![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > grpbn0 | Structured version Visualization version Unicode version |
Description: The base set of a group is not empty. (Contributed by Szymon Jaroszewicz, 3-Apr-2007.) |
Ref | Expression |
---|---|
grpbn0.b |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Ref | Expression |
---|---|
grpbn0 |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | grpbn0.b |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
2 | eqid 2622 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
3 | 1, 2 | grpidcl 17450 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
4 | ne0i 3921 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
5 | 3, 4 | syl 17 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff setvar class |
Syntax hints: ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-sep 4781 ax-nul 4789 ax-pow 4843 ax-pr 4906 |
This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-ral 2917 df-rex 2918 df-reu 2919 df-rmo 2920 df-rab 2921 df-v 3202 df-sbc 3436 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-nul 3916 df-if 4087 df-sn 4178 df-pr 4180 df-op 4184 df-uni 4437 df-br 4654 df-opab 4713 df-mpt 4730 df-id 5024 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-iota 5851 df-fun 5890 df-fv 5896 df-riota 6611 df-ov 6653 df-0g 16102 df-mgm 17242 df-sgrp 17284 df-mnd 17295 df-grp 17425 |
This theorem is referenced by: grpn0 17454 dfgrp3 17514 issubg2 17609 grpissubg 17614 ghmrn 17673 gexcl3 18002 gexcl2 18004 sylow1lem1 18013 sylow1lem3 18015 sylow1lem5 18017 pgpfi 18020 pgpfi2 18021 sylow2blem3 18037 slwhash 18039 fislw 18040 gexex 18256 lt6abl 18296 ablfac1lem 18467 ablfac1b 18469 ablfac1c 18470 ablfac1eu 18472 pgpfac1lem2 18474 pgpfac1lem3a 18475 ablfaclem3 18486 dvdsr02 18656 lmodbn0 18873 lmodsn0 18876 rmodislmodlem 18930 rmodislmod 18931 islss3 18959 0ringnnzr 19269 isclmp 22897 dfacbasgrp 37678 |
Copyright terms: Public domain | W3C validator |