MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dom2lem Structured version   Visualization version   Unicode version

Theorem dom2lem 7995
Description: A mapping (first hypothesis) that is one-to-one (second hypothesis) implies its domain is dominated by its codomain. (Contributed by NM, 24-Jul-2004.)
Hypotheses
Ref Expression
dom2d.1  |-  ( ph  ->  ( x  e.  A  ->  C  e.  B ) )
dom2d.2  |-  ( ph  ->  ( ( x  e.  A  /\  y  e.  A )  ->  ( C  =  D  <->  x  =  y ) ) )
Assertion
Ref Expression
dom2lem  |-  ( ph  ->  ( x  e.  A  |->  C ) : A -1-1-> B )
Distinct variable groups:    x, y, A    x, B, y    y, C    x, D    ph, x, y
Allowed substitution hints:    C( x)    D( y)

Proof of Theorem dom2lem
StepHypRef Expression
1 dom2d.1 . . . 4  |-  ( ph  ->  ( x  e.  A  ->  C  e.  B ) )
21ralrimiv 2965 . . 3  |-  ( ph  ->  A. x  e.  A  C  e.  B )
3 eqid 2622 . . . 4  |-  ( x  e.  A  |->  C )  =  ( x  e.  A  |->  C )
43fmpt 6381 . . 3  |-  ( A. x  e.  A  C  e.  B  <->  ( x  e.  A  |->  C ) : A --> B )
52, 4sylib 208 . 2  |-  ( ph  ->  ( x  e.  A  |->  C ) : A --> B )
61imp 445 . . . . . . 7  |-  ( (
ph  /\  x  e.  A )  ->  C  e.  B )
73fvmpt2 6291 . . . . . . . 8  |-  ( ( x  e.  A  /\  C  e.  B )  ->  ( ( x  e.  A  |->  C ) `  x )  =  C )
87adantll 750 . . . . . . 7  |-  ( ( ( ph  /\  x  e.  A )  /\  C  e.  B )  ->  (
( x  e.  A  |->  C ) `  x
)  =  C )
96, 8mpdan 702 . . . . . 6  |-  ( (
ph  /\  x  e.  A )  ->  (
( x  e.  A  |->  C ) `  x
)  =  C )
109adantrr 753 . . . . 5  |-  ( (
ph  /\  ( x  e.  A  /\  y  e.  A ) )  -> 
( ( x  e.  A  |->  C ) `  x )  =  C )
11 nfv 1843 . . . . . . . 8  |-  F/ x
( ph  /\  y  e.  A )
12 nffvmpt1 6199 . . . . . . . . 9  |-  F/_ x
( ( x  e.  A  |->  C ) `  y )
1312nfeq1 2778 . . . . . . . 8  |-  F/ x
( ( x  e.  A  |->  C ) `  y )  =  D
1411, 13nfim 1825 . . . . . . 7  |-  F/ x
( ( ph  /\  y  e.  A )  ->  ( ( x  e.  A  |->  C ) `  y )  =  D )
15 eleq1 2689 . . . . . . . . . 10  |-  ( x  =  y  ->  (
x  e.  A  <->  y  e.  A ) )
1615anbi2d 740 . . . . . . . . 9  |-  ( x  =  y  ->  (
( ph  /\  x  e.  A )  <->  ( ph  /\  y  e.  A ) ) )
1716imbi1d 331 . . . . . . . 8  |-  ( x  =  y  ->  (
( ( ph  /\  x  e.  A )  ->  ( ( x  e.  A  |->  C ) `  x )  =  C )  <->  ( ( ph  /\  y  e.  A )  ->  ( ( x  e.  A  |->  C ) `
 x )  =  C ) ) )
1815anbi1d 741 . . . . . . . . . . . 12  |-  ( x  =  y  ->  (
( x  e.  A  /\  y  e.  A
)  <->  ( y  e.  A  /\  y  e.  A ) ) )
19 anidm 676 . . . . . . . . . . . 12  |-  ( ( y  e.  A  /\  y  e.  A )  <->  y  e.  A )
2018, 19syl6bb 276 . . . . . . . . . . 11  |-  ( x  =  y  ->  (
( x  e.  A  /\  y  e.  A
)  <->  y  e.  A
) )
2120anbi2d 740 . . . . . . . . . 10  |-  ( x  =  y  ->  (
( ph  /\  (
x  e.  A  /\  y  e.  A )
)  <->  ( ph  /\  y  e.  A )
) )
22 fveq2 6191 . . . . . . . . . . . . 13  |-  ( x  =  y  ->  (
( x  e.  A  |->  C ) `  x
)  =  ( ( x  e.  A  |->  C ) `  y ) )
2322adantr 481 . . . . . . . . . . . 12  |-  ( ( x  =  y  /\  ( ph  /\  ( x  e.  A  /\  y  e.  A ) ) )  ->  ( ( x  e.  A  |->  C ) `
 x )  =  ( ( x  e.  A  |->  C ) `  y ) )
24 dom2d.2 . . . . . . . . . . . . . 14  |-  ( ph  ->  ( ( x  e.  A  /\  y  e.  A )  ->  ( C  =  D  <->  x  =  y ) ) )
2524imp 445 . . . . . . . . . . . . 13  |-  ( (
ph  /\  ( x  e.  A  /\  y  e.  A ) )  -> 
( C  =  D  <-> 
x  =  y ) )
2625biimparc 504 . . . . . . . . . . . 12  |-  ( ( x  =  y  /\  ( ph  /\  ( x  e.  A  /\  y  e.  A ) ) )  ->  C  =  D )
2723, 26eqeq12d 2637 . . . . . . . . . . 11  |-  ( ( x  =  y  /\  ( ph  /\  ( x  e.  A  /\  y  e.  A ) ) )  ->  ( ( ( x  e.  A  |->  C ) `  x )  =  C  <->  ( (
x  e.  A  |->  C ) `  y )  =  D ) )
2827ex 450 . . . . . . . . . 10  |-  ( x  =  y  ->  (
( ph  /\  (
x  e.  A  /\  y  e.  A )
)  ->  ( (
( x  e.  A  |->  C ) `  x
)  =  C  <->  ( (
x  e.  A  |->  C ) `  y )  =  D ) ) )
2921, 28sylbird 250 . . . . . . . . 9  |-  ( x  =  y  ->  (
( ph  /\  y  e.  A )  ->  (
( ( x  e.  A  |->  C ) `  x )  =  C  <-> 
( ( x  e.  A  |->  C ) `  y )  =  D ) ) )
3029pm5.74d 262 . . . . . . . 8  |-  ( x  =  y  ->  (
( ( ph  /\  y  e.  A )  ->  ( ( x  e.  A  |->  C ) `  x )  =  C )  <->  ( ( ph  /\  y  e.  A )  ->  ( ( x  e.  A  |->  C ) `
 y )  =  D ) ) )
3117, 30bitrd 268 . . . . . . 7  |-  ( x  =  y  ->  (
( ( ph  /\  x  e.  A )  ->  ( ( x  e.  A  |->  C ) `  x )  =  C )  <->  ( ( ph  /\  y  e.  A )  ->  ( ( x  e.  A  |->  C ) `
 y )  =  D ) ) )
3214, 31, 9chvar 2262 . . . . . 6  |-  ( (
ph  /\  y  e.  A )  ->  (
( x  e.  A  |->  C ) `  y
)  =  D )
3332adantrl 752 . . . . 5  |-  ( (
ph  /\  ( x  e.  A  /\  y  e.  A ) )  -> 
( ( x  e.  A  |->  C ) `  y )  =  D )
3410, 33eqeq12d 2637 . . . 4  |-  ( (
ph  /\  ( x  e.  A  /\  y  e.  A ) )  -> 
( ( ( x  e.  A  |->  C ) `
 x )  =  ( ( x  e.  A  |->  C ) `  y )  <->  C  =  D ) )
3525biimpd 219 . . . 4  |-  ( (
ph  /\  ( x  e.  A  /\  y  e.  A ) )  -> 
( C  =  D  ->  x  =  y ) )
3634, 35sylbid 230 . . 3  |-  ( (
ph  /\  ( x  e.  A  /\  y  e.  A ) )  -> 
( ( ( x  e.  A  |->  C ) `
 x )  =  ( ( x  e.  A  |->  C ) `  y )  ->  x  =  y ) )
3736ralrimivva 2971 . 2  |-  ( ph  ->  A. x  e.  A  A. y  e.  A  ( ( ( x  e.  A  |->  C ) `
 x )  =  ( ( x  e.  A  |->  C ) `  y )  ->  x  =  y ) )
38 nfmpt1 4747 . . 3  |-  F/_ x
( x  e.  A  |->  C )
39 nfcv 2764 . . 3  |-  F/_ y
( x  e.  A  |->  C )
4038, 39dff13f 6513 . 2  |-  ( ( x  e.  A  |->  C ) : A -1-1-> B  <->  ( ( x  e.  A  |->  C ) : A --> B  /\  A. x  e.  A  A. y  e.  A  ( ( ( x  e.  A  |->  C ) `  x )  =  ( ( x  e.  A  |->  C ) `
 y )  ->  x  =  y )
) )
415, 37, 40sylanbrc 698 1  |-  ( ph  ->  ( x  e.  A  |->  C ) : A -1-1-> B )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    /\ wa 384    = wceq 1483    e. wcel 1990   A.wral 2912    |-> cmpt 4729   -->wf 5884   -1-1->wf1 5885   ` cfv 5888
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fv 5896
This theorem is referenced by:  dom2d  7996  dom3d  7997  ixpfi2  8264  infxpenc2lem1  8842  dfac12lem2  8966  4sqlem11  15659  odf1o1  17987  odf1o2  17988  dis2ndc  21263  hauspwpwf1  21791  itg1addlem4  23466  basellem3  24809  fsumvma  24938  dchrisum0fno1  25200
  Copyright terms: Public domain W3C validator