| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > cru | Structured version Visualization version Unicode version | ||
| Description: The representation of complex numbers in terms of real and imaginary parts is unique. Proposition 10-1.3 of [Gleason] p. 130. (Contributed by NM, 9-May-1999.) (Proof shortened by Mario Carneiro, 27-May-2016.) |
| Ref | Expression |
|---|---|
| cru |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simplrl 800 |
. . . . . . 7
| |
| 2 | 1 | recnd 10068 |
. . . . . 6
|
| 3 | simplll 798 |
. . . . . . 7
| |
| 4 | 3 | recnd 10068 |
. . . . . 6
|
| 5 | simpr 477 |
. . . . . . . 8
| |
| 6 | ax-icn 9995 |
. . . . . . . . . . 11
| |
| 7 | 6 | a1i 11 |
. . . . . . . . . 10
|
| 8 | simpllr 799 |
. . . . . . . . . . 11
| |
| 9 | 8 | recnd 10068 |
. . . . . . . . . 10
|
| 10 | 7, 9 | mulcld 10060 |
. . . . . . . . 9
|
| 11 | simplrr 801 |
. . . . . . . . . . 11
| |
| 12 | 11 | recnd 10068 |
. . . . . . . . . 10
|
| 13 | 7, 12 | mulcld 10060 |
. . . . . . . . 9
|
| 14 | 4, 10, 2, 13 | addsubeq4d 10443 |
. . . . . . . 8
|
| 15 | 5, 14 | mpbid 222 |
. . . . . . 7
|
| 16 | 8, 11 | resubcld 10458 |
. . . . . . . . . . 11
|
| 17 | 7, 9, 12 | subdid 10486 |
. . . . . . . . . . . . 13
|
| 18 | 17, 15 | eqtr4d 2659 |
. . . . . . . . . . . 12
|
| 19 | 1, 3 | resubcld 10458 |
. . . . . . . . . . . 12
|
| 20 | 18, 19 | eqeltrd 2701 |
. . . . . . . . . . 11
|
| 21 | rimul 11011 |
. . . . . . . . . . 11
| |
| 22 | 16, 20, 21 | syl2anc 693 |
. . . . . . . . . 10
|
| 23 | 9, 12, 22 | subeq0d 10400 |
. . . . . . . . 9
|
| 24 | 23 | oveq2d 6666 |
. . . . . . . 8
|
| 25 | 24 | oveq1d 6665 |
. . . . . . 7
|
| 26 | 13 | subidd 10380 |
. . . . . . 7
|
| 27 | 15, 25, 26 | 3eqtrd 2660 |
. . . . . 6
|
| 28 | 2, 4, 27 | subeq0d 10400 |
. . . . 5
|
| 29 | 28 | eqcomd 2628 |
. . . 4
|
| 30 | 29, 23 | jca 554 |
. . 3
|
| 31 | 30 | ex 450 |
. 2
|
| 32 | oveq2 6658 |
. . 3
| |
| 33 | oveq12 6659 |
. . 3
| |
| 34 | 32, 33 | sylan2 491 |
. 2
|
| 35 | 31, 34 | impbid1 215 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-sep 4781 ax-nul 4789 ax-pow 4843 ax-pr 4906 ax-un 6949 ax-resscn 9993 ax-1cn 9994 ax-icn 9995 ax-addcl 9996 ax-addrcl 9997 ax-mulcl 9998 ax-mulrcl 9999 ax-mulcom 10000 ax-addass 10001 ax-mulass 10002 ax-distr 10003 ax-i2m1 10004 ax-1ne0 10005 ax-1rid 10006 ax-rnegex 10007 ax-rrecex 10008 ax-cnre 10009 ax-pre-lttri 10010 ax-pre-lttrn 10011 ax-pre-ltadd 10012 ax-pre-mulgt0 10013 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3or 1038 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-nel 2898 df-ral 2917 df-rex 2918 df-reu 2919 df-rmo 2920 df-rab 2921 df-v 3202 df-sbc 3436 df-csb 3534 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-nul 3916 df-if 4087 df-pw 4160 df-sn 4178 df-pr 4180 df-op 4184 df-uni 4437 df-br 4654 df-opab 4713 df-mpt 4730 df-id 5024 df-po 5035 df-so 5036 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-rn 5125 df-res 5126 df-ima 5127 df-iota 5851 df-fun 5890 df-fn 5891 df-f 5892 df-f1 5893 df-fo 5894 df-f1o 5895 df-fv 5896 df-riota 6611 df-ov 6653 df-oprab 6654 df-mpt2 6655 df-er 7742 df-en 7956 df-dom 7957 df-sdom 7958 df-pnf 10076 df-mnf 10077 df-xr 10078 df-ltxr 10079 df-le 10080 df-sub 10268 df-neg 10269 df-div 10685 |
| This theorem is referenced by: crne0 11013 creur 11014 creui 11015 cnref1o 11827 efieq 14893 |
| Copyright terms: Public domain | W3C validator |