A )  ~< 
( ( aleph `  A
)  ^m  ( cf `  ( aleph `  A )
) ) )
177158, 176sylnbir 321 . 2  |-  ( -.  A  e.  On  ->  (
aleph `  A )  ~< 
( ( aleph `  A
)  ^m  ( cf `  ( aleph `  A )
) ) )
178154, 177pm2.61i 176 1  |-  ( aleph `  A )  ~<  (
( aleph `  A )  ^m  ( cf `  ( aleph `  A ) ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 196    /\ wa 384    \/ w3o 1036    /\ w3a 1037    = wceq 1483   E.wex 1704    e. wcel 1990   {cab 2608    =/= wne 2794   A.wral 2912   E.wrex 2913   _Vcvv 3200    C_ wss 3574   (/)c0 3915   ~Pcpw 4158   U.cuni 4436   U_ciun 4520   class class class wbr 4653    |-> cmpt 4729   dom cdm 5114   ran crn 5115   Oncon0 5723   Lim wlim 5724   suc csuc 5725    Fn wfn 5883   -->wf 5884   ` cfv 5888  (class class class)co 6650   omcom 7065   Smo wsmo 7442   1oc1o 7553   2oc2o 7554    ^m cmap 7857   X_cixp 7908    ~~ cen 7952    ~<_ cdom 7953    ~< csdm 7954  harchar 8461   cardccrd 8761   alephcale 8762   cfccf 8763
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-inf2 8538  ax-ac2 9285
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-iin 4523  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-se 5074  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-isom 5897  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-smo 7443  df-recs 7468  df-rdg 7506  df-1o 7560  df-2o 7561  df-oadd 7564  df-er 7742  df-map 7859  df-ixp 7909  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-oi 8415  df-har 8463  df-card 8765  df-aleph 8766  df-cf 8767  df-acn 8768  df-ac 8939
This theorem is referenced by:  cfpwsdom  9406  tskcard  9603  bj-pwcfsdom  33022
  Copyright terms: Public domain W3C validator