Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fourierdlem13 Structured version   Visualization version   Unicode version

Theorem fourierdlem13 40337
Description: Value of  V in terms of value of  Q. (Contributed by Glauco Siliprandi, 11-Dec-2019.)
Hypotheses
Ref Expression
fourierdlem13.a  |-  ( ph  ->  A  e.  RR )
fourierdlem13.b  |-  ( ph  ->  B  e.  RR )
fourierdlem13.x  |-  ( ph  ->  X  e.  RR )
fourierdlem13.p  |-  P  =  ( m  e.  NN  |->  { p  e.  ( RR  ^m  ( 0 ... m ) )  |  ( ( ( p `
 0 )  =  ( A  +  X
)  /\  ( p `  m )  =  ( B  +  X ) )  /\  A. i  e.  ( 0..^ m ) ( p `  i
)  <  ( p `  ( i  +  1 ) ) ) } )
fourierdlem13.m  |-  ( ph  ->  M  e.  NN )
fourierdlem13.v  |-  ( ph  ->  V  e.  ( P `
 M ) )
fourierdlem13.i  |-  ( ph  ->  I  e.  ( 0 ... M ) )
fourierdlem13.q  |-  Q  =  ( i  e.  ( 0 ... M ) 
|->  ( ( V `  i )  -  X
) )
Assertion
Ref Expression
fourierdlem13  |-  ( ph  ->  ( ( Q `  I )  =  ( ( V `  I
)  -  X )  /\  ( V `  I )  =  ( X  +  ( Q `
 I ) ) ) )
Distinct variable groups:    A, m, p    B, m, p    i, I    i, M, m, p   
i, V, p    i, X, m, p    ph, i
Allowed substitution hints:    ph( m, p)    A( i)    B( i)    P( i, m, p)    Q( i, m, p)    I( m, p)    V( m)

Proof of Theorem fourierdlem13
StepHypRef Expression
1 fourierdlem13.q . . . 4  |-  Q  =  ( i  e.  ( 0 ... M ) 
|->  ( ( V `  i )  -  X
) )
21a1i 11 . . 3  |-  ( ph  ->  Q  =  ( i  e.  ( 0 ... M )  |->  ( ( V `  i )  -  X ) ) )
3 simpr 477 . . . . 5  |-  ( (
ph  /\  i  =  I )  ->  i  =  I )
43fveq2d 6195 . . . 4  |-  ( (
ph  /\  i  =  I )  ->  ( V `  i )  =  ( V `  I ) )
54oveq1d 6665 . . 3  |-  ( (
ph  /\  i  =  I )  ->  (
( V `  i
)  -  X )  =  ( ( V `
 I )  -  X ) )
6 fourierdlem13.i . . 3  |-  ( ph  ->  I  e.  ( 0 ... M ) )
7 fourierdlem13.v . . . . . . . 8  |-  ( ph  ->  V  e.  ( P `
 M ) )
8 fourierdlem13.m . . . . . . . . 9  |-  ( ph  ->  M  e.  NN )
9 fourierdlem13.p . . . . . . . . . 10  |-  P  =  ( m  e.  NN  |->  { p  e.  ( RR  ^m  ( 0 ... m ) )  |  ( ( ( p `
 0 )  =  ( A  +  X
)  /\  ( p `  m )  =  ( B  +  X ) )  /\  A. i  e.  ( 0..^ m ) ( p `  i
)  <  ( p `  ( i  +  1 ) ) ) } )
109fourierdlem2 40326 . . . . . . . . 9  |-  ( M  e.  NN  ->  ( V  e.  ( P `  M )  <->  ( V  e.  ( RR  ^m  (
0 ... M ) )  /\  ( ( ( V `  0 )  =  ( A  +  X )  /\  ( V `  M )  =  ( B  +  X ) )  /\  A. i  e.  ( 0..^ M ) ( V `
 i )  < 
( V `  (
i  +  1 ) ) ) ) ) )
118, 10syl 17 . . . . . . . 8  |-  ( ph  ->  ( V  e.  ( P `  M )  <-> 
( V  e.  ( RR  ^m  ( 0 ... M ) )  /\  ( ( ( V `  0 )  =  ( A  +  X )  /\  ( V `  M )  =  ( B  +  X ) )  /\  A. i  e.  ( 0..^ M ) ( V `
 i )  < 
( V `  (
i  +  1 ) ) ) ) ) )
127, 11mpbid 222 . . . . . . 7  |-  ( ph  ->  ( V  e.  ( RR  ^m  ( 0 ... M ) )  /\  ( ( ( V `  0 )  =  ( A  +  X )  /\  ( V `  M )  =  ( B  +  X ) )  /\  A. i  e.  ( 0..^ M ) ( V `
 i )  < 
( V `  (
i  +  1 ) ) ) ) )
1312simpld 475 . . . . . 6  |-  ( ph  ->  V  e.  ( RR 
^m  ( 0 ... M ) ) )
14 elmapi 7879 . . . . . 6  |-  ( V  e.  ( RR  ^m  ( 0 ... M
) )  ->  V : ( 0 ... M ) --> RR )
1513, 14syl 17 . . . . 5  |-  ( ph  ->  V : ( 0 ... M ) --> RR )
1615, 6ffvelrnd 6360 . . . 4  |-  ( ph  ->  ( V `  I
)  e.  RR )
17 fourierdlem13.x . . . 4  |-  ( ph  ->  X  e.  RR )
1816, 17resubcld 10458 . . 3  |-  ( ph  ->  ( ( V `  I )  -  X
)  e.  RR )
192, 5, 6, 18fvmptd 6288 . 2  |-  ( ph  ->  ( Q `  I
)  =  ( ( V `  I )  -  X ) )
2019oveq2d 6666 . . 3  |-  ( ph  ->  ( X  +  ( Q `  I ) )  =  ( X  +  ( ( V `
 I )  -  X ) ) )
2117recnd 10068 . . . 4  |-  ( ph  ->  X  e.  CC )
2216recnd 10068 . . . 4  |-  ( ph  ->  ( V `  I
)  e.  CC )
2321, 22pncan3d 10395 . . 3  |-  ( ph  ->  ( X  +  ( ( V `  I
)  -  X ) )  =  ( V `
 I ) )
2420, 23eqtr2d 2657 . 2  |-  ( ph  ->  ( V `  I
)  =  ( X  +  ( Q `  I ) ) )
2519, 24jca 554 1  |-  ( ph  ->  ( ( Q `  I )  =  ( ( V `  I
)  -  X )  /\  ( V `  I )  =  ( X  +  ( Q `
 I ) ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    /\ wa 384    = wceq 1483    e. wcel 1990   A.wral 2912   {crab 2916   class class class wbr 4653    |-> cmpt 4729   -->wf 5884   ` cfv 5888  (class class class)co 6650    ^m cmap 7857   RRcr 9935   0cc0 9936   1c1 9937    + caddc 9939    < clt 10074    - cmin 10266   NNcn 11020   ...cfz 12326  ..^cfzo 12465
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-po 5035  df-so 5036  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-1st 7168  df-2nd 7169  df-er 7742  df-map 7859  df-en 7956  df-dom 7957  df-sdom 7958  df-pnf 10076  df-mnf 10077  df-ltxr 10079  df-sub 10268  df-neg 10269
This theorem is referenced by:  fourierdlem72  40395  fourierdlem103  40426  fourierdlem104  40427
  Copyright terms: Public domain W3C validator