MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  evlslem2 Structured version   Visualization version   Unicode version

Theorem evlslem2 19512
Description: A linear function on the polynomial ring which is multiplicative on scaled monomials is generally multiplicative. (Contributed by Stefan O'Rear, 9-Mar-2015.)
Hypotheses
Ref Expression
evlslem2.p  |-  P  =  ( I mPoly  R )
evlslem2.b  |-  B  =  ( Base `  P
)
evlslem2.m  |-  .x.  =  ( .r `  S )
evlslem2.z  |-  .0.  =  ( 0g `  R )
evlslem2.d  |-  D  =  { h  e.  ( NN0  ^m  I )  |  ( `' h " NN )  e.  Fin }
evlslem2.i  |-  ( ph  ->  I  e.  _V )
evlslem2.r  |-  ( ph  ->  R  e.  CRing )
evlslem2.s  |-  ( ph  ->  S  e.  CRing )
evlslem2.e1  |-  ( ph  ->  E  e.  ( P 
GrpHom  S ) )
evlslem2.e2  |-  ( (
ph  /\  ( (
x  e.  B  /\  y  e.  B )  /\  ( j  e.  D  /\  i  e.  D
) ) )  -> 
( E `  (
k  e.  D  |->  if ( k  =  ( j  oF  +  i ) ,  ( ( x `  j
) ( .r `  R ) ( y `
 i ) ) ,  .0.  ) ) )  =  ( ( E `  ( k  e.  D  |->  if ( k  =  j ,  ( x `  j
) ,  .0.  )
) )  .x.  ( E `  ( k  e.  D  |->  if ( k  =  i ,  ( y `  i
) ,  .0.  )
) ) ) )
Assertion
Ref Expression
evlslem2  |-  ( (
ph  /\  ( x  e.  B  /\  y  e.  B ) )  -> 
( E `  (
x ( .r `  P ) y ) )  =  ( ( E `  x ) 
.x.  ( E `  y ) ) )
Distinct variable groups:    ph, i, j, k, y    B, i, j, k, x, y    D, i, j, k, x, y    i, E, j   
h, I, i, j, k    .x. , i, j    P, i, j, k, x, y    R, h, i, j, k    S, i, j    .0. , h, i, j, k, x, y
Allowed substitution hints:    ph( x, h)    B( h)    D( h)    P( h)    R( x, y)    S( x, y, h, k)    .x. ( x, y, h, k)    E( x, y, h, k)    I( x, y)

Proof of Theorem evlslem2
Dummy variable  z is distinct from all other variables.
StepHypRef Expression
1 evlslem2.b . . . . 5  |-  B  =  ( Base `  P
)
2 eqid 2622 . . . . 5  |-  ( .r
`  P )  =  ( .r `  P
)
3 eqid 2622 . . . . 5  |-  ( 0g
`  P )  =  ( 0g `  P
)
4 evlslem2.d . . . . . . 7  |-  D  =  { h  e.  ( NN0  ^m  I )  |  ( `' h " NN )  e.  Fin }
5 ovex 6678 . . . . . . 7  |-  ( NN0 
^m  I )  e. 
_V
64, 5rabex2 4815 . . . . . 6  |-  D  e. 
_V
76a1i 11 . . . . 5  |-  ( (
ph  /\  ( x  e.  B  /\  y  e.  B ) )  ->  D  e.  _V )
8 evlslem2.i . . . . . . 7  |-  ( ph  ->  I  e.  _V )
9 evlslem2.r . . . . . . . 8  |-  ( ph  ->  R  e.  CRing )
10 crngring 18558 . . . . . . . 8  |-  ( R  e.  CRing  ->  R  e.  Ring )
119, 10syl 17 . . . . . . 7  |-  ( ph  ->  R  e.  Ring )
12 evlslem2.p . . . . . . . 8  |-  P  =  ( I mPoly  R )
1312mplring 19452 . . . . . . 7  |-  ( ( I  e.  _V  /\  R  e.  Ring )  ->  P  e.  Ring )
148, 11, 13syl2anc 693 . . . . . 6  |-  ( ph  ->  P  e.  Ring )
1514adantr 481 . . . . 5  |-  ( (
ph  /\  ( x  e.  B  /\  y  e.  B ) )  ->  P  e.  Ring )
16 evlslem2.z . . . . . 6  |-  .0.  =  ( 0g `  R )
17 eqid 2622 . . . . . 6  |-  ( Base `  R )  =  (
Base `  R )
188ad2antrr 762 . . . . . 6  |-  ( ( ( ph  /\  (
x  e.  B  /\  y  e.  B )
)  /\  j  e.  D )  ->  I  e.  _V )
1911ad2antrr 762 . . . . . 6  |-  ( ( ( ph  /\  (
x  e.  B  /\  y  e.  B )
)  /\  j  e.  D )  ->  R  e.  Ring )
20 simprl 794 . . . . . . . 8  |-  ( (
ph  /\  ( x  e.  B  /\  y  e.  B ) )  ->  x  e.  B )
2112, 17, 1, 4, 20mplelf 19433 . . . . . . 7  |-  ( (
ph  /\  ( x  e.  B  /\  y  e.  B ) )  ->  x : D --> ( Base `  R ) )
2221ffvelrnda 6359 . . . . . 6  |-  ( ( ( ph  /\  (
x  e.  B  /\  y  e.  B )
)  /\  j  e.  D )  ->  (
x `  j )  e.  ( Base `  R
) )
23 simpr 477 . . . . . 6  |-  ( ( ( ph  /\  (
x  e.  B  /\  y  e.  B )
)  /\  j  e.  D )  ->  j  e.  D )
2412, 4, 16, 17, 18, 19, 1, 22, 23mplmon2cl 19500 . . . . 5  |-  ( ( ( ph  /\  (
x  e.  B  /\  y  e.  B )
)  /\  j  e.  D )  ->  (
k  e.  D  |->  if ( k  =  j ,  ( x `  j ) ,  .0.  ) )  e.  B
)
258ad2antrr 762 . . . . . 6  |-  ( ( ( ph  /\  (
x  e.  B  /\  y  e.  B )
)  /\  i  e.  D )  ->  I  e.  _V )
2611ad2antrr 762 . . . . . 6  |-  ( ( ( ph  /\  (
x  e.  B  /\  y  e.  B )
)  /\  i  e.  D )  ->  R  e.  Ring )
27 simprr 796 . . . . . . . 8  |-  ( (
ph  /\  ( x  e.  B  /\  y  e.  B ) )  -> 
y  e.  B )
2812, 17, 1, 4, 27mplelf 19433 . . . . . . 7  |-  ( (
ph  /\  ( x  e.  B  /\  y  e.  B ) )  -> 
y : D --> ( Base `  R ) )
2928ffvelrnda 6359 . . . . . 6  |-  ( ( ( ph  /\  (
x  e.  B  /\  y  e.  B )
)  /\  i  e.  D )  ->  (
y `  i )  e.  ( Base `  R
) )
30 simpr 477 . . . . . 6  |-  ( ( ( ph  /\  (
x  e.  B  /\  y  e.  B )
)  /\  i  e.  D )  ->  i  e.  D )
3112, 4, 16, 17, 25, 26, 1, 29, 30mplmon2cl 19500 . . . . 5  |-  ( ( ( ph  /\  (
x  e.  B  /\  y  e.  B )
)  /\  i  e.  D )  ->  (
k  e.  D  |->  if ( k  =  i ,  ( y `  i ) ,  .0.  ) )  e.  B
)
326mptex 6486 . . . . . . . . . . . 12  |-  ( j  e.  D  |->  ( k  e.  D  |->  if ( k  =  j ,  ( y `  j
) ,  .0.  )
) )  e.  _V
33 funmpt 5926 . . . . . . . . . . . 12  |-  Fun  (
j  e.  D  |->  ( k  e.  D  |->  if ( k  =  j ,  ( y `  j ) ,  .0.  ) ) )
34 fvex 6201 . . . . . . . . . . . 12  |-  ( 0g
`  P )  e. 
_V
3532, 33, 343pm3.2i 1239 . . . . . . . . . . 11  |-  ( ( j  e.  D  |->  ( k  e.  D  |->  if ( k  =  j ,  ( y `  j ) ,  .0.  ) ) )  e. 
_V  /\  Fun  ( j  e.  D  |->  ( k  e.  D  |->  if ( k  =  j ,  ( y `  j
) ,  .0.  )
) )  /\  ( 0g `  P )  e. 
_V )
3635a1i 11 . . . . . . . . . 10  |-  ( (
ph  /\  y  e.  B )  ->  (
( j  e.  D  |->  ( k  e.  D  |->  if ( k  =  j ,  ( y `
 j ) ,  .0.  ) ) )  e.  _V  /\  Fun  ( j  e.  D  |->  ( k  e.  D  |->  if ( k  =  j ,  ( y `
 j ) ,  .0.  ) ) )  /\  ( 0g `  P )  e.  _V ) )
37 simpr 477 . . . . . . . . . . . 12  |-  ( (
ph  /\  y  e.  B )  ->  y  e.  B )
389adantr 481 . . . . . . . . . . . 12  |-  ( (
ph  /\  y  e.  B )  ->  R  e.  CRing )
3912, 1, 16, 37, 38mplelsfi 19491 . . . . . . . . . . 11  |-  ( (
ph  /\  y  e.  B )  ->  y finSupp  .0.  )
4039fsuppimpd 8282 . . . . . . . . . 10  |-  ( (
ph  /\  y  e.  B )  ->  (
y supp  .0.  )  e.  Fin )
4112, 17, 1, 4, 37mplelf 19433 . . . . . . . . . . . . . . . 16  |-  ( (
ph  /\  y  e.  B )  ->  y : D --> ( Base `  R
) )
42 ssid 3624 . . . . . . . . . . . . . . . . 17  |-  ( y supp 
.0.  )  C_  (
y supp  .0.  )
4342a1i 11 . . . . . . . . . . . . . . . 16  |-  ( (
ph  /\  y  e.  B )  ->  (
y supp  .0.  )  C_  ( y supp  .0.  )
)
446a1i 11 . . . . . . . . . . . . . . . 16  |-  ( (
ph  /\  y  e.  B )  ->  D  e.  _V )
45 fvex 6201 . . . . . . . . . . . . . . . . . 18  |-  ( 0g
`  R )  e. 
_V
4616, 45eqeltri 2697 . . . . . . . . . . . . . . . . 17  |-  .0.  e.  _V
4746a1i 11 . . . . . . . . . . . . . . . 16  |-  ( (
ph  /\  y  e.  B )  ->  .0.  e.  _V )
4841, 43, 44, 47suppssr 7326 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  y  e.  B )  /\  j  e.  ( D  \  (
y supp  .0.  ) )
)  ->  ( y `  j )  =  .0.  )
4948ifeq1d 4104 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  y  e.  B )  /\  j  e.  ( D  \  (
y supp  .0.  ) )
)  ->  if (
k  =  j ,  ( y `  j
) ,  .0.  )  =  if ( k  =  j ,  .0.  ,  .0.  ) )
50 ifid 4125 . . . . . . . . . . . . . 14  |-  if ( k  =  j ,  .0.  ,  .0.  )  =  .0.
5149, 50syl6eq 2672 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  y  e.  B )  /\  j  e.  ( D  \  (
y supp  .0.  ) )
)  ->  if (
k  =  j ,  ( y `  j
) ,  .0.  )  =  .0.  )
5251mpteq2dv 4745 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  y  e.  B )  /\  j  e.  ( D  \  (
y supp  .0.  ) )
)  ->  ( k  e.  D  |->  if ( k  =  j ,  ( y `  j
) ,  .0.  )
)  =  ( k  e.  D  |->  .0.  )
)
53 ringgrp 18552 . . . . . . . . . . . . . . . 16  |-  ( R  e.  Ring  ->  R  e. 
Grp )
5411, 53syl 17 . . . . . . . . . . . . . . 15  |-  ( ph  ->  R  e.  Grp )
5512, 4, 16, 3, 8, 54mpl0 19441 . . . . . . . . . . . . . 14  |-  ( ph  ->  ( 0g `  P
)  =  ( D  X.  {  .0.  }
) )
56 fconstmpt 5163 . . . . . . . . . . . . . 14  |-  ( D  X.  {  .0.  }
)  =  ( k  e.  D  |->  .0.  )
5755, 56syl6eq 2672 . . . . . . . . . . . . 13  |-  ( ph  ->  ( 0g `  P
)  =  ( k  e.  D  |->  .0.  )
)
5857ad2antrr 762 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  y  e.  B )  /\  j  e.  ( D  \  (
y supp  .0.  ) )
)  ->  ( 0g `  P )  =  ( k  e.  D  |->  .0.  ) )
5952, 58eqtr4d 2659 . . . . . . . . . . 11  |-  ( ( ( ph  /\  y  e.  B )  /\  j  e.  ( D  \  (
y supp  .0.  ) )
)  ->  ( k  e.  D  |->  if ( k  =  j ,  ( y `  j
) ,  .0.  )
)  =  ( 0g
`  P ) )
6059, 44suppss2 7329 . . . . . . . . . 10  |-  ( (
ph  /\  y  e.  B )  ->  (
( j  e.  D  |->  ( k  e.  D  |->  if ( k  =  j ,  ( y `
 j ) ,  .0.  ) ) ) supp  ( 0g `  P
) )  C_  (
y supp  .0.  ) )
61 suppssfifsupp 8290 . . . . . . . . . 10  |-  ( ( ( ( j  e.  D  |->  ( k  e.  D  |->  if ( k  =  j ,  ( y `  j ) ,  .0.  ) ) )  e.  _V  /\  Fun  ( j  e.  D  |->  ( k  e.  D  |->  if ( k  =  j ,  ( y `
 j ) ,  .0.  ) ) )  /\  ( 0g `  P )  e.  _V )  /\  ( ( y supp 
.0.  )  e.  Fin  /\  ( ( j  e.  D  |->  ( k  e.  D  |->  if ( k  =  j ,  ( y `  j ) ,  .0.  ) ) ) supp  ( 0g `  P ) )  C_  ( y supp  .0.  )
) )  ->  (
j  e.  D  |->  ( k  e.  D  |->  if ( k  =  j ,  ( y `  j ) ,  .0.  ) ) ) finSupp  ( 0g `  P ) )
6236, 40, 60, 61syl12anc 1324 . . . . . . . . 9  |-  ( (
ph  /\  y  e.  B )  ->  (
j  e.  D  |->  ( k  e.  D  |->  if ( k  =  j ,  ( y `  j ) ,  .0.  ) ) ) finSupp  ( 0g `  P ) )
6362ralrimiva 2966 . . . . . . . 8  |-  ( ph  ->  A. y  e.  B  ( j  e.  D  |->  ( k  e.  D  |->  if ( k  =  j ,  ( y `
 j ) ,  .0.  ) ) ) finSupp 
( 0g `  P
) )
64 fveq1 6190 . . . . . . . . . . . . 13  |-  ( y  =  x  ->  (
y `  j )  =  ( x `  j ) )
6564ifeq1d 4104 . . . . . . . . . . . 12  |-  ( y  =  x  ->  if ( k  =  j ,  ( y `  j ) ,  .0.  )  =  if (
k  =  j ,  ( x `  j
) ,  .0.  )
)
6665mpteq2dv 4745 . . . . . . . . . . 11  |-  ( y  =  x  ->  (
k  e.  D  |->  if ( k  =  j ,  ( y `  j ) ,  .0.  ) )  =  ( k  e.  D  |->  if ( k  =  j ,  ( x `  j ) ,  .0.  ) ) )
6766mpteq2dv 4745 . . . . . . . . . 10  |-  ( y  =  x  ->  (
j  e.  D  |->  ( k  e.  D  |->  if ( k  =  j ,  ( y `  j ) ,  .0.  ) ) )  =  ( j  e.  D  |->  ( k  e.  D  |->  if ( k  =  j ,  ( x `
 j ) ,  .0.  ) ) ) )
6867breq1d 4663 . . . . . . . . 9  |-  ( y  =  x  ->  (
( j  e.  D  |->  ( k  e.  D  |->  if ( k  =  j ,  ( y `
 j ) ,  .0.  ) ) ) finSupp 
( 0g `  P
)  <->  ( j  e.  D  |->  ( k  e.  D  |->  if ( k  =  j ,  ( x `  j ) ,  .0.  ) ) ) finSupp  ( 0g `  P ) ) )
6968cbvralv 3171 . . . . . . . 8  |-  ( A. y  e.  B  (
j  e.  D  |->  ( k  e.  D  |->  if ( k  =  j ,  ( y `  j ) ,  .0.  ) ) ) finSupp  ( 0g `  P )  <->  A. x  e.  B  ( j  e.  D  |->  ( k  e.  D  |->  if ( k  =  j ,  ( x `  j
) ,  .0.  )
) ) finSupp  ( 0g `  P ) )
7063, 69sylib 208 . . . . . . 7  |-  ( ph  ->  A. x  e.  B  ( j  e.  D  |->  ( k  e.  D  |->  if ( k  =  j ,  ( x `
 j ) ,  .0.  ) ) ) finSupp 
( 0g `  P
) )
7170r19.21bi 2932 . . . . . 6  |-  ( (
ph  /\  x  e.  B )  ->  (
j  e.  D  |->  ( k  e.  D  |->  if ( k  =  j ,  ( x `  j ) ,  .0.  ) ) ) finSupp  ( 0g `  P ) )
7271adantrr 753 . . . . 5  |-  ( (
ph  /\  ( x  e.  B  /\  y  e.  B ) )  -> 
( j  e.  D  |->  ( k  e.  D  |->  if ( k  =  j ,  ( x `
 j ) ,  .0.  ) ) ) finSupp 
( 0g `  P
) )
73 equequ2 1953 . . . . . . . . 9  |-  ( i  =  j  ->  (
k  =  i  <->  k  =  j ) )
74 fveq2 6191 . . . . . . . . 9  |-  ( i  =  j  ->  (
y `  i )  =  ( y `  j ) )
7573, 74ifbieq1d 4109 . . . . . . . 8  |-  ( i  =  j  ->  if ( k  =  i ,  ( y `  i ) ,  .0.  )  =  if (
k  =  j ,  ( y `  j
) ,  .0.  )
)
7675mpteq2dv 4745 . . . . . . 7  |-  ( i  =  j  ->  (
k  e.  D  |->  if ( k  =  i ,  ( y `  i ) ,  .0.  ) )  =  ( k  e.  D  |->  if ( k  =  j ,  ( y `  j ) ,  .0.  ) ) )
7776cbvmptv 4750 . . . . . 6  |-  ( i  e.  D  |->  ( k  e.  D  |->  if ( k  =  i ,  ( y `  i
) ,  .0.  )
) )  =  ( j  e.  D  |->  ( k  e.  D  |->  if ( k  =  j ,  ( y `  j ) ,  .0.  ) ) )
7862adantrl 752 . . . . . 6  |-  ( (
ph  /\  ( x  e.  B  /\  y  e.  B ) )  -> 
( j  e.  D  |->  ( k  e.  D  |->  if ( k  =  j ,  ( y `
 j ) ,  .0.  ) ) ) finSupp 
( 0g `  P
) )
7977, 78syl5eqbr 4688 . . . . 5  |-  ( (
ph  /\  ( x  e.  B  /\  y  e.  B ) )  -> 
( i  e.  D  |->  ( k  e.  D  |->  if ( k  =  i ,  ( y `
 i ) ,  .0.  ) ) ) finSupp 
( 0g `  P
) )
801, 2, 3, 7, 7, 15, 24, 31, 72, 79gsumdixp 18609 . . . 4  |-  ( (
ph  /\  ( x  e.  B  /\  y  e.  B ) )  -> 
( ( P  gsumg  ( j  e.  D  |->  ( k  e.  D  |->  if ( k  =  j ,  ( x `  j
) ,  .0.  )
) ) ) ( .r `  P ) ( P  gsumg  ( i  e.  D  |->  ( k  e.  D  |->  if ( k  =  i ,  ( y `
 i ) ,  .0.  ) ) ) ) )  =  ( P  gsumg  ( j  e.  D ,  i  e.  D  |->  ( ( k  e.  D  |->  if ( k  =  j ,  ( x `  j ) ,  .0.  ) ) ( .r `  P
) ( k  e.  D  |->  if ( k  =  i ,  ( y `  i ) ,  .0.  ) ) ) ) ) )
8180fveq2d 6195 . . 3  |-  ( (
ph  /\  ( x  e.  B  /\  y  e.  B ) )  -> 
( E `  (
( P  gsumg  ( j  e.  D  |->  ( k  e.  D  |->  if ( k  =  j ,  ( x `
 j ) ,  .0.  ) ) ) ) ( .r `  P ) ( P 
gsumg  ( i  e.  D  |->  ( k  e.  D  |->  if ( k  =  i ,  ( y `
 i ) ,  .0.  ) ) ) ) ) )  =  ( E `  ( P  gsumg  ( j  e.  D ,  i  e.  D  |->  ( ( k  e.  D  |->  if ( k  =  j ,  ( x `  j ) ,  .0.  ) ) ( .r `  P
) ( k  e.  D  |->  if ( k  =  i ,  ( y `  i ) ,  .0.  ) ) ) ) ) ) )
82 ringcmn 18581 . . . . . 6  |-  ( P  e.  Ring  ->  P  e. CMnd
)
8314, 82syl 17 . . . . 5  |-  ( ph  ->  P  e. CMnd )
8483adantr 481 . . . 4  |-  ( (
ph  /\  ( x  e.  B  /\  y  e.  B ) )  ->  P  e. CMnd )
85 evlslem2.s . . . . . . 7  |-  ( ph  ->  S  e.  CRing )
86 crngring 18558 . . . . . . 7  |-  ( S  e.  CRing  ->  S  e.  Ring )
8785, 86syl 17 . . . . . 6  |-  ( ph  ->  S  e.  Ring )
8887adantr 481 . . . . 5  |-  ( (
ph  /\  ( x  e.  B  /\  y  e.  B ) )  ->  S  e.  Ring )
89 ringmnd 18556 . . . . 5  |-  ( S  e.  Ring  ->  S  e. 
Mnd )
9088, 89syl 17 . . . 4  |-  ( (
ph  /\  ( x  e.  B  /\  y  e.  B ) )  ->  S  e.  Mnd )
916, 6xpex 6962 . . . . 5  |-  ( D  X.  D )  e. 
_V
9291a1i 11 . . . 4  |-  ( (
ph  /\  ( x  e.  B  /\  y  e.  B ) )  -> 
( D  X.  D
)  e.  _V )
93 evlslem2.e1 . . . . . 6  |-  ( ph  ->  E  e.  ( P 
GrpHom  S ) )
94 ghmmhm 17670 . . . . . 6  |-  ( E  e.  ( P  GrpHom  S )  ->  E  e.  ( P MndHom  S ) )
9593, 94syl 17 . . . . 5  |-  ( ph  ->  E  e.  ( P MndHom  S ) )
9695adantr 481 . . . 4  |-  ( (
ph  /\  ( x  e.  B  /\  y  e.  B ) )  ->  E  e.  ( P MndHom  S ) )
9714ad2antrr 762 . . . . . . 7  |-  ( ( ( ph  /\  (
x  e.  B  /\  y  e.  B )
)  /\  ( j  e.  D  /\  i  e.  D ) )  ->  P  e.  Ring )
9824adantrr 753 . . . . . . 7  |-  ( ( ( ph  /\  (
x  e.  B  /\  y  e.  B )
)  /\  ( j  e.  D  /\  i  e.  D ) )  -> 
( k  e.  D  |->  if ( k  =  j ,  ( x `
 j ) ,  .0.  ) )  e.  B )
9931adantrl 752 . . . . . . 7  |-  ( ( ( ph  /\  (
x  e.  B  /\  y  e.  B )
)  /\  ( j  e.  D  /\  i  e.  D ) )  -> 
( k  e.  D  |->  if ( k  =  i ,  ( y `
 i ) ,  .0.  ) )  e.  B )
1001, 2ringcl 18561 . . . . . . 7  |-  ( ( P  e.  Ring  /\  (
k  e.  D  |->  if ( k  =  j ,  ( x `  j ) ,  .0.  ) )  e.  B  /\  ( k  e.  D  |->  if ( k  =  i ,  ( y `
 i ) ,  .0.  ) )  e.  B )  ->  (
( k  e.  D  |->  if ( k  =  j ,  ( x `
 j ) ,  .0.  ) ) ( .r `  P ) ( k  e.  D  |->  if ( k  =  i ,  ( y `
 i ) ,  .0.  ) ) )  e.  B )
10197, 98, 99, 100syl3anc 1326 . . . . . 6  |-  ( ( ( ph  /\  (
x  e.  B  /\  y  e.  B )
)  /\  ( j  e.  D  /\  i  e.  D ) )  -> 
( ( k  e.  D  |->  if ( k  =  j ,  ( x `  j ) ,  .0.  ) ) ( .r `  P
) ( k  e.  D  |->  if ( k  =  i ,  ( y `  i ) ,  .0.  ) ) )  e.  B )
102101ralrimivva 2971 . . . . 5  |-  ( (
ph  /\  ( x  e.  B  /\  y  e.  B ) )  ->  A. j  e.  D  A. i  e.  D  ( ( k  e.  D  |->  if ( k  =  j ,  ( x `  j ) ,  .0.  ) ) ( .r `  P
) ( k  e.  D  |->  if ( k  =  i ,  ( y `  i ) ,  .0.  ) ) )  e.  B )
103 eqid 2622 . . . . . 6  |-  ( j  e.  D ,  i  e.  D  |->  ( ( k  e.  D  |->  if ( k  =  j ,  ( x `  j ) ,  .0.  ) ) ( .r
`  P ) ( k  e.  D  |->  if ( k  =  i ,  ( y `  i ) ,  .0.  ) ) ) )  =  ( j  e.  D ,  i  e.  D  |->  ( ( k  e.  D  |->  if ( k  =  j ,  ( x `  j
) ,  .0.  )
) ( .r `  P ) ( k  e.  D  |->  if ( k  =  i ,  ( y `  i
) ,  .0.  )
) ) )
104103fmpt2 7237 . . . . 5  |-  ( A. j  e.  D  A. i  e.  D  (
( k  e.  D  |->  if ( k  =  j ,  ( x `
 j ) ,  .0.  ) ) ( .r `  P ) ( k  e.  D  |->  if ( k  =  i ,  ( y `
 i ) ,  .0.  ) ) )  e.  B  <->  ( j  e.  D ,  i  e.  D  |->  ( ( k  e.  D  |->  if ( k  =  j ,  ( x `  j
) ,  .0.  )
) ( .r `  P ) ( k  e.  D  |->  if ( k  =  i ,  ( y `  i
) ,  .0.  )
) ) ) : ( D  X.  D
) --> B )
105102, 104sylib 208 . . . 4  |-  ( (
ph  /\  ( x  e.  B  /\  y  e.  B ) )  -> 
( j  e.  D ,  i  e.  D  |->  ( ( k  e.  D  |->  if ( k  =  j ,  ( x `  j ) ,  .0.  ) ) ( .r `  P
) ( k  e.  D  |->  if ( k  =  i ,  ( y `  i ) ,  .0.  ) ) ) ) : ( D  X.  D ) --> B )
1066, 6mpt2ex 7247 . . . . . . 7  |-  ( j  e.  D ,  i  e.  D  |->  ( ( k  e.  D  |->  if ( k  =  j ,  ( x `  j ) ,  .0.  ) ) ( .r
`  P ) ( k  e.  D  |->  if ( k  =  i ,  ( y `  i ) ,  .0.  ) ) ) )  e.  _V
107103mpt2fun 6762 . . . . . . 7  |-  Fun  (
j  e.  D , 
i  e.  D  |->  ( ( k  e.  D  |->  if ( k  =  j ,  ( x `
 j ) ,  .0.  ) ) ( .r `  P ) ( k  e.  D  |->  if ( k  =  i ,  ( y `
 i ) ,  .0.  ) ) ) )
108106, 107, 343pm3.2i 1239 . . . . . 6  |-  ( ( j  e.  D , 
i  e.  D  |->  ( ( k  e.  D  |->  if ( k  =  j ,  ( x `
 j ) ,  .0.  ) ) ( .r `  P ) ( k  e.  D  |->  if ( k  =  i ,  ( y `
 i ) ,  .0.  ) ) ) )  e.  _V  /\  Fun  ( j  e.  D ,  i  e.  D  |->  ( ( k  e.  D  |->  if ( k  =  j ,  ( x `  j ) ,  .0.  ) ) ( .r `  P
) ( k  e.  D  |->  if ( k  =  i ,  ( y `  i ) ,  .0.  ) ) ) )  /\  ( 0g `  P )  e. 
_V )
109108a1i 11 . . . . 5  |-  ( (
ph  /\  ( x  e.  B  /\  y  e.  B ) )  -> 
( ( j  e.  D ,  i  e.  D  |->  ( ( k  e.  D  |->  if ( k  =  j ,  ( x `  j
) ,  .0.  )
) ( .r `  P ) ( k  e.  D  |->  if ( k  =  i ,  ( y `  i
) ,  .0.  )
) ) )  e. 
_V  /\  Fun  ( j  e.  D ,  i  e.  D  |->  ( ( k  e.  D  |->  if ( k  =  j ,  ( x `  j ) ,  .0.  ) ) ( .r
`  P ) ( k  e.  D  |->  if ( k  =  i ,  ( y `  i ) ,  .0.  ) ) ) )  /\  ( 0g `  P )  e.  _V ) )
11072fsuppimpd 8282 . . . . . 6  |-  ( (
ph  /\  ( x  e.  B  /\  y  e.  B ) )  -> 
( ( j  e.  D  |->  ( k  e.  D  |->  if ( k  =  j ,  ( x `  j ) ,  .0.  ) ) ) supp  ( 0g `  P ) )  e. 
Fin )
11179fsuppimpd 8282 . . . . . 6  |-  ( (
ph  /\  ( x  e.  B  /\  y  e.  B ) )  -> 
( ( i  e.  D  |->  ( k  e.  D  |->  if ( k  =  i ,  ( y `  i ) ,  .0.  ) ) ) supp  ( 0g `  P ) )  e. 
Fin )
112 xpfi 8231 . . . . . 6  |-  ( ( ( ( j  e.  D  |->  ( k  e.  D  |->  if ( k  =  j ,  ( x `  j ) ,  .0.  ) ) ) supp  ( 0g `  P ) )  e. 
Fin  /\  ( (
i  e.  D  |->  ( k  e.  D  |->  if ( k  =  i ,  ( y `  i ) ,  .0.  ) ) ) supp  ( 0g `  P ) )  e.  Fin )  -> 
( ( ( j  e.  D  |->  ( k  e.  D  |->  if ( k  =  j ,  ( x `  j
) ,  .0.  )
) ) supp  ( 0g
`  P ) )  X.  ( ( i  e.  D  |->  ( k  e.  D  |->  if ( k  =  i ,  ( y `  i
) ,  .0.  )
) ) supp  ( 0g
`  P ) ) )  e.  Fin )
113110, 111, 112syl2anc 693 . . . . 5  |-  ( (
ph  /\  ( x  e.  B  /\  y  e.  B ) )  -> 
( ( ( j  e.  D  |->  ( k  e.  D  |->  if ( k  =  j ,  ( x `  j
) ,  .0.  )
) ) supp  ( 0g
`  P ) )  X.  ( ( i  e.  D  |->  ( k  e.  D  |->  if ( k  =  i ,  ( y `  i
) ,  .0.  )
) ) supp  ( 0g
`  P ) ) )  e.  Fin )
1141, 3, 2, 15, 24, 31, 7, 7evlslem4 19508 . . . . 5  |-  ( (
ph  /\  ( x  e.  B  /\  y  e.  B ) )  -> 
( ( j  e.  D ,  i  e.  D  |->  ( ( k  e.  D  |->  if ( k  =  j ,  ( x `  j
) ,  .0.  )
) ( .r `  P ) ( k  e.  D  |->  if ( k  =  i ,  ( y `  i
) ,  .0.  )
) ) ) supp  ( 0g `  P ) ) 
C_  ( ( ( j  e.  D  |->  ( k  e.  D  |->  if ( k  =  j ,  ( x `  j ) ,  .0.  ) ) ) supp  ( 0g `  P ) )  X.  ( ( i  e.  D  |->  ( k  e.  D  |->  if ( k  =  i ,  ( y `  i
) ,  .0.  )
) ) supp  ( 0g
`  P ) ) ) )
115 suppssfifsupp 8290 . . . . 5  |-  ( ( ( ( j  e.  D ,  i  e.  D  |->  ( ( k  e.  D  |->  if ( k  =  j ,  ( x `  j
) ,  .0.  )
) ( .r `  P ) ( k  e.  D  |->  if ( k  =  i ,  ( y `  i
) ,  .0.  )
) ) )  e. 
_V  /\  Fun  ( j  e.  D ,  i  e.  D  |->  ( ( k  e.  D  |->  if ( k  =  j ,  ( x `  j ) ,  .0.  ) ) ( .r
`  P ) ( k  e.  D  |->  if ( k  =  i ,  ( y `  i ) ,  .0.  ) ) ) )  /\  ( 0g `  P )  e.  _V )  /\  ( ( ( ( j  e.  D  |->  ( k  e.  D  |->  if ( k  =  j ,  ( x `
 j ) ,  .0.  ) ) ) supp  ( 0g `  P
) )  X.  (
( i  e.  D  |->  ( k  e.  D  |->  if ( k  =  i ,  ( y `
 i ) ,  .0.  ) ) ) supp  ( 0g `  P
) ) )  e. 
Fin  /\  ( (
j  e.  D , 
i  e.  D  |->  ( ( k  e.  D  |->  if ( k  =  j ,  ( x `
 j ) ,  .0.  ) ) ( .r `  P ) ( k  e.  D  |->  if ( k  =  i ,  ( y `
 i ) ,  .0.  ) ) ) ) supp  ( 0g `  P ) )  C_  ( ( ( j  e.  D  |->  ( k  e.  D  |->  if ( k  =  j ,  ( x `  j
) ,  .0.  )
) ) supp  ( 0g
`  P ) )  X.  ( ( i  e.  D  |->  ( k  e.  D  |->  if ( k  =  i ,  ( y `  i
) ,  .0.  )
) ) supp  ( 0g
`  P ) ) ) ) )  -> 
( j  e.  D ,  i  e.  D  |->  ( ( k  e.  D  |->  if ( k  =  j ,  ( x `  j ) ,  .0.  ) ) ( .r `  P
) ( k  e.  D  |->  if ( k  =  i ,  ( y `  i ) ,  .0.  ) ) ) ) finSupp  ( 0g
`  P ) )
116109, 113, 114, 115syl12anc 1324 . . . 4  |-  ( (
ph  /\  ( x  e.  B  /\  y  e.  B ) )  -> 
( j  e.  D ,  i  e.  D  |->  ( ( k  e.  D  |->  if ( k  =  j ,  ( x `  j ) ,  .0.  ) ) ( .r `  P
) ( k  e.  D  |->  if ( k  =  i ,  ( y `  i ) ,  .0.  ) ) ) ) finSupp  ( 0g
`  P ) )
1171, 3, 84, 90, 92, 96, 105, 116gsummhm 18338 . . 3  |-  ( (
ph  /\  ( x  e.  B  /\  y  e.  B ) )  -> 
( S  gsumg  ( E  o.  (
j  e.  D , 
i  e.  D  |->  ( ( k  e.  D  |->  if ( k  =  j ,  ( x `
 j ) ,  .0.  ) ) ( .r `  P ) ( k  e.  D  |->  if ( k  =  i ,  ( y `
 i ) ,  .0.  ) ) ) ) ) )  =  ( E `  ( P  gsumg  ( j  e.  D ,  i  e.  D  |->  ( ( k  e.  D  |->  if ( k  =  j ,  ( x `  j ) ,  .0.  ) ) ( .r `  P
) ( k  e.  D  |->  if ( k  =  i ,  ( y `  i ) ,  .0.  ) ) ) ) ) ) )
1188ad2antrr 762 . . . . . . . . . 10  |-  ( ( ( ph  /\  (
x  e.  B  /\  y  e.  B )
)  /\  ( j  e.  D  /\  i  e.  D ) )  ->  I  e.  _V )
1199ad2antrr 762 . . . . . . . . . 10  |-  ( ( ( ph  /\  (
x  e.  B  /\  y  e.  B )
)  /\  ( j  e.  D  /\  i  e.  D ) )  ->  R  e.  CRing )
120 eqid 2622 . . . . . . . . . 10  |-  ( .r
`  R )  =  ( .r `  R
)
121 simprl 794 . . . . . . . . . 10  |-  ( ( ( ph  /\  (
x  e.  B  /\  y  e.  B )
)  /\  ( j  e.  D  /\  i  e.  D ) )  -> 
j  e.  D )
122 simprr 796 . . . . . . . . . 10  |-  ( ( ( ph  /\  (
x  e.  B  /\  y  e.  B )
)  /\  ( j  e.  D  /\  i  e.  D ) )  -> 
i  e.  D )
12322adantrr 753 . . . . . . . . . 10  |-  ( ( ( ph  /\  (
x  e.  B  /\  y  e.  B )
)  /\  ( j  e.  D  /\  i  e.  D ) )  -> 
( x `  j
)  e.  ( Base `  R ) )
12429adantrl 752 . . . . . . . . . 10  |-  ( ( ( ph  /\  (
x  e.  B  /\  y  e.  B )
)  /\  ( j  e.  D  /\  i  e.  D ) )  -> 
( y `  i
)  e.  ( Base `  R ) )
12512, 4, 16, 17, 118, 119, 2, 120, 121, 122, 123, 124mplmon2mul 19501 . . . . . . . . 9  |-  ( ( ( ph  /\  (
x  e.  B  /\  y  e.  B )
)  /\  ( j  e.  D  /\  i  e.  D ) )  -> 
( ( k  e.  D  |->  if ( k  =  j ,  ( x `  j ) ,  .0.  ) ) ( .r `  P
) ( k  e.  D  |->  if ( k  =  i ,  ( y `  i ) ,  .0.  ) ) )  =  ( k  e.  D  |->  if ( k  =  ( j  oF  +  i ) ,  ( ( x `  j ) ( .r `  R
) ( y `  i ) ) ,  .0.  ) ) )
126125fveq2d 6195 . . . . . . . 8  |-  ( ( ( ph  /\  (
x  e.  B  /\  y  e.  B )
)  /\  ( j  e.  D  /\  i  e.  D ) )  -> 
( E `  (
( k  e.  D  |->  if ( k  =  j ,  ( x `
 j ) ,  .0.  ) ) ( .r `  P ) ( k  e.  D  |->  if ( k  =  i ,  ( y `
 i ) ,  .0.  ) ) ) )  =  ( E `
 ( k  e.  D  |->  if ( k  =  ( j  oF  +  i ) ,  ( ( x `
 j ) ( .r `  R ) ( y `  i
) ) ,  .0.  ) ) ) )
127 evlslem2.e2 . . . . . . . . 9  |-  ( (
ph  /\  ( (
x  e.  B  /\  y  e.  B )  /\  ( j  e.  D  /\  i  e.  D
) ) )  -> 
( E `  (
k  e.  D  |->  if ( k  =  ( j  oF  +  i ) ,  ( ( x `  j
) ( .r `  R ) ( y `
 i ) ) ,  .0.  ) ) )  =  ( ( E `  ( k  e.  D  |->  if ( k  =  j ,  ( x `  j
) ,  .0.  )
) )  .x.  ( E `  ( k  e.  D  |->  if ( k  =  i ,  ( y `  i
) ,  .0.  )
) ) ) )
128127anassrs 680 . . . . . . . 8  |-  ( ( ( ph  /\  (
x  e.  B  /\  y  e.  B )
)  /\  ( j  e.  D  /\  i  e.  D ) )  -> 
( E `  (
k  e.  D  |->  if ( k  =  ( j  oF  +  i ) ,  ( ( x `  j
) ( .r `  R ) ( y `
 i ) ) ,  .0.  ) ) )  =  ( ( E `  ( k  e.  D  |->  if ( k  =  j ,  ( x `  j
) ,  .0.  )
) )  .x.  ( E `  ( k  e.  D  |->  if ( k  =  i ,  ( y `  i
) ,  .0.  )
) ) ) )
129126, 128eqtrd 2656 . . . . . . 7  |-  ( ( ( ph  /\  (
x  e.  B  /\  y  e.  B )
)  /\  ( j  e.  D  /\  i  e.  D ) )  -> 
( E `  (
( k  e.  D  |->  if ( k  =  j ,  ( x `
 j ) ,  .0.  ) ) ( .r `  P ) ( k  e.  D  |->  if ( k  =  i ,  ( y `
 i ) ,  .0.  ) ) ) )  =  ( ( E `  ( k  e.  D  |->  if ( k  =  j ,  ( x `  j
) ,  .0.  )
) )  .x.  ( E `  ( k  e.  D  |->  if ( k  =  i ,  ( y `  i
) ,  .0.  )
) ) ) )
1301293impb 1260 . . . . . 6  |-  ( ( ( ph  /\  (
x  e.  B  /\  y  e.  B )
)  /\  j  e.  D  /\  i  e.  D
)  ->  ( E `  ( ( k  e.  D  |->  if ( k  =  j ,  ( x `  j ) ,  .0.  ) ) ( .r `  P
) ( k  e.  D  |->  if ( k  =  i ,  ( y `  i ) ,  .0.  ) ) ) )  =  ( ( E `  (
k  e.  D  |->  if ( k  =  j ,  ( x `  j ) ,  .0.  ) ) )  .x.  ( E `  ( k  e.  D  |->  if ( k  =  i ,  ( y `  i
) ,  .0.  )
) ) ) )
131130mpt2eq3dva 6719 . . . . 5  |-  ( (
ph  /\  ( x  e.  B  /\  y  e.  B ) )  -> 
( j  e.  D ,  i  e.  D  |->  ( E `  (
( k  e.  D  |->  if ( k  =  j ,  ( x `
 j ) ,  .0.  ) ) ( .r `  P ) ( k  e.  D  |->  if ( k  =  i ,  ( y `
 i ) ,  .0.  ) ) ) ) )  =  ( j  e.  D , 
i  e.  D  |->  ( ( E `  (
k  e.  D  |->  if ( k  =  j ,  ( x `  j ) ,  .0.  ) ) )  .x.  ( E `  ( k  e.  D  |->  if ( k  =  i ,  ( y `  i
) ,  .0.  )
) ) ) ) )
132131oveq2d 6666 . . . 4  |-  ( (
ph  /\  ( x  e.  B  /\  y  e.  B ) )  -> 
( S  gsumg  ( j  e.  D ,  i  e.  D  |->  ( E `  (
( k  e.  D  |->  if ( k  =  j ,  ( x `
 j ) ,  .0.  ) ) ( .r `  P ) ( k  e.  D  |->  if ( k  =  i ,  ( y `
 i ) ,  .0.  ) ) ) ) ) )  =  ( S  gsumg  ( j  e.  D ,  i  e.  D  |->  ( ( E `  ( k  e.  D  |->  if ( k  =  j ,  ( x `
 j ) ,  .0.  ) ) ) 
.x.  ( E `  ( k  e.  D  |->  if ( k  =  i ,  ( y `
 i ) ,  .0.  ) ) ) ) ) ) )
133 eqidd 2623 . . . . . 6  |-  ( (
ph  /\  ( x  e.  B  /\  y  e.  B ) )  -> 
( j  e.  D ,  i  e.  D  |->  ( ( k  e.  D  |->  if ( k  =  j ,  ( x `  j ) ,  .0.  ) ) ( .r `  P
) ( k  e.  D  |->  if ( k  =  i ,  ( y `  i ) ,  .0.  ) ) ) )  =  ( j  e.  D , 
i  e.  D  |->  ( ( k  e.  D  |->  if ( k  =  j ,  ( x `
 j ) ,  .0.  ) ) ( .r `  P ) ( k  e.  D  |->  if ( k  =  i ,  ( y `
 i ) ,  .0.  ) ) ) ) )
134 eqid 2622 . . . . . . . . . 10  |-  ( Base `  S )  =  (
Base `  S )
1351, 134ghmf 17664 . . . . . . . . 9  |-  ( E  e.  ( P  GrpHom  S )  ->  E : B
--> ( Base `  S
) )
13693, 135syl 17 . . . . . . . 8  |-  ( ph  ->  E : B --> ( Base `  S ) )
137136feqmptd 6249 . . . . . . 7  |-  ( ph  ->  E  =  ( z  e.  B  |->  ( E `
 z ) ) )
138137adantr 481 . . . . . 6  |-  ( (
ph  /\  ( x  e.  B  /\  y  e.  B ) )  ->  E  =  ( z  e.  B  |->  ( E `
 z ) ) )
139 fveq2 6191 . . . . . 6  |-  ( z  =  ( ( k  e.  D  |->  if ( k  =  j ,  ( x `  j
) ,  .0.  )
) ( .r `  P ) ( k  e.  D  |->  if ( k  =  i ,  ( y `  i
) ,  .0.  )
) )  ->  ( E `  z )  =  ( E `  ( ( k  e.  D  |->  if ( k  =  j ,  ( x `  j ) ,  .0.  ) ) ( .r `  P
) ( k  e.  D  |->  if ( k  =  i ,  ( y `  i ) ,  .0.  ) ) ) ) )
140101, 133, 138, 139fmpt2co 7260 . . . . 5  |-  ( (
ph  /\  ( x  e.  B  /\  y  e.  B ) )  -> 
( E  o.  (
j  e.  D , 
i  e.  D  |->  ( ( k  e.  D  |->  if ( k  =  j ,  ( x `
 j ) ,  .0.  ) ) ( .r `  P ) ( k  e.  D  |->  if ( k  =  i ,  ( y `
 i ) ,  .0.  ) ) ) ) )  =  ( j  e.  D , 
i  e.  D  |->  ( E `  ( ( k  e.  D  |->  if ( k  =  j ,  ( x `  j ) ,  .0.  ) ) ( .r
`  P ) ( k  e.  D  |->  if ( k  =  i ,  ( y `  i ) ,  .0.  ) ) ) ) ) )
141140oveq2d 6666 . . . 4  |-  ( (
ph  /\  ( x  e.  B  /\  y  e.  B ) )  -> 
( S  gsumg  ( E  o.  (
j  e.  D , 
i  e.  D  |->  ( ( k  e.  D  |->  if ( k  =  j ,  ( x `
 j ) ,  .0.  ) ) ( .r `  P ) ( k  e.  D  |->  if ( k  =  i ,  ( y `
 i ) ,  .0.  ) ) ) ) ) )  =  ( S  gsumg  ( j  e.  D ,  i  e.  D  |->  ( E `  (
( k  e.  D  |->  if ( k  =  j ,  ( x `
 j ) ,  .0.  ) ) ( .r `  P ) ( k  e.  D  |->  if ( k  =  i ,  ( y `
 i ) ,  .0.  ) ) ) ) ) ) )
142 eqidd 2623 . . . . . . . 8  |-  ( (
ph  /\  ( x  e.  B  /\  y  e.  B ) )  -> 
( j  e.  D  |->  ( k  e.  D  |->  if ( k  =  j ,  ( x `
 j ) ,  .0.  ) ) )  =  ( j  e.  D  |->  ( k  e.  D  |->  if ( k  =  j ,  ( x `  j ) ,  .0.  ) ) ) )
143 fveq2 6191 . . . . . . . 8  |-  ( z  =  ( k  e.  D  |->  if ( k  =  j ,  ( x `  j ) ,  .0.  ) )  ->  ( E `  z )  =  ( E `  ( k  e.  D  |->  if ( k  =  j ,  ( x `  j
) ,  .0.  )
) ) )
14424, 142, 138, 143fmptco 6396 . . . . . . 7  |-  ( (
ph  /\  ( x  e.  B  /\  y  e.  B ) )  -> 
( E  o.  (
j  e.  D  |->  ( k  e.  D  |->  if ( k  =  j ,  ( x `  j ) ,  .0.  ) ) ) )  =  ( j  e.  D  |->  ( E `  ( k  e.  D  |->  if ( k  =  j ,  ( x `
 j ) ,  .0.  ) ) ) ) )
145144oveq2d 6666 . . . . . 6  |-  ( (
ph  /\  ( x  e.  B  /\  y  e.  B ) )  -> 
( S  gsumg  ( E  o.  (
j  e.  D  |->  ( k  e.  D  |->  if ( k  =  j ,  ( x `  j ) ,  .0.  ) ) ) ) )  =  ( S 
gsumg  ( j  e.  D  |->  ( E `  (
k  e.  D  |->  if ( k  =  j ,  ( x `  j ) ,  .0.  ) ) ) ) ) )
146 eqidd 2623 . . . . . . . 8  |-  ( (
ph  /\  ( x  e.  B  /\  y  e.  B ) )  -> 
( i  e.  D  |->  ( k  e.  D  |->  if ( k  =  i ,  ( y `
 i ) ,  .0.  ) ) )  =  ( i  e.  D  |->  ( k  e.  D  |->  if ( k  =  i ,  ( y `  i ) ,  .0.  ) ) ) )
147 fveq2 6191 . . . . . . . 8  |-  ( z  =  ( k  e.  D  |->  if ( k  =  i ,  ( y `  i ) ,  .0.  ) )  ->  ( E `  z )  =  ( E `  ( k  e.  D  |->  if ( k  =  i ,  ( y `  i
) ,  .0.  )
) ) )
14831, 146, 138, 147fmptco 6396 . . . . . . 7  |-  ( (
ph  /\  ( x  e.  B  /\  y  e.  B ) )  -> 
( E  o.  (
i  e.  D  |->  ( k  e.  D  |->  if ( k  =  i ,  ( y `  i ) ,  .0.  ) ) ) )  =  ( i  e.  D  |->  ( E `  ( k  e.  D  |->  if ( k  =  i ,  ( y `
 i ) ,  .0.  ) ) ) ) )
149148oveq2d 6666 . . . . . 6  |-  ( (
ph  /\  ( x  e.  B  /\  y  e.  B ) )  -> 
( S  gsumg  ( E  o.  (
i  e.  D  |->  ( k  e.  D  |->  if ( k  =  i ,  ( y `  i ) ,  .0.  ) ) ) ) )  =  ( S 
gsumg  ( i  e.  D  |->  ( E `  (
k  e.  D  |->  if ( k  =  i ,  ( y `  i ) ,  .0.  ) ) ) ) ) )
150145, 149oveq12d 6668 . . . . 5  |-  ( (
ph  /\  ( x  e.  B  /\  y  e.  B ) )  -> 
( ( S  gsumg  ( E  o.  ( j  e.  D  |->  ( k  e.  D  |->  if ( k  =  j ,  ( x `  j ) ,  .0.  ) ) ) ) )  .x.  ( S  gsumg  ( E  o.  (
i  e.  D  |->  ( k  e.  D  |->  if ( k  =  i ,  ( y `  i ) ,  .0.  ) ) ) ) ) )  =  ( ( S  gsumg  ( j  e.  D  |->  ( E `  (
k  e.  D  |->  if ( k  =  j ,  ( x `  j ) ,  .0.  ) ) ) ) )  .x.  ( S 
gsumg  ( i  e.  D  |->  ( E `  (
k  e.  D  |->  if ( k  =  i ,  ( y `  i ) ,  .0.  ) ) ) ) ) ) )
151 evlslem2.m . . . . . 6  |-  .x.  =  ( .r `  S )
152 eqid 2622 . . . . . 6  |-  ( 0g
`  S )  =  ( 0g `  S
)
153136ad2antrr 762 . . . . . . 7  |-  ( ( ( ph  /\  (
x  e.  B  /\  y  e.  B )
)  /\  j  e.  D )  ->  E : B --> ( Base `  S
) )
154153, 24ffvelrnd 6360 . . . . . 6  |-  ( ( ( ph  /\  (
x  e.  B  /\  y  e.  B )
)  /\  j  e.  D )  ->  ( E `  ( k  e.  D  |->  if ( k  =  j ,  ( x `  j
) ,  .0.  )
) )  e.  (
Base `  S )
)
155136ad2antrr 762 . . . . . . 7  |-  ( ( ( ph  /\  (
x  e.  B  /\  y  e.  B )
)  /\  i  e.  D )  ->  E : B --> ( Base `  S
) )
156155, 31ffvelrnd 6360 . . . . . 6  |-  ( ( ( ph  /\  (
x  e.  B  /\  y  e.  B )
)  /\  i  e.  D )  ->  ( E `  ( k  e.  D  |->  if ( k  =  i ,  ( y `  i
) ,  .0.  )
) )  e.  (
Base `  S )
)
1576mptex 6486 . . . . . . . . 9  |-  ( j  e.  D  |->  ( E `
 ( k  e.  D  |->  if ( k  =  j ,  ( x `  j ) ,  .0.  ) ) ) )  e.  _V
158 funmpt 5926 . . . . . . . . 9  |-  Fun  (
j  e.  D  |->  ( E `  ( k  e.  D  |->  if ( k  =  j ,  ( x `  j
) ,  .0.  )
) ) )
159 fvex 6201 . . . . . . . . 9  |-  ( 0g
`  S )  e. 
_V
160157, 158, 1593pm3.2i 1239 . . . . . . . 8  |-  ( ( j  e.  D  |->  ( E `  ( k  e.  D  |->  if ( k  =  j ,  ( x `  j
) ,  .0.  )
) ) )  e. 
_V  /\  Fun  ( j  e.  D  |->  ( E `
 ( k  e.  D  |->  if ( k  =  j ,  ( x `  j ) ,  .0.  ) ) ) )  /\  ( 0g `  S )  e. 
_V )
161160a1i 11 . . . . . . 7  |-  ( (
ph  /\  ( x  e.  B  /\  y  e.  B ) )  -> 
( ( j  e.  D  |->  ( E `  ( k  e.  D  |->  if ( k  =  j ,  ( x `
 j ) ,  .0.  ) ) ) )  e.  _V  /\  Fun  ( j  e.  D  |->  ( E `  (
k  e.  D  |->  if ( k  =  j ,  ( x `  j ) ,  .0.  ) ) ) )  /\  ( 0g `  S )  e.  _V ) )
162 ssid 3624 . . . . . . . . . 10  |-  ( ( j  e.  D  |->  ( k  e.  D  |->  if ( k  =  j ,  ( x `  j ) ,  .0.  ) ) ) supp  ( 0g `  P ) ) 
C_  ( ( j  e.  D  |->  ( k  e.  D  |->  if ( k  =  j ,  ( x `  j
) ,  .0.  )
) ) supp  ( 0g
`  P ) )
163162a1i 11 . . . . . . . . 9  |-  ( ph  ->  ( ( j  e.  D  |->  ( k  e.  D  |->  if ( k  =  j ,  ( x `  j ) ,  .0.  ) ) ) supp  ( 0g `  P ) )  C_  ( ( j  e.  D  |->  ( k  e.  D  |->  if ( k  =  j ,  ( x `  j ) ,  .0.  ) ) ) supp  ( 0g `  P ) ) )
1643, 152ghmid 17666 . . . . . . . . . 10  |-  ( E  e.  ( P  GrpHom  S )  ->  ( E `  ( 0g `  P
) )  =  ( 0g `  S ) )
16593, 164syl 17 . . . . . . . . 9  |-  ( ph  ->  ( E `  ( 0g `  P ) )  =  ( 0g `  S ) )
1666mptex 6486 . . . . . . . . . 10  |-  ( k  e.  D  |->  if ( k  =  j ,  ( x `  j
) ,  .0.  )
)  e.  _V
167166a1i 11 . . . . . . . . 9  |-  ( (
ph  /\  j  e.  D )  ->  (
k  e.  D  |->  if ( k  =  j ,  ( x `  j ) ,  .0.  ) )  e.  _V )
16834a1i 11 . . . . . . . . 9  |-  ( ph  ->  ( 0g `  P
)  e.  _V )
169163, 165, 167, 168suppssfv 7331 . . . . . . . 8  |-  ( ph  ->  ( ( j  e.  D  |->  ( E `  ( k  e.  D  |->  if ( k  =  j ,  ( x `
 j ) ,  .0.  ) ) ) ) supp  ( 0g `  S ) )  C_  ( ( j  e.  D  |->  ( k  e.  D  |->  if ( k  =  j ,  ( x `  j ) ,  .0.  ) ) ) supp  ( 0g `  P ) ) )
170169adantr 481 . . . . . . 7  |-  ( (
ph  /\  ( x  e.  B  /\  y  e.  B ) )  -> 
( ( j  e.  D  |->  ( E `  ( k  e.  D  |->  if ( k  =  j ,  ( x `
 j ) ,  .0.  ) ) ) ) supp  ( 0g `  S ) )  C_  ( ( j  e.  D  |->  ( k  e.  D  |->  if ( k  =  j ,  ( x `  j ) ,  .0.  ) ) ) supp  ( 0g `  P ) ) )
171 suppssfifsupp 8290 . . . . . . 7  |-  ( ( ( ( j  e.  D  |->  ( E `  ( k  e.  D  |->  if ( k  =  j ,  ( x `
 j ) ,  .0.  ) ) ) )  e.  _V  /\  Fun  ( j  e.  D  |->  ( E `  (
k  e.  D  |->  if ( k  =  j ,  ( x `  j ) ,  .0.  ) ) ) )  /\  ( 0g `  S )  e.  _V )  /\  ( ( ( j  e.  D  |->  ( k  e.  D  |->  if ( k  =  j ,  ( x `  j ) ,  .0.  ) ) ) supp  ( 0g `  P ) )  e.  Fin  /\  (
( j  e.  D  |->  ( E `  (
k  e.  D  |->  if ( k  =  j ,  ( x `  j ) ,  .0.  ) ) ) ) supp  ( 0g `  S
) )  C_  (
( j  e.  D  |->  ( k  e.  D  |->  if ( k  =  j ,  ( x `
 j ) ,  .0.  ) ) ) supp  ( 0g `  P
) ) ) )  ->  ( j  e.  D  |->  ( E `  ( k  e.  D  |->  if ( k  =  j ,  ( x `
 j ) ,  .0.  ) ) ) ) finSupp  ( 0g `  S ) )
172161, 110, 170, 171syl12anc 1324 . . . . . 6  |-  ( (
ph  /\  ( x  e.  B  /\  y  e.  B ) )  -> 
( j  e.  D  |->  ( E `  (
k  e.  D  |->  if ( k  =  j ,  ( x `  j ) ,  .0.  ) ) ) ) finSupp 
( 0g `  S
) )
1736mptex 6486 . . . . . . . . 9  |-  ( i  e.  D  |->  ( E `
 ( k  e.  D  |->  if ( k  =  i ,  ( y `  i ) ,  .0.  ) ) ) )  e.  _V
174 funmpt 5926 . . . . . . . . 9  |-  Fun  (
i  e.  D  |->  ( E `  ( k  e.  D  |->  if ( k  =  i ,  ( y `  i
) ,  .0.  )
) ) )
175173, 174, 1593pm3.2i 1239 . . . . . . . 8  |-  ( ( i  e.  D  |->  ( E `  ( k  e.  D  |->  if ( k  =  i ,  ( y `  i
) ,  .0.  )
) ) )  e. 
_V  /\  Fun  ( i  e.  D  |->  ( E `
 ( k  e.  D  |->  if ( k  =  i ,  ( y `  i ) ,  .0.  ) ) ) )  /\  ( 0g `  S )  e. 
_V )
176175a1i 11 . . . . . . 7  |-  ( (
ph  /\  ( x  e.  B  /\  y  e.  B ) )  -> 
( ( i  e.  D  |->  ( E `  ( k  e.  D  |->  if ( k  =  i ,  ( y `
 i ) ,  .0.  ) ) ) )  e.  _V  /\  Fun  ( i  e.  D  |->  ( E `  (
k  e.  D  |->  if ( k  =  i ,  ( y `  i ) ,  .0.  ) ) ) )  /\  ( 0g `  S )  e.  _V ) )
177 ssid 3624 . . . . . . . . . 10  |-  ( ( i  e.  D  |->  ( k  e.  D  |->  if ( k  =  i ,  ( y `  i ) ,  .0.  ) ) ) supp  ( 0g `  P ) ) 
C_  ( ( i  e.  D  |->  ( k  e.  D  |->  if ( k  =  i ,  ( y `  i
) ,  .0.  )
) ) supp  ( 0g
`  P ) )
178177a1i 11 . . . . . . . . 9  |-  ( ph  ->  ( ( i  e.  D  |->  ( k  e.  D  |->  if ( k  =  i ,  ( y `  i ) ,  .0.  ) ) ) supp  ( 0g `  P ) )  C_  ( ( i  e.  D  |->  ( k  e.  D  |->  if ( k  =  i ,  ( y `  i ) ,  .0.  ) ) ) supp  ( 0g `  P ) ) )
1796mptex 6486 . . . . . . . . . 10  |-  ( k  e.  D  |->  if ( k  =  i ,  ( y `  i
) ,  .0.  )
)  e.  _V
180179a1i 11 . . . . . . . . 9  |-  ( (
ph  /\  i  e.  D )  ->  (
k  e.  D  |->  if ( k  =  i ,  ( y `  i ) ,  .0.  ) )  e.  _V )
181178, 165, 180, 168suppssfv 7331 . . . . . . . 8  |-  ( ph  ->  ( ( i  e.  D  |->  ( E `  ( k  e.  D  |->  if ( k  =  i ,  ( y `
 i ) ,  .0.  ) ) ) ) supp  ( 0g `  S ) )  C_  ( ( i  e.  D  |->  ( k  e.  D  |->  if ( k  =  i ,  ( y `  i ) ,  .0.  ) ) ) supp  ( 0g `  P ) ) )
182181adantr 481 . . . . . . 7  |-  ( (
ph  /\  ( x  e.  B  /\  y  e.  B ) )  -> 
( ( i  e.  D  |->  ( E `  ( k  e.  D  |->  if ( k  =  i ,  ( y `
 i ) ,  .0.  ) ) ) ) supp  ( 0g `  S ) )  C_  ( ( i  e.  D  |->  ( k  e.  D  |->  if ( k  =  i ,  ( y `  i ) ,  .0.  ) ) ) supp  ( 0g `  P ) ) )
183 suppssfifsupp 8290 . . . . . . 7  |-  ( ( ( ( i  e.  D  |->  ( E `  ( k  e.  D  |->  if ( k  =  i ,  ( y `
 i ) ,  .0.  ) ) ) )  e.  _V  /\  Fun  ( i  e.  D  |->  ( E `  (
k  e.  D  |->  if ( k  =  i ,  ( y `  i ) ,  .0.  ) ) ) )  /\  ( 0g `  S )  e.  _V )  /\  ( ( ( i  e.  D  |->  ( k  e.  D  |->  if ( k  =  i ,  ( y `  i ) ,  .0.  ) ) ) supp  ( 0g `  P ) )  e.  Fin  /\  (
( i  e.  D  |->  ( E `  (
k  e.  D  |->  if ( k  =  i ,  ( y `  i ) ,  .0.  ) ) ) ) supp  ( 0g `  S
) )  C_  (
( i  e.  D  |->  ( k  e.  D  |->  if ( k  =  i ,  ( y `
 i ) ,  .0.  ) ) ) supp  ( 0g `  P
) ) ) )  ->  ( i  e.  D  |->  ( E `  ( k  e.  D  |->  if ( k  =  i ,  ( y `
 i ) ,  .0.  ) ) ) ) finSupp  ( 0g `  S ) )
184176, 111, 182, 183syl12anc 1324 . . . . . 6  |-  ( (
ph  /\  ( x  e.  B  /\  y  e.  B ) )  -> 
( i  e.  D  |->  ( E `  (
k  e.  D  |->  if ( k  =  i ,  ( y `  i ) ,  .0.  ) ) ) ) finSupp 
( 0g `  S
) )
185134, 151, 152, 7, 7, 88, 154, 156, 172, 184gsumdixp 18609 . . . . 5  |-  ( (
ph  /\  ( x  e.  B  /\  y  e.  B ) )  -> 
( ( S  gsumg  ( j  e.  D  |->  ( E `
 ( k  e.  D  |->  if ( k  =  j ,  ( x `  j ) ,  .0.  ) ) ) ) )  .x.  ( S  gsumg  ( i  e.  D  |->  ( E `  (
k  e.  D  |->  if ( k  =  i ,  ( y `  i ) ,  .0.  ) ) ) ) ) )  =  ( S  gsumg  ( j  e.  D ,  i  e.  D  |->  ( ( E `  ( k  e.  D  |->  if ( k  =  j ,  ( x `
 j ) ,  .0.  ) ) ) 
.x.  ( E `  ( k  e.  D  |->  if ( k  =  i ,  ( y `
 i ) ,  .0.  ) ) ) ) ) ) )
186150, 185eqtrd 2656 . . . 4  |-  ( (
ph  /\  ( x  e.  B  /\  y  e.  B ) )  -> 
( ( S  gsumg  ( E  o.  ( j  e.  D  |->  ( k  e.  D  |->  if ( k  =  j ,  ( x `  j ) ,  .0.  ) ) ) ) )  .x.  ( S  gsumg  ( E  o.  (
i  e.  D  |->  ( k  e.  D  |->  if ( k  =  i ,  ( y `  i ) ,  .0.  ) ) ) ) ) )  =  ( S  gsumg  ( j  e.  D ,  i  e.  D  |->  ( ( E `  ( k  e.  D  |->  if ( k  =  j ,  ( x `
 j ) ,  .0.  ) ) ) 
.x.  ( E `  ( k  e.  D  |->  if ( k  =  i ,  ( y `
 i ) ,  .0.  ) ) ) ) ) ) )
187132, 141, 1863eqtr4d 2666 . . 3  |-  ( (
ph  /\  ( x  e.  B  /\  y  e.  B ) )  -> 
( S  gsumg  ( E  o.  (
j  e.  D , 
i  e.  D  |->  ( ( k  e.  D  |->  if ( k  =  j ,  ( x `
 j ) ,  .0.  ) ) ( .r `  P ) ( k  e.  D  |->  if ( k  =  i ,  ( y `
 i ) ,  .0.  ) ) ) ) ) )  =  ( ( S  gsumg  ( E  o.  ( j  e.  D  |->  ( k  e.  D  |->  if ( k  =  j ,  ( x `  j ) ,  .0.  ) ) ) ) )  .x.  ( S  gsumg  ( E  o.  (
i  e.  D  |->  ( k  e.  D  |->  if ( k  =  i ,  ( y `  i ) ,  .0.  ) ) ) ) ) ) )
18881, 117, 1873eqtr2d 2662 . 2  |-  ( (
ph  /\  ( x  e.  B  /\  y  e.  B ) )  -> 
( E `  (
( P  gsumg  ( j  e.  D  |->  ( k  e.  D  |->  if ( k  =  j ,  ( x `
 j ) ,  .0.  ) ) ) ) ( .r `  P ) ( P 
gsumg  ( i  e.  D  |->  ( k  e.  D  |->  if ( k  =  i ,  ( y `
 i ) ,  .0.  ) ) ) ) ) )  =  ( ( S  gsumg  ( E  o.  ( j  e.  D  |->  ( k  e.  D  |->  if ( k  =  j ,  ( x `  j ) ,  .0.  ) ) ) ) )  .x.  ( S  gsumg  ( E  o.  (
i  e.  D  |->  ( k  e.  D  |->  if ( k  =  i ,  ( y `  i ) ,  .0.  ) ) ) ) ) ) )
1898adantr 481 . . . . 5  |-  ( (
ph  /\  ( x  e.  B  /\  y  e.  B ) )  ->  I  e.  _V )
19011adantr 481 . . . . 5  |-  ( (
ph  /\  ( x  e.  B  /\  y  e.  B ) )  ->  R  e.  Ring )
19112, 4, 16, 1, 189, 190, 20mplcoe4 19503 . . . 4  |-  ( (
ph  /\  ( x  e.  B  /\  y  e.  B ) )  ->  x  =  ( P  gsumg  ( j  e.  D  |->  ( k  e.  D  |->  if ( k  =  j ,  ( x `  j ) ,  .0.  ) ) ) ) )
19212, 4, 16, 1, 189, 190, 27mplcoe4 19503 . . . 4  |-  ( (
ph  /\  ( x  e.  B  /\  y  e.  B ) )  -> 
y  =  ( P 
gsumg  ( i  e.  D  |->  ( k  e.  D  |->  if ( k  =  i ,  ( y `
 i ) ,  .0.  ) ) ) ) )
193191, 192oveq12d 6668 . . 3  |-  ( (
ph  /\  ( x  e.  B  /\  y  e.  B ) )  -> 
( x ( .r
`  P ) y )  =  ( ( P  gsumg  ( j  e.  D  |->  ( k  e.  D  |->  if ( k  =  j ,  ( x `
 j ) ,  .0.  ) ) ) ) ( .r `  P ) ( P 
gsumg  ( i  e.  D  |->  ( k  e.  D  |->  if ( k  =  i ,  ( y `
 i ) ,  .0.  ) ) ) ) ) )
194193fveq2d 6195 . 2  |-  ( (
ph  /\  ( x  e.  B  /\  y  e.  B ) )  -> 
( E `  (
x ( .r `  P ) y ) )  =  ( E `
 ( ( P 
gsumg  ( j  e.  D  |->  ( k  e.  D  |->  if ( k  =  j ,  ( x `
 j ) ,  .0.  ) ) ) ) ( .r `  P ) ( P 
gsumg  ( i  e.  D  |->  ( k  e.  D  |->  if ( k  =  i ,  ( y `
 i ) ,  .0.  ) ) ) ) ) ) )
195191fveq2d 6195 . . . 4  |-  ( (
ph  /\  ( x  e.  B  /\  y  e.  B ) )  -> 
( E `  x
)  =  ( E `
 ( P  gsumg  ( j  e.  D  |->  ( k  e.  D  |->  if ( k  =  j ,  ( x `  j
) ,  .0.  )
) ) ) ) )
196 eqid 2622 . . . . . 6  |-  ( j  e.  D  |->  ( k  e.  D  |->  if ( k  =  j ,  ( x `  j
) ,  .0.  )
) )  =  ( j  e.  D  |->  ( k  e.  D  |->  if ( k  =  j ,  ( x `  j ) ,  .0.  ) ) )
19724, 196fmptd 6385 . . . . 5  |-  ( (
ph  /\  ( x  e.  B  /\  y  e.  B ) )  -> 
( j  e.  D  |->  ( k  e.  D  |->  if ( k  =  j ,  ( x `
 j ) ,  .0.  ) ) ) : D --> B )
1981, 3, 84, 90, 7, 96, 197, 72gsummhm 18338 . . . 4  |-  ( (
ph  /\  ( x  e.  B  /\  y  e.  B ) )  -> 
( S  gsumg  ( E  o.  (
j  e.  D  |->  ( k  e.  D  |->  if ( k  =  j ,  ( x `  j ) ,  .0.  ) ) ) ) )  =  ( E `
 ( P  gsumg  ( j  e.  D  |->  ( k  e.  D  |->  if ( k  =  j ,  ( x `  j
) ,  .0.  )
) ) ) ) )
199195, 198eqtr4d 2659 . . 3  |-  ( (
ph  /\  ( x  e.  B  /\  y  e.  B ) )  -> 
( E `  x
)  =  ( S 
gsumg  ( E  o.  (
j  e.  D  |->  ( k  e.  D  |->  if ( k  =  j ,  ( x `  j ) ,  .0.  ) ) ) ) ) )
200192fveq2d 6195 . . . 4  |-  ( (
ph  /\  ( x  e.  B  /\  y  e.  B ) )  -> 
( E `  y
)  =  ( E `
 ( P  gsumg  ( i  e.  D  |->  ( k  e.  D  |->  if ( k  =  i ,  ( y `  i
) ,  .0.  )
) ) ) ) )
201 eqid 2622 . . . . . 6  |-  ( i  e.  D  |->  ( k  e.  D  |->  if ( k  =  i ,  ( y `  i
) ,  .0.  )
) )  =  ( i  e.  D  |->  ( k  e.  D  |->  if ( k  =  i ,  ( y `  i ) ,  .0.  ) ) )
20231, 201fmptd 6385 . . . . 5  |-  ( (
ph  /\  ( x  e.  B  /\  y  e.  B ) )  -> 
( i  e.  D  |->  ( k  e.  D  |->  if ( k  =  i ,  ( y `
 i ) ,  .0.  ) ) ) : D --> B )
2031, 3, 84, 90, 7, 96, 202, 79gsummhm 18338 . . . 4  |-  ( (
ph  /\  ( x  e.  B  /\  y  e.  B ) )  -> 
( S  gsumg  ( E  o.  (
i  e.  D  |->  ( k  e.  D  |->  if ( k  =  i ,  ( y `  i ) ,  .0.  ) ) ) ) )  =  ( E `
 ( P  gsumg  ( i  e.  D  |->  ( k  e.  D  |->  if ( k  =  i ,  ( y `  i
) ,  .0.  )
) ) ) ) )
204200, 203eqtr4d 2659 . . 3  |-  ( (
ph  /\  ( x  e.  B  /\  y  e.  B ) )  -> 
( E `  y
)  =  ( S 
gsumg  ( E  o.  (
i  e.  D  |->  ( k  e.  D  |->  if ( k  =  i ,  ( y `  i ) ,  .0.  ) ) ) ) ) )
205199, 204oveq12d 6668 . 2  |-  ( (
ph  /\  ( x  e.  B  /\  y  e.  B ) )  -> 
( ( E `  x )  .x.  ( E `  y )
)  =  ( ( S  gsumg  ( E  o.  (
j  e.  D  |->  ( k  e.  D  |->  if ( k  =  j ,  ( x `  j ) ,  .0.  ) ) ) ) )  .x.  ( S 
gsumg  ( E  o.  (
i  e.  D  |->  ( k  e.  D  |->  if ( k  =  i ,  ( y `  i ) ,  .0.  ) ) ) ) ) ) )
206188, 194, 2053eqtr4d 2666 1  |-  ( (
ph  /\  ( x  e.  B  /\  y  e.  B ) )  -> 
( E `  (
x ( .r `  P ) y ) )  =  ( ( E `  x ) 
.x.  ( E `  y ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 384    /\ w3a 1037    = wceq 1483    e. wcel 1990   A.wral 2912   {crab 2916   _Vcvv 3200    \ cdif 3571    C_ wss 3574   ifcif 4086   {csn 4177   class class class wbr 4653    |-> cmpt 4729    X. cxp 5112   `'ccnv 5113   "cima 5117    o. ccom 5118   Fun wfun 5882   -->wf 5884   ` cfv 5888  (class class class)co 6650    |-> cmpt2 6652    oFcof 6895   supp csupp 7295    ^m cmap 7857   Fincfn 7955   finSupp cfsupp 8275    + caddc 9939   NNcn 11020   NN0cn0 11292   Basecbs 15857   .rcmulr 15942   0gc0g 16100    gsumg cgsu 16101   Mndcmnd 17294   MndHom cmhm 17333   Grpcgrp 17422    GrpHom cghm 17657  CMndccmn 18193   Ringcrg 18547   CRingccrg 18548   mPoly cmpl 19353
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-inf2 8538  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-iin 4523  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-se 5074  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-isom 5897  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-of 6897  df-ofr 6898  df-om 7066  df-1st 7168  df-2nd 7169  df-supp 7296  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-2o 7561  df-oadd 7564  df-er 7742  df-map 7859  df-pm 7860  df-ixp 7909  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-fsupp 8276  df-oi 8415  df-card 8765  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-nn 11021  df-2 11079  df-3 11080  df-4 11081  df-5 11082  df-6 11083  df-7 11084  df-8 11085  df-9 11086  df-n0 11293  df-z 11378  df-uz 11688  df-fz 12327  df-fzo 12466  df-seq 12802  df-hash 13118  df-struct 15859  df-ndx 15860  df-slot 15861  df-base 15863  df-sets 15864  df-ress 15865  df-plusg 15954  df-mulr 15955  df-sca 15957  df-vsca 15958  df-tset 15960  df-0g 16102  df-gsum 16103  df-mre 16246  df-mrc 16247  df-acs 16249  df-mgm 17242  df-sgrp 17284  df-mnd 17295  df-mhm 17335  df-submnd 17336  df-grp 17425  df-minusg 17426  df-sbg 17427  df-mulg 17541  df-subg 17591  df-ghm 17658  df-cntz 17750  df-cmn 18195  df-abl 18196  df-mgp 18490  df-ur 18502  df-ring 18549  df-cring 18550  df-subrg 18778  df-lmod 18865  df-lss 18933  df-assa 19312  df-psr 19356  df-mpl 19358
This theorem is referenced by:  evlslem1  19515
  Copyright terms: Public domain W3C validator