MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  bitsf1ocnv Structured version   Visualization version   Unicode version

Theorem bitsf1ocnv 15166
Description: The bits function restricted to nonnegative integers is a bijection from the integers to the finite sets of integers. It is in fact the inverse of the Ackermann bijection ackbijnn 14560. (Contributed by Mario Carneiro, 8-Sep-2016.)
Assertion
Ref Expression
bitsf1ocnv  |-  ( (bits  |`  NN0 ) : NN0 -1-1-onto-> ( ~P NN0  i^i  Fin )  /\  `' (bits  |`  NN0 )  =  ( x  e.  ( ~P NN0  i^i  Fin )  |->  sum_ n  e.  x  ( 2 ^ n
) ) )
Distinct variable group:    x, n

Proof of Theorem bitsf1ocnv
Dummy variable  k is distinct from all other variables.
StepHypRef Expression
1 eqid 2622 . . . . . 6  |-  ( k  e.  NN0  |->  (bits `  k ) )  =  ( k  e.  NN0  |->  (bits `  k ) )
2 bitsss 15148 . . . . . . . . 9  |-  (bits `  k )  C_  NN0
32a1i 11 . . . . . . . 8  |-  ( k  e.  NN0  ->  (bits `  k )  C_  NN0 )
4 bitsfi 15159 . . . . . . . 8  |-  ( k  e.  NN0  ->  (bits `  k )  e.  Fin )
5 elfpw 8268 . . . . . . . 8  |-  ( (bits `  k )  e.  ( ~P NN0  i^i  Fin ) 
<->  ( (bits `  k
)  C_  NN0  /\  (bits `  k )  e.  Fin ) )
63, 4, 5sylanbrc 698 . . . . . . 7  |-  ( k  e.  NN0  ->  (bits `  k )  e.  ( ~P NN0  i^i  Fin ) )
76adantl 482 . . . . . 6  |-  ( ( T.  /\  k  e. 
NN0 )  ->  (bits `  k )  e.  ( ~P NN0  i^i  Fin ) )
8 elfpw 8268 . . . . . . . . 9  |-  ( x  e.  ( ~P NN0  i^i 
Fin )  <->  ( x  C_ 
NN0  /\  x  e.  Fin ) )
98simprbi 480 . . . . . . . 8  |-  ( x  e.  ( ~P NN0  i^i 
Fin )  ->  x  e.  Fin )
10 2nn0 11309 . . . . . . . . . 10  |-  2  e.  NN0
1110a1i 11 . . . . . . . . 9  |-  ( ( x  e.  ( ~P
NN0  i^i  Fin )  /\  n  e.  x
)  ->  2  e.  NN0 )
128simplbi 476 . . . . . . . . . 10  |-  ( x  e.  ( ~P NN0  i^i 
Fin )  ->  x  C_ 
NN0 )
1312sselda 3603 . . . . . . . . 9  |-  ( ( x  e.  ( ~P
NN0  i^i  Fin )  /\  n  e.  x
)  ->  n  e.  NN0 )
1411, 13nn0expcld 13031 . . . . . . . 8  |-  ( ( x  e.  ( ~P
NN0  i^i  Fin )  /\  n  e.  x
)  ->  ( 2 ^ n )  e. 
NN0 )
159, 14fsumnn0cl 14467 . . . . . . 7  |-  ( x  e.  ( ~P NN0  i^i 
Fin )  ->  sum_ n  e.  x  ( 2 ^ n )  e. 
NN0 )
1615adantl 482 . . . . . 6  |-  ( ( T.  /\  x  e.  ( ~P NN0  i^i  Fin ) )  ->  sum_ n  e.  x  ( 2 ^ n )  e. 
NN0 )
17 bitsinv2 15165 . . . . . . . . . 10  |-  ( x  e.  ( ~P NN0  i^i 
Fin )  ->  (bits ` 
sum_ n  e.  x  ( 2 ^ n
) )  =  x )
1817eqcomd 2628 . . . . . . . . 9  |-  ( x  e.  ( ~P NN0  i^i 
Fin )  ->  x  =  (bits `  sum_ n  e.  x  ( 2 ^ n ) ) )
1918ad2antll 765 . . . . . . . 8  |-  ( ( T.  /\  ( k  e.  NN0  /\  x  e.  ( ~P NN0  i^i  Fin ) ) )  ->  x  =  (bits `  sum_ n  e.  x  ( 2 ^ n ) ) )
20 fveq2 6191 . . . . . . . . 9  |-  ( k  =  sum_ n  e.  x  ( 2 ^ n
)  ->  (bits `  k
)  =  (bits `  sum_ n  e.  x  ( 2 ^ n ) ) )
2120eqeq2d 2632 . . . . . . . 8  |-  ( k  =  sum_ n  e.  x  ( 2 ^ n
)  ->  ( x  =  (bits `  k )  <->  x  =  (bits `  sum_ n  e.  x  ( 2 ^ n ) ) ) )
2219, 21syl5ibrcom 237 . . . . . . 7  |-  ( ( T.  /\  ( k  e.  NN0  /\  x  e.  ( ~P NN0  i^i  Fin ) ) )  -> 
( k  =  sum_ n  e.  x  ( 2 ^ n )  ->  x  =  (bits `  k
) ) )
23 bitsinv1 15164 . . . . . . . . . 10  |-  ( k  e.  NN0  ->  sum_ n  e.  (bits `  k )
( 2 ^ n
)  =  k )
2423eqcomd 2628 . . . . . . . . 9  |-  ( k  e.  NN0  ->  k  = 
sum_ n  e.  (bits `  k ) ( 2 ^ n ) )
2524ad2antrl 764 . . . . . . . 8  |-  ( ( T.  /\  ( k  e.  NN0  /\  x  e.  ( ~P NN0  i^i  Fin ) ) )  -> 
k  =  sum_ n  e.  (bits `  k )
( 2 ^ n
) )
26 sumeq1 14419 . . . . . . . . 9  |-  ( x  =  (bits `  k
)  ->  sum_ n  e.  x  ( 2 ^ n )  =  sum_ n  e.  (bits `  k
) ( 2 ^ n ) )
2726eqeq2d 2632 . . . . . . . 8  |-  ( x  =  (bits `  k
)  ->  ( k  =  sum_ n  e.  x  ( 2 ^ n
)  <->  k  =  sum_ n  e.  (bits `  k
) ( 2 ^ n ) ) )
2825, 27syl5ibrcom 237 . . . . . . 7  |-  ( ( T.  /\  ( k  e.  NN0  /\  x  e.  ( ~P NN0  i^i  Fin ) ) )  -> 
( x  =  (bits `  k )  ->  k  =  sum_ n  e.  x  ( 2 ^ n
) ) )
2922, 28impbid 202 . . . . . 6  |-  ( ( T.  /\  ( k  e.  NN0  /\  x  e.  ( ~P NN0  i^i  Fin ) ) )  -> 
( k  =  sum_ n  e.  x  ( 2 ^ n )  <->  x  =  (bits `  k ) ) )
301, 7, 16, 29f1ocnv2d 6886 . . . . 5  |-  ( T. 
->  ( ( k  e. 
NN0  |->  (bits `  k
) ) : NN0 -1-1-onto-> ( ~P NN0  i^i  Fin )  /\  `' ( k  e. 
NN0  |->  (bits `  k
) )  =  ( x  e.  ( ~P
NN0  i^i  Fin )  |-> 
sum_ n  e.  x  ( 2 ^ n
) ) ) )
3130simpld 475 . . . 4  |-  ( T. 
->  ( k  e.  NN0  |->  (bits `  k ) ) : NN0 -1-1-onto-> ( ~P NN0  i^i  Fin ) )
32 bitsf 15149 . . . . . . . . 9  |- bits : ZZ --> ~P NN0
3332a1i 11 . . . . . . . 8  |-  ( T. 
-> bits : ZZ --> ~P NN0 )
3433feqmptd 6249 . . . . . . 7  |-  ( T. 
-> bits  =  ( k  e.  ZZ  |->  (bits `  k
) ) )
3534reseq1d 5395 . . . . . 6  |-  ( T. 
->  (bits  |`  NN0 )  =  ( ( k  e.  ZZ  |->  (bits `  k
) )  |`  NN0 )
)
36 nn0ssz 11398 . . . . . . 7  |-  NN0  C_  ZZ
37 resmpt 5449 . . . . . . 7  |-  ( NN0  C_  ZZ  ->  ( (
k  e.  ZZ  |->  (bits `  k ) )  |`  NN0 )  =  (
k  e.  NN0  |->  (bits `  k ) ) )
3836, 37ax-mp 5 . . . . . 6  |-  ( ( k  e.  ZZ  |->  (bits `  k ) )  |`  NN0 )  =  (
k  e.  NN0  |->  (bits `  k ) )
3935, 38syl6eq 2672 . . . . 5  |-  ( T. 
->  (bits  |`  NN0 )  =  ( k  e.  NN0  |->  (bits `  k ) ) )
40 f1oeq1 6127 . . . . 5  |-  ( (bits  |`  NN0 )  =  ( k  e.  NN0  |->  (bits `  k ) )  -> 
( (bits  |`  NN0 ) : NN0
-1-1-onto-> ( ~P NN0  i^i  Fin ) 
<->  ( k  e.  NN0  |->  (bits `  k ) ) : NN0 -1-1-onto-> ( ~P NN0  i^i  Fin ) ) )
4139, 40syl 17 . . . 4  |-  ( T. 
->  ( (bits  |`  NN0 ) : NN0
-1-1-onto-> ( ~P NN0  i^i  Fin ) 
<->  ( k  e.  NN0  |->  (bits `  k ) ) : NN0 -1-1-onto-> ( ~P NN0  i^i  Fin ) ) )
4231, 41mpbird 247 . . 3  |-  ( T. 
->  (bits  |`  NN0 ) : NN0
-1-1-onto-> ( ~P NN0  i^i  Fin ) )
4339cnveqd 5298 . . . 4  |-  ( T. 
->  `' (bits  |`  NN0 )  =  `' ( k  e. 
NN0  |->  (bits `  k
) ) )
4430simprd 479 . . . 4  |-  ( T. 
->  `' ( k  e. 
NN0  |->  (bits `  k
) )  =  ( x  e.  ( ~P
NN0  i^i  Fin )  |-> 
sum_ n  e.  x  ( 2 ^ n
) ) )
4543, 44eqtrd 2656 . . 3  |-  ( T. 
->  `' (bits  |`  NN0 )  =  ( x  e.  ( ~P NN0  i^i  Fin )  |->  sum_ n  e.  x  ( 2 ^ n
) ) )
4642, 45jca 554 . 2  |-  ( T. 
->  ( (bits  |`  NN0 ) : NN0
-1-1-onto-> ( ~P NN0  i^i  Fin )  /\  `' (bits  |`  NN0 )  =  ( x  e.  ( ~P NN0  i^i  Fin )  |->  sum_ n  e.  x  ( 2 ^ n
) ) ) )
4746trud 1493 1  |-  ( (bits  |`  NN0 ) : NN0 -1-1-onto-> ( ~P NN0  i^i  Fin )  /\  `' (bits  |`  NN0 )  =  ( x  e.  ( ~P NN0  i^i  Fin )  |->  sum_ n  e.  x  ( 2 ^ n
) ) )
Colors of variables: wff setvar class
Syntax hints:    <-> wb 196    /\ wa 384    = wceq 1483   T. wtru 1484    e. wcel 1990    i^i cin 3573    C_ wss 3574   ~Pcpw 4158    |-> cmpt 4729   `'ccnv 5113    |` cres 5116   -->wf 5884   -1-1-onto->wf1o 5887   ` cfv 5888  (class class class)co 6650   Fincfn 7955   2c2 11070   NN0cn0 11292   ZZcz 11377   ^cexp 12860   sum_csu 14416  bitscbits 15141
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-inf2 8538  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-fal 1489  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-disj 4621  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-se 5074  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-isom 5897  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-2o 7561  df-oadd 7564  df-er 7742  df-map 7859  df-pm 7860  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-sup 8348  df-inf 8349  df-oi 8415  df-card 8765  df-cda 8990  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-2 11079  df-3 11080  df-n0 11293  df-xnn0 11364  df-z 11378  df-uz 11688  df-rp 11833  df-fz 12327  df-fzo 12466  df-fl 12593  df-mod 12669  df-seq 12802  df-exp 12861  df-hash 13118  df-cj 13839  df-re 13840  df-im 13841  df-sqrt 13975  df-abs 13976  df-clim 14219  df-sum 14417  df-dvds 14984  df-bits 15144
This theorem is referenced by:  bitsf1o  15167  bitsinv  15170
  Copyright terms: Public domain W3C validator