MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rrxds Structured version   Visualization version   Unicode version

Theorem rrxds 23181
Description: The distance over generalized Euclidean spaces. Compare with df-rrn 33625. (Contributed by Thierry Arnoux, 20-Jun-2019.) (Proof shortened by AV, 20-Jul-2019.)
Hypotheses
Ref Expression
rrxval.r  |-  H  =  (ℝ^ `  I )
rrxbase.b  |-  B  =  ( Base `  H
)
Assertion
Ref Expression
rrxds  |-  ( I  e.  V  ->  (
f  e.  B , 
g  e.  B  |->  ( sqr `  (RRfld  gsumg  ( x  e.  I  |->  ( ( ( f `  x
)  -  ( g `
 x ) ) ^ 2 ) ) ) ) )  =  ( dist `  H
) )
Distinct variable groups:    f, g, x, B    f, I, g, x    f, V, g, x
Allowed substitution hints:    H( x, f, g)

Proof of Theorem rrxds
Dummy variable  h is distinct from all other variables.
StepHypRef Expression
1 rrxval.r . . . 4  |-  H  =  (ℝ^ `  I )
21rrxval 23175 . . 3  |-  ( I  e.  V  ->  H  =  (toCHil `  (RRfld freeLMod  I ) ) )
32fveq2d 6195 . 2  |-  ( I  e.  V  ->  ( dist `  H )  =  ( dist `  (toCHil `  (RRfld freeLMod  I ) ) ) )
4 recrng 19967 . . . . 5  |- RRfld  e.  *Ring
5 srngring 18852 . . . . 5  |-  (RRfld  e.  *Ring  -> RRfld 
e.  Ring )
64, 5ax-mp 5 . . . 4  |- RRfld  e.  Ring
7 eqid 2622 . . . . 5  |-  (RRfld freeLMod  I )  =  (RRfld freeLMod  I )
87frlmlmod 20093 . . . 4  |-  ( (RRfld 
e.  Ring  /\  I  e.  V )  ->  (RRfld freeLMod  I )  e.  LMod )
96, 8mpan 706 . . 3  |-  ( I  e.  V  ->  (RRfld freeLMod  I )  e.  LMod )
10 lmodgrp 18870 . . 3  |-  ( (RRfld freeLMod  I )  e.  LMod  ->  (RRfld freeLMod  I )  e.  Grp )
11 eqid 2622 . . . 4  |-  (toCHil `  (RRfld freeLMod  I ) )  =  (toCHil `  (RRfld freeLMod  I ) )
12 eqid 2622 . . . 4  |-  ( norm `  (toCHil `  (RRfld freeLMod  I ) ) )  =  (
norm `  (toCHil `  (RRfld freeLMod  I ) ) )
13 eqid 2622 . . . 4  |-  ( -g `  (RRfld freeLMod  I ) )  =  ( -g `  (RRfld freeLMod  I ) )
1411, 12, 13tchds 23030 . . 3  |-  ( (RRfld freeLMod  I )  e.  Grp  ->  ( ( norm `  (toCHil `  (RRfld freeLMod  I ) ) )  o.  ( -g `  (RRfld freeLMod  I ) ) )  =  ( dist `  (toCHil `  (RRfld freeLMod  I ) ) ) )
159, 10, 143syl 18 . 2  |-  ( I  e.  V  ->  (
( norm `  (toCHil `  (RRfld freeLMod  I ) ) )  o.  ( -g `  (RRfld freeLMod  I ) ) )  =  ( dist `  (toCHil `  (RRfld freeLMod  I ) ) ) )
16 eqid 2622 . . . . . . . 8  |-  ( Base `  (RRfld freeLMod  I ) )  =  ( Base `  (RRfld freeLMod  I ) )
1716, 13grpsubf 17494 . . . . . . 7  |-  ( (RRfld freeLMod  I )  e.  Grp  ->  (
-g `  (RRfld freeLMod  I ) ) : ( (
Base `  (RRfld freeLMod  I ) )  X.  ( Base `  (RRfld freeLMod  I ) ) ) --> ( Base `  (RRfld freeLMod  I ) ) )
189, 10, 173syl 18 . . . . . 6  |-  ( I  e.  V  ->  ( -g `  (RRfld freeLMod  I ) ) : ( ( Base `  (RRfld freeLMod  I ) )  X.  ( Base `  (RRfld freeLMod  I ) ) ) --> (
Base `  (RRfld freeLMod  I ) ) )
19 rrxbase.b . . . . . . . . . 10  |-  B  =  ( Base `  H
)
201, 19rrxbase 23176 . . . . . . . . 9  |-  ( I  e.  V  ->  B  =  { h  e.  ( RR  ^m  I )  |  h finSupp  0 }
)
21 rebase 19952 . . . . . . . . . . 11  |-  RR  =  ( Base ` RRfld )
22 re0g 19958 . . . . . . . . . . 11  |-  0  =  ( 0g ` RRfld )
23 eqid 2622 . . . . . . . . . . 11  |-  { h  e.  ( RR  ^m  I
)  |  h finSupp  0 }  =  { h  e.  ( RR  ^m  I
)  |  h finSupp  0 }
247, 21, 22, 23frlmbas 20099 . . . . . . . . . 10  |-  ( (RRfld 
e.  Ring  /\  I  e.  V )  ->  { h  e.  ( RR  ^m  I
)  |  h finSupp  0 }  =  ( Base `  (RRfld freeLMod  I ) ) )
256, 24mpan 706 . . . . . . . . 9  |-  ( I  e.  V  ->  { h  e.  ( RR  ^m  I
)  |  h finSupp  0 }  =  ( Base `  (RRfld freeLMod  I ) ) )
2620, 25eqtrd 2656 . . . . . . . 8  |-  ( I  e.  V  ->  B  =  ( Base `  (RRfld freeLMod  I ) ) )
2726sqxpeqd 5141 . . . . . . 7  |-  ( I  e.  V  ->  ( B  X.  B )  =  ( ( Base `  (RRfld freeLMod  I ) )  X.  ( Base `  (RRfld freeLMod  I ) ) ) )
2827, 26feq23d 6040 . . . . . 6  |-  ( I  e.  V  ->  (
( -g `  (RRfld freeLMod  I ) ) : ( B  X.  B ) --> B  <-> 
( -g `  (RRfld freeLMod  I ) ) : ( (
Base `  (RRfld freeLMod  I ) )  X.  ( Base `  (RRfld freeLMod  I ) ) ) --> ( Base `  (RRfld freeLMod  I ) ) ) )
2918, 28mpbird 247 . . . . 5  |-  ( I  e.  V  ->  ( -g `  (RRfld freeLMod  I ) ) : ( B  X.  B ) --> B )
3029fovrnda 6805 . . . 4  |-  ( ( I  e.  V  /\  ( f  e.  B  /\  g  e.  B
) )  ->  (
f ( -g `  (RRfld freeLMod  I ) ) g )  e.  B )
31 ffn 6045 . . . . . 6  |-  ( (
-g `  (RRfld freeLMod  I ) ) : ( B  X.  B ) --> B  ->  ( -g `  (RRfld freeLMod  I ) )  Fn  ( B  X.  B ) )
3229, 31syl 17 . . . . 5  |-  ( I  e.  V  ->  ( -g `  (RRfld freeLMod  I ) )  Fn  ( B  X.  B ) )
33 fnov 6768 . . . . 5  |-  ( (
-g `  (RRfld freeLMod  I ) )  Fn  ( B  X.  B )  <->  ( -g `  (RRfld freeLMod  I ) )  =  ( f  e.  B ,  g  e.  B  |->  ( f ( -g `  (RRfld freeLMod  I ) ) g ) ) )
3432, 33sylib 208 . . . 4  |-  ( I  e.  V  ->  ( -g `  (RRfld freeLMod  I ) )  =  ( f  e.  B ,  g  e.  B  |->  ( f (
-g `  (RRfld freeLMod  I ) ) g ) ) )
351, 19rrxnm 23179 . . . . 5  |-  ( I  e.  V  ->  (
h  e.  B  |->  ( sqr `  (RRfld  gsumg  ( x  e.  I  |->  ( ( h `  x ) ^ 2 ) ) ) ) )  =  ( norm `  H
) )
362fveq2d 6195 . . . . 5  |-  ( I  e.  V  ->  ( norm `  H )  =  ( norm `  (toCHil `  (RRfld freeLMod  I ) ) ) )
3735, 36eqtr2d 2657 . . . 4  |-  ( I  e.  V  ->  ( norm `  (toCHil `  (RRfld freeLMod  I ) ) )  =  ( h  e.  B  |->  ( sqr `  (RRfld  gsumg  (
x  e.  I  |->  ( ( h `  x
) ^ 2 ) ) ) ) ) )
38 fveq1 6190 . . . . . . . 8  |-  ( h  =  ( f (
-g `  (RRfld freeLMod  I ) ) g )  -> 
( h `  x
)  =  ( ( f ( -g `  (RRfld freeLMod  I ) ) g ) `
 x ) )
3938oveq1d 6665 . . . . . . 7  |-  ( h  =  ( f (
-g `  (RRfld freeLMod  I ) ) g )  -> 
( ( h `  x ) ^ 2 )  =  ( ( ( f ( -g `  (RRfld freeLMod  I ) ) g ) `  x ) ^ 2 ) )
4039mpteq2dv 4745 . . . . . 6  |-  ( h  =  ( f (
-g `  (RRfld freeLMod  I ) ) g )  -> 
( x  e.  I  |->  ( ( h `  x ) ^ 2 ) )  =  ( x  e.  I  |->  ( ( ( f (
-g `  (RRfld freeLMod  I ) ) g ) `  x ) ^ 2 ) ) )
4140oveq2d 6666 . . . . 5  |-  ( h  =  ( f (
-g `  (RRfld freeLMod  I ) ) g )  -> 
(RRfld  gsumg  ( x  e.  I  |->  ( ( h `  x ) ^ 2 ) ) )  =  (RRfld  gsumg  ( x  e.  I  |->  ( ( ( f ( -g `  (RRfld freeLMod  I ) ) g ) `
 x ) ^
2 ) ) ) )
4241fveq2d 6195 . . . 4  |-  ( h  =  ( f (
-g `  (RRfld freeLMod  I ) ) g )  -> 
( sqr `  (RRfld  gsumg  (
x  e.  I  |->  ( ( h `  x
) ^ 2 ) ) ) )  =  ( sqr `  (RRfld  gsumg  (
x  e.  I  |->  ( ( ( f (
-g `  (RRfld freeLMod  I ) ) g ) `  x ) ^ 2 ) ) ) ) )
4330, 34, 37, 42fmpt2co 7260 . . 3  |-  ( I  e.  V  ->  (
( norm `  (toCHil `  (RRfld freeLMod  I ) ) )  o.  ( -g `  (RRfld freeLMod  I ) ) )  =  ( f  e.  B ,  g  e.  B  |->  ( sqr `  (RRfld  gsumg  (
x  e.  I  |->  ( ( ( f (
-g `  (RRfld freeLMod  I ) ) g ) `  x ) ^ 2 ) ) ) ) ) )
44 simp1 1061 . . . . . . . . . . . . . 14  |-  ( ( I  e.  V  /\  f  e.  B  /\  g  e.  B )  ->  I  e.  V )
45 simprl 794 . . . . . . . . . . . . . . . 16  |-  ( ( I  e.  V  /\  ( f  e.  B  /\  g  e.  B
) )  ->  f  e.  B )
4626adantr 481 . . . . . . . . . . . . . . . 16  |-  ( ( I  e.  V  /\  ( f  e.  B  /\  g  e.  B
) )  ->  B  =  ( Base `  (RRfld freeLMod  I ) ) )
4745, 46eleqtrd 2703 . . . . . . . . . . . . . . 15  |-  ( ( I  e.  V  /\  ( f  e.  B  /\  g  e.  B
) )  ->  f  e.  ( Base `  (RRfld freeLMod  I ) ) )
48473impb 1260 . . . . . . . . . . . . . 14  |-  ( ( I  e.  V  /\  f  e.  B  /\  g  e.  B )  ->  f  e.  ( Base `  (RRfld freeLMod  I ) ) )
497, 21, 16frlmbasmap 20103 . . . . . . . . . . . . . 14  |-  ( ( I  e.  V  /\  f  e.  ( Base `  (RRfld freeLMod  I ) ) )  ->  f  e.  ( RR  ^m  I ) )
5044, 48, 49syl2anc 693 . . . . . . . . . . . . 13  |-  ( ( I  e.  V  /\  f  e.  B  /\  g  e.  B )  ->  f  e.  ( RR 
^m  I ) )
51 elmapi 7879 . . . . . . . . . . . . 13  |-  ( f  e.  ( RR  ^m  I )  ->  f : I --> RR )
5250, 51syl 17 . . . . . . . . . . . 12  |-  ( ( I  e.  V  /\  f  e.  B  /\  g  e.  B )  ->  f : I --> RR )
53 ffn 6045 . . . . . . . . . . . 12  |-  ( f : I --> RR  ->  f  Fn  I )
5452, 53syl 17 . . . . . . . . . . 11  |-  ( ( I  e.  V  /\  f  e.  B  /\  g  e.  B )  ->  f  Fn  I )
55 simprr 796 . . . . . . . . . . . . . . . 16  |-  ( ( I  e.  V  /\  ( f  e.  B  /\  g  e.  B
) )  ->  g  e.  B )
5655, 46eleqtrd 2703 . . . . . . . . . . . . . . 15  |-  ( ( I  e.  V  /\  ( f  e.  B  /\  g  e.  B
) )  ->  g  e.  ( Base `  (RRfld freeLMod  I ) ) )
57563impb 1260 . . . . . . . . . . . . . 14  |-  ( ( I  e.  V  /\  f  e.  B  /\  g  e.  B )  ->  g  e.  ( Base `  (RRfld freeLMod  I ) ) )
587, 21, 16frlmbasmap 20103 . . . . . . . . . . . . . 14  |-  ( ( I  e.  V  /\  g  e.  ( Base `  (RRfld freeLMod  I ) ) )  ->  g  e.  ( RR  ^m  I ) )
5944, 57, 58syl2anc 693 . . . . . . . . . . . . 13  |-  ( ( I  e.  V  /\  f  e.  B  /\  g  e.  B )  ->  g  e.  ( RR 
^m  I ) )
60 elmapi 7879 . . . . . . . . . . . . 13  |-  ( g  e.  ( RR  ^m  I )  ->  g : I --> RR )
6159, 60syl 17 . . . . . . . . . . . 12  |-  ( ( I  e.  V  /\  f  e.  B  /\  g  e.  B )  ->  g : I --> RR )
62 ffn 6045 . . . . . . . . . . . 12  |-  ( g : I --> RR  ->  g  Fn  I )
6361, 62syl 17 . . . . . . . . . . 11  |-  ( ( I  e.  V  /\  f  e.  B  /\  g  e.  B )  ->  g  Fn  I )
64 inidm 3822 . . . . . . . . . . 11  |-  ( I  i^i  I )  =  I
65 eqidd 2623 . . . . . . . . . . 11  |-  ( ( ( I  e.  V  /\  f  e.  B  /\  g  e.  B
)  /\  x  e.  I )  ->  (
f `  x )  =  ( f `  x ) )
66 eqidd 2623 . . . . . . . . . . 11  |-  ( ( ( I  e.  V  /\  f  e.  B  /\  g  e.  B
)  /\  x  e.  I )  ->  (
g `  x )  =  ( g `  x ) )
6754, 63, 44, 44, 64, 65, 66offval 6904 . . . . . . . . . 10  |-  ( ( I  e.  V  /\  f  e.  B  /\  g  e.  B )  ->  ( f  oF ( -g ` RRfld ) g )  =  ( x  e.  I  |->  ( ( f `  x ) ( -g ` RRfld ) ( g `  x ) ) ) )
686a1i 11 . . . . . . . . . . . 12  |-  ( ( I  e.  V  /\  ( f  e.  B  /\  g  e.  B
) )  -> RRfld  e.  Ring )
69 simpl 473 . . . . . . . . . . . 12  |-  ( ( I  e.  V  /\  ( f  e.  B  /\  g  e.  B
) )  ->  I  e.  V )
70 eqid 2622 . . . . . . . . . . . 12  |-  ( -g ` RRfld
)  =  ( -g ` RRfld
)
717, 16, 68, 69, 47, 56, 70, 13frlmsubgval 20108 . . . . . . . . . . 11  |-  ( ( I  e.  V  /\  ( f  e.  B  /\  g  e.  B
) )  ->  (
f ( -g `  (RRfld freeLMod  I ) ) g )  =  ( f  oF ( -g ` RRfld ) g ) )
72713impb 1260 . . . . . . . . . 10  |-  ( ( I  e.  V  /\  f  e.  B  /\  g  e.  B )  ->  ( f ( -g `  (RRfld freeLMod  I ) ) g )  =  ( f  oF ( -g ` RRfld
) g ) )
7352ffvelrnda 6359 . . . . . . . . . . . 12  |-  ( ( ( I  e.  V  /\  f  e.  B  /\  g  e.  B
)  /\  x  e.  I )  ->  (
f `  x )  e.  RR )
7461ffvelrnda 6359 . . . . . . . . . . . 12  |-  ( ( ( I  e.  V  /\  f  e.  B  /\  g  e.  B
)  /\  x  e.  I )  ->  (
g `  x )  e.  RR )
7570resubgval 19955 . . . . . . . . . . . 12  |-  ( ( ( f `  x
)  e.  RR  /\  ( g `  x
)  e.  RR )  ->  ( ( f `
 x )  -  ( g `  x
) )  =  ( ( f `  x
) ( -g ` RRfld ) ( g `  x ) ) )
7673, 74, 75syl2anc 693 . . . . . . . . . . 11  |-  ( ( ( I  e.  V  /\  f  e.  B  /\  g  e.  B
)  /\  x  e.  I )  ->  (
( f `  x
)  -  ( g `
 x ) )  =  ( ( f `
 x ) (
-g ` RRfld ) (
g `  x )
) )
7776mpteq2dva 4744 . . . . . . . . . 10  |-  ( ( I  e.  V  /\  f  e.  B  /\  g  e.  B )  ->  ( x  e.  I  |->  ( ( f `  x )  -  (
g `  x )
) )  =  ( x  e.  I  |->  ( ( f `  x
) ( -g ` RRfld ) ( g `  x ) ) ) )
7867, 72, 773eqtr4d 2666 . . . . . . . . 9  |-  ( ( I  e.  V  /\  f  e.  B  /\  g  e.  B )  ->  ( f ( -g `  (RRfld freeLMod  I ) ) g )  =  ( x  e.  I  |->  ( ( f `  x )  -  ( g `  x ) ) ) )
7973, 74resubcld 10458 . . . . . . . . 9  |-  ( ( ( I  e.  V  /\  f  e.  B  /\  g  e.  B
)  /\  x  e.  I )  ->  (
( f `  x
)  -  ( g `
 x ) )  e.  RR )
8078, 79fvmpt2d 6293 . . . . . . . 8  |-  ( ( ( I  e.  V  /\  f  e.  B  /\  g  e.  B
)  /\  x  e.  I )  ->  (
( f ( -g `  (RRfld freeLMod  I ) ) g ) `  x )  =  ( ( f `
 x )  -  ( g `  x
) ) )
8180oveq1d 6665 . . . . . . 7  |-  ( ( ( I  e.  V  /\  f  e.  B  /\  g  e.  B
)  /\  x  e.  I )  ->  (
( ( f (
-g `  (RRfld freeLMod  I ) ) g ) `  x ) ^ 2 )  =  ( ( ( f `  x
)  -  ( g `
 x ) ) ^ 2 ) )
8281mpteq2dva 4744 . . . . . 6  |-  ( ( I  e.  V  /\  f  e.  B  /\  g  e.  B )  ->  ( x  e.  I  |->  ( ( ( f ( -g `  (RRfld freeLMod  I ) ) g ) `
 x ) ^
2 ) )  =  ( x  e.  I  |->  ( ( ( f `
 x )  -  ( g `  x
) ) ^ 2 ) ) )
8382oveq2d 6666 . . . . 5  |-  ( ( I  e.  V  /\  f  e.  B  /\  g  e.  B )  ->  (RRfld  gsumg  ( x  e.  I  |->  ( ( ( f ( -g `  (RRfld freeLMod  I ) ) g ) `
 x ) ^
2 ) ) )  =  (RRfld  gsumg  ( x  e.  I  |->  ( ( ( f `
 x )  -  ( g `  x
) ) ^ 2 ) ) ) )
8483fveq2d 6195 . . . 4  |-  ( ( I  e.  V  /\  f  e.  B  /\  g  e.  B )  ->  ( sqr `  (RRfld  gsumg  (
x  e.  I  |->  ( ( ( f (
-g `  (RRfld freeLMod  I ) ) g ) `  x ) ^ 2 ) ) ) )  =  ( sqr `  (RRfld  gsumg  (
x  e.  I  |->  ( ( ( f `  x )  -  (
g `  x )
) ^ 2 ) ) ) ) )
8584mpt2eq3dva 6719 . . 3  |-  ( I  e.  V  ->  (
f  e.  B , 
g  e.  B  |->  ( sqr `  (RRfld  gsumg  ( x  e.  I  |->  ( ( ( f ( -g `  (RRfld freeLMod  I ) ) g ) `  x ) ^ 2 ) ) ) ) )  =  ( f  e.  B ,  g  e.  B  |->  ( sqr `  (RRfld  gsumg  (
x  e.  I  |->  ( ( ( f `  x )  -  (
g `  x )
) ^ 2 ) ) ) ) ) )
8643, 85eqtrd 2656 . 2  |-  ( I  e.  V  ->  (
( norm `  (toCHil `  (RRfld freeLMod  I ) ) )  o.  ( -g `  (RRfld freeLMod  I ) ) )  =  ( f  e.  B ,  g  e.  B  |->  ( sqr `  (RRfld  gsumg  (
x  e.  I  |->  ( ( ( f `  x )  -  (
g `  x )
) ^ 2 ) ) ) ) ) )
873, 15, 863eqtr2rd 2663 1  |-  ( I  e.  V  ->  (
f  e.  B , 
g  e.  B  |->  ( sqr `  (RRfld  gsumg  ( x  e.  I  |->  ( ( ( f `  x
)  -  ( g `
 x ) ) ^ 2 ) ) ) ) )  =  ( dist `  H
) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 384    /\ w3a 1037    = wceq 1483    e. wcel 1990   {crab 2916   class class class wbr 4653    |-> cmpt 4729    X. cxp 5112    o. ccom 5118    Fn wfn 5883   -->wf 5884   ` cfv 5888  (class class class)co 6650    |-> cmpt2 6652    oFcof 6895    ^m cmap 7857   finSupp cfsupp 8275   RRcr 9935   0cc0 9936    - cmin 10266   2c2 11070   ^cexp 12860   sqrcsqrt 13973   Basecbs 15857   distcds 15950    gsumg cgsu 16101   Grpcgrp 17422   -gcsg 17424   Ringcrg 18547   *Ringcsr 18844   LModclmod 18863  RRfldcrefld 19950   freeLMod cfrlm 20090   normcnm 22381  toCHilctch 22967  ℝ^crrx 23171
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014  ax-addf 10015  ax-mulf 10016
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-of 6897  df-om 7066  df-1st 7168  df-2nd 7169  df-supp 7296  df-tpos 7352  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-oadd 7564  df-er 7742  df-map 7859  df-ixp 7909  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-fsupp 8276  df-sup 8348  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-2 11079  df-3 11080  df-4 11081  df-5 11082  df-6 11083  df-7 11084  df-8 11085  df-9 11086  df-n0 11293  df-z 11378  df-dec 11494  df-uz 11688  df-rp 11833  df-fz 12327  df-seq 12802  df-exp 12861  df-cj 13839  df-re 13840  df-im 13841  df-sqrt 13975  df-abs 13976  df-struct 15859  df-ndx 15860  df-slot 15861  df-base 15863  df-sets 15864  df-ress 15865  df-plusg 15954  df-mulr 15955  df-starv 15956  df-sca 15957  df-vsca 15958  df-ip 15959  df-tset 15960  df-ple 15961  df-ds 15964  df-unif 15965  df-hom 15966  df-cco 15967  df-0g 16102  df-prds 16108  df-pws 16110  df-mgm 17242  df-sgrp 17284  df-mnd 17295  df-mhm 17335  df-grp 17425  df-minusg 17426  df-sbg 17427  df-subg 17591  df-ghm 17658  df-cmn 18195  df-mgp 18490  df-ur 18502  df-ring 18549  df-cring 18550  df-oppr 18623  df-dvdsr 18641  df-unit 18642  df-invr 18672  df-dvr 18683  df-rnghom 18715  df-drng 18749  df-field 18750  df-subrg 18778  df-staf 18845  df-srng 18846  df-lmod 18865  df-lss 18933  df-sra 19172  df-rgmod 19173  df-cnfld 19747  df-refld 19951  df-dsmm 20076  df-frlm 20091  df-nm 22387  df-tng 22389  df-tch 22969  df-rrx 23173
This theorem is referenced by:  rrxmval  23188  rrxmfval  23189  rrxtopn  40501  rrxdsfi  40505
  Copyright terms: Public domain W3C validator