| Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > fourierdlem14 | Structured version Visualization version Unicode version | ||
| Description: Given the partition |
| Ref | Expression |
|---|---|
| fourierdlem14.1 |
|
| fourierdlem14.2 |
|
| fourierdlem14.x |
|
| fourierdlem14.p |
|
| fourierdlem14.o |
|
| fourierdlem14.m |
|
| fourierdlem14.v |
|
| fourierdlem14.q |
|
| Ref | Expression |
|---|---|
| fourierdlem14 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fourierdlem14.v |
. . . . . . . . . 10
| |
| 2 | fourierdlem14.m |
. . . . . . . . . . 11
| |
| 3 | fourierdlem14.p |
. . . . . . . . . . . 12
| |
| 4 | 3 | fourierdlem2 40326 |
. . . . . . . . . . 11
|
| 5 | 2, 4 | syl 17 |
. . . . . . . . . 10
|
| 6 | 1, 5 | mpbid 222 |
. . . . . . . . 9
|
| 7 | 6 | simpld 475 |
. . . . . . . 8
|
| 8 | elmapi 7879 |
. . . . . . . 8
| |
| 9 | 7, 8 | syl 17 |
. . . . . . 7
|
| 10 | 9 | ffvelrnda 6359 |
. . . . . 6
|
| 11 | fourierdlem14.x |
. . . . . . 7
| |
| 12 | 11 | adantr 481 |
. . . . . 6
|
| 13 | 10, 12 | resubcld 10458 |
. . . . 5
|
| 14 | fourierdlem14.q |
. . . . 5
| |
| 15 | 13, 14 | fmptd 6385 |
. . . 4
|
| 16 | reex 10027 |
. . . . . 6
| |
| 17 | 16 | a1i 11 |
. . . . 5
|
| 18 | ovex 6678 |
. . . . . 6
| |
| 19 | 18 | a1i 11 |
. . . . 5
|
| 20 | 17, 19 | elmapd 7871 |
. . . 4
|
| 21 | 15, 20 | mpbird 247 |
. . 3
|
| 22 | 14 | a1i 11 |
. . . . . 6
|
| 23 | fveq2 6191 |
. . . . . . . 8
| |
| 24 | 23 | oveq1d 6665 |
. . . . . . 7
|
| 25 | 24 | adantl 482 |
. . . . . 6
|
| 26 | 0zd 11389 |
. . . . . . . . 9
| |
| 27 | 2 | nnzd 11481 |
. . . . . . . . 9
|
| 28 | 26, 27, 26 | 3jca 1242 |
. . . . . . . 8
|
| 29 | 0le0 11110 |
. . . . . . . . 9
| |
| 30 | 29 | a1i 11 |
. . . . . . . 8
|
| 31 | 0red 10041 |
. . . . . . . . 9
| |
| 32 | 2 | nnred 11035 |
. . . . . . . . 9
|
| 33 | 2 | nngt0d 11064 |
. . . . . . . . 9
|
| 34 | 31, 32, 33 | ltled 10185 |
. . . . . . . 8
|
| 35 | 28, 30, 34 | jca32 558 |
. . . . . . 7
|
| 36 | elfz2 12333 |
. . . . . . 7
| |
| 37 | 35, 36 | sylibr 224 |
. . . . . 6
|
| 38 | 9, 37 | ffvelrnd 6360 |
. . . . . . 7
|
| 39 | 38, 11 | resubcld 10458 |
. . . . . 6
|
| 40 | 22, 25, 37, 39 | fvmptd 6288 |
. . . . 5
|
| 41 | 6 | simprd 479 |
. . . . . . . 8
|
| 42 | 41 | simpld 475 |
. . . . . . 7
|
| 43 | 42 | simpld 475 |
. . . . . 6
|
| 44 | 43 | oveq1d 6665 |
. . . . 5
|
| 45 | fourierdlem14.1 |
. . . . . . 7
| |
| 46 | 45 | recnd 10068 |
. . . . . 6
|
| 47 | 11 | recnd 10068 |
. . . . . 6
|
| 48 | 46, 47 | pncand 10393 |
. . . . 5
|
| 49 | 40, 44, 48 | 3eqtrd 2660 |
. . . 4
|
| 50 | fveq2 6191 |
. . . . . . . 8
| |
| 51 | 50 | oveq1d 6665 |
. . . . . . 7
|
| 52 | 51 | adantl 482 |
. . . . . 6
|
| 53 | 26, 27, 27 | 3jca 1242 |
. . . . . . . 8
|
| 54 | 32 | leidd 10594 |
. . . . . . . 8
|
| 55 | 53, 34, 54 | jca32 558 |
. . . . . . 7
|
| 56 | elfz2 12333 |
. . . . . . 7
| |
| 57 | 55, 56 | sylibr 224 |
. . . . . 6
|
| 58 | 9, 57 | ffvelrnd 6360 |
. . . . . . 7
|
| 59 | 58, 11 | resubcld 10458 |
. . . . . 6
|
| 60 | 22, 52, 57, 59 | fvmptd 6288 |
. . . . 5
|
| 61 | 42 | simprd 479 |
. . . . . 6
|
| 62 | 61 | oveq1d 6665 |
. . . . 5
|
| 63 | fourierdlem14.2 |
. . . . . . 7
| |
| 64 | 63 | recnd 10068 |
. . . . . 6
|
| 65 | 64, 47 | pncand 10393 |
. . . . 5
|
| 66 | 60, 62, 65 | 3eqtrd 2660 |
. . . 4
|
| 67 | 49, 66 | jca 554 |
. . 3
|
| 68 | elfzofz 12485 |
. . . . . . 7
| |
| 69 | 68, 10 | sylan2 491 |
. . . . . 6
|
| 70 | 9 | adantr 481 |
. . . . . . 7
|
| 71 | fzofzp1 12565 |
. . . . . . . 8
| |
| 72 | 71 | adantl 482 |
. . . . . . 7
|
| 73 | 70, 72 | ffvelrnd 6360 |
. . . . . 6
|
| 74 | 11 | adantr 481 |
. . . . . 6
|
| 75 | 41 | simprd 479 |
. . . . . . 7
|
| 76 | 75 | r19.21bi 2932 |
. . . . . 6
|
| 77 | 69, 73, 74, 76 | ltsub1dd 10639 |
. . . . 5
|
| 78 | 68 | adantl 482 |
. . . . . 6
|
| 79 | 68, 13 | sylan2 491 |
. . . . . 6
|
| 80 | 14 | fvmpt2 6291 |
. . . . . 6
|
| 81 | 78, 79, 80 | syl2anc 693 |
. . . . 5
|
| 82 | fveq2 6191 |
. . . . . . . . . 10
| |
| 83 | 82 | oveq1d 6665 |
. . . . . . . . 9
|
| 84 | 83 | cbvmptv 4750 |
. . . . . . . 8
|
| 85 | 14, 84 | eqtri 2644 |
. . . . . . 7
|
| 86 | 85 | a1i 11 |
. . . . . 6
|
| 87 | fveq2 6191 |
. . . . . . . 8
| |
| 88 | 87 | oveq1d 6665 |
. . . . . . 7
|
| 89 | 88 | adantl 482 |
. . . . . 6
|
| 90 | 73, 74 | resubcld 10458 |
. . . . . 6
|
| 91 | 86, 89, 72, 90 | fvmptd 6288 |
. . . . 5
|
| 92 | 77, 81, 91 | 3brtr4d 4685 |
. . . 4
|
| 93 | 92 | ralrimiva 2966 |
. . 3
|
| 94 | 21, 67, 93 | jca32 558 |
. 2
|
| 95 | fourierdlem14.o |
. . . 4
| |
| 96 | 95 | fourierdlem2 40326 |
. . 3
|
| 97 | 2, 96 | syl 17 |
. 2
|
| 98 | 94, 97 | mpbird 247 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-sep 4781 ax-nul 4789 ax-pow 4843 ax-pr 4906 ax-un 6949 ax-cnex 9992 ax-resscn 9993 ax-1cn 9994 ax-icn 9995 ax-addcl 9996 ax-addrcl 9997 ax-mulcl 9998 ax-mulrcl 9999 ax-mulcom 10000 ax-addass 10001 ax-mulass 10002 ax-distr 10003 ax-i2m1 10004 ax-1ne0 10005 ax-1rid 10006 ax-rnegex 10007 ax-rrecex 10008 ax-cnre 10009 ax-pre-lttri 10010 ax-pre-lttrn 10011 ax-pre-ltadd 10012 ax-pre-mulgt0 10013 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3or 1038 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-nel 2898 df-ral 2917 df-rex 2918 df-reu 2919 df-rab 2921 df-v 3202 df-sbc 3436 df-csb 3534 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-pss 3590 df-nul 3916 df-if 4087 df-pw 4160 df-sn 4178 df-pr 4180 df-tp 4182 df-op 4184 df-uni 4437 df-iun 4522 df-br 4654 df-opab 4713 df-mpt 4730 df-tr 4753 df-id 5024 df-eprel 5029 df-po 5035 df-so 5036 df-fr 5073 df-we 5075 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-rn 5125 df-res 5126 df-ima 5127 df-pred 5680 df-ord 5726 df-on 5727 df-lim 5728 df-suc 5729 df-iota 5851 df-fun 5890 df-fn 5891 df-f 5892 df-f1 5893 df-fo 5894 df-f1o 5895 df-fv 5896 df-riota 6611 df-ov 6653 df-oprab 6654 df-mpt2 6655 df-om 7066 df-1st 7168 df-2nd 7169 df-wrecs 7407 df-recs 7468 df-rdg 7506 df-er 7742 df-map 7859 df-en 7956 df-dom 7957 df-sdom 7958 df-pnf 10076 df-mnf 10077 df-xr 10078 df-ltxr 10079 df-le 10080 df-sub 10268 df-neg 10269 df-nn 11021 df-n0 11293 df-z 11378 df-uz 11688 df-fz 12327 df-fzo 12466 |
| This theorem is referenced by: fourierdlem74 40397 fourierdlem75 40398 fourierdlem84 40407 fourierdlem85 40408 fourierdlem88 40411 fourierdlem103 40426 fourierdlem104 40427 |
| Copyright terms: Public domain | W3C validator |