| Mathbox for Stefan O'Rear |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > elrfirn | Structured version Visualization version Unicode version | ||
| Description: Elementhood in a set of relative finite intersections of an indexed family of sets. (Contributed by Stefan O'Rear, 22-Feb-2015.) |
| Ref | Expression |
|---|---|
| elrfirn |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | frn 6053 |
. . 3
| |
| 2 | elrfi 37257 |
. . 3
| |
| 3 | 1, 2 | sylan2 491 |
. 2
|
| 4 | imassrn 5477 |
. . . . . 6
| |
| 5 | pwexg 4850 |
. . . . . . . 8
| |
| 6 | ssexg 4804 |
. . . . . . . 8
| |
| 7 | 1, 5, 6 | syl2anr 495 |
. . . . . . 7
|
| 8 | elpw2g 4827 |
. . . . . . 7
| |
| 9 | 7, 8 | syl 17 |
. . . . . 6
|
| 10 | 4, 9 | mpbiri 248 |
. . . . 5
|
| 11 | 10 | adantr 481 |
. . . 4
|
| 12 | ffun 6048 |
. . . . . 6
| |
| 13 | 12 | ad2antlr 763 |
. . . . 5
|
| 14 | inss2 3834 |
. . . . . . 7
| |
| 15 | 14 | sseli 3599 |
. . . . . 6
|
| 16 | 15 | adantl 482 |
. . . . 5
|
| 17 | imafi 8259 |
. . . . 5
| |
| 18 | 13, 16, 17 | syl2anc 693 |
. . . 4
|
| 19 | 11, 18 | elind 3798 |
. . 3
|
| 20 | ffn 6045 |
. . . . . 6
| |
| 21 | 20 | ad2antlr 763 |
. . . . 5
|
| 22 | inss1 3833 |
. . . . . . . 8
| |
| 23 | 22 | sseli 3599 |
. . . . . . 7
|
| 24 | 23 | elpwid 4170 |
. . . . . 6
|
| 25 | 24 | adantl 482 |
. . . . 5
|
| 26 | inss2 3834 |
. . . . . . 7
| |
| 27 | 26 | sseli 3599 |
. . . . . 6
|
| 28 | 27 | adantl 482 |
. . . . 5
|
| 29 | fipreima 8272 |
. . . . 5
| |
| 30 | 21, 25, 28, 29 | syl3anc 1326 |
. . . 4
|
| 31 | eqcom 2629 |
. . . . 5
| |
| 32 | 31 | rexbii 3041 |
. . . 4
|
| 33 | 30, 32 | sylib 208 |
. . 3
|
| 34 | inteq 4478 |
. . . . . 6
| |
| 35 | 34 | ineq2d 3814 |
. . . . 5
|
| 36 | 35 | eqeq2d 2632 |
. . . 4
|
| 37 | 36 | adantl 482 |
. . 3
|
| 38 | 19, 33, 37 | rexxfrd 4881 |
. 2
|
| 39 | 20 | ad2antlr 763 |
. . . . . . 7
|
| 40 | inss1 3833 |
. . . . . . . . . 10
| |
| 41 | 40 | sseli 3599 |
. . . . . . . . 9
|
| 42 | 41 | elpwid 4170 |
. . . . . . . 8
|
| 43 | 42 | adantl 482 |
. . . . . . 7
|
| 44 | imaiinfv 37256 |
. . . . . . 7
| |
| 45 | 39, 43, 44 | syl2anc 693 |
. . . . . 6
|
| 46 | 45 | eqcomd 2628 |
. . . . 5
|
| 47 | 46 | ineq2d 3814 |
. . . 4
|
| 48 | 47 | eqeq2d 2632 |
. . 3
|
| 49 | 48 | rexbidva 3049 |
. 2
|
| 50 | 3, 38, 49 | 3bitrd 294 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-sep 4781 ax-nul 4789 ax-pow 4843 ax-pr 4906 ax-un 6949 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3or 1038 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-ral 2917 df-rex 2918 df-reu 2919 df-rab 2921 df-v 3202 df-sbc 3436 df-csb 3534 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-pss 3590 df-nul 3916 df-if 4087 df-pw 4160 df-sn 4178 df-pr 4180 df-tp 4182 df-op 4184 df-uni 4437 df-int 4476 df-iun 4522 df-iin 4523 df-br 4654 df-opab 4713 df-mpt 4730 df-tr 4753 df-id 5024 df-eprel 5029 df-po 5035 df-so 5036 df-fr 5073 df-we 5075 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-rn 5125 df-res 5126 df-ima 5127 df-pred 5680 df-ord 5726 df-on 5727 df-lim 5728 df-suc 5729 df-iota 5851 df-fun 5890 df-fn 5891 df-f 5892 df-f1 5893 df-fo 5894 df-f1o 5895 df-fv 5896 df-ov 6653 df-oprab 6654 df-mpt2 6655 df-om 7066 df-wrecs 7407 df-recs 7468 df-rdg 7506 df-1o 7560 df-oadd 7564 df-er 7742 df-en 7956 df-dom 7957 df-fin 7959 df-fi 8317 |
| This theorem is referenced by: elrfirn2 37259 |
| Copyright terms: Public domain | W3C validator |