Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fourierdlem14 Structured version   Visualization version   Unicode version

Theorem fourierdlem14 40338
Description: Given the partition  V,  Q is the partition shifted to the left by  X. (Contributed by Glauco Siliprandi, 11-Dec-2019.)
Hypotheses
Ref Expression
fourierdlem14.1  |-  ( ph  ->  A  e.  RR )
fourierdlem14.2  |-  ( ph  ->  B  e.  RR )
fourierdlem14.x  |-  ( ph  ->  X  e.  RR )
fourierdlem14.p  |-  P  =  ( m  e.  NN  |->  { p  e.  ( RR  ^m  ( 0 ... m ) )  |  ( ( ( p `
 0 )  =  ( A  +  X
)  /\  ( p `  m )  =  ( B  +  X ) )  /\  A. i  e.  ( 0..^ m ) ( p `  i
)  <  ( p `  ( i  +  1 ) ) ) } )
fourierdlem14.o  |-  O  =  ( m  e.  NN  |->  { p  e.  ( RR  ^m  ( 0 ... m ) )  |  ( ( ( p `
 0 )  =  A  /\  ( p `
 m )  =  B )  /\  A. i  e.  ( 0..^ m ) ( p `
 i )  < 
( p `  (
i  +  1 ) ) ) } )
fourierdlem14.m  |-  ( ph  ->  M  e.  NN )
fourierdlem14.v  |-  ( ph  ->  V  e.  ( P `
 M ) )
fourierdlem14.q  |-  Q  =  ( i  e.  ( 0 ... M ) 
|->  ( ( V `  i )  -  X
) )
Assertion
Ref Expression
fourierdlem14  |-  ( ph  ->  Q  e.  ( O `
 M ) )
Distinct variable groups:    A, m, p    B, m, p    i, M, m, p    Q, i, p    i, V, p   
i, X, m, p    ph, i
Allowed substitution hints:    ph( m, p)    A( i)    B( i)    P( i, m, p)    Q( m)    O( i, m, p)    V( m)

Proof of Theorem fourierdlem14
Dummy variable  j is distinct from all other variables.
StepHypRef Expression
1 fourierdlem14.v . . . . . . . . . 10  |-  ( ph  ->  V  e.  ( P `
 M ) )
2 fourierdlem14.m . . . . . . . . . . 11  |-  ( ph  ->  M  e.  NN )
3 fourierdlem14.p . . . . . . . . . . . 12  |-  P  =  ( m  e.  NN  |->  { p  e.  ( RR  ^m  ( 0 ... m ) )  |  ( ( ( p `
 0 )  =  ( A  +  X
)  /\  ( p `  m )  =  ( B  +  X ) )  /\  A. i  e.  ( 0..^ m ) ( p `  i
)  <  ( p `  ( i  +  1 ) ) ) } )
43fourierdlem2 40326 . . . . . . . . . . 11  |-  ( M  e.  NN  ->  ( V  e.  ( P `  M )  <->  ( V  e.  ( RR  ^m  (
0 ... M ) )  /\  ( ( ( V `  0 )  =  ( A  +  X )  /\  ( V `  M )  =  ( B  +  X ) )  /\  A. i  e.  ( 0..^ M ) ( V `
 i )  < 
( V `  (
i  +  1 ) ) ) ) ) )
52, 4syl 17 . . . . . . . . . 10  |-  ( ph  ->  ( V  e.  ( P `  M )  <-> 
( V  e.  ( RR  ^m  ( 0 ... M ) )  /\  ( ( ( V `  0 )  =  ( A  +  X )  /\  ( V `  M )  =  ( B  +  X ) )  /\  A. i  e.  ( 0..^ M ) ( V `
 i )  < 
( V `  (
i  +  1 ) ) ) ) ) )
61, 5mpbid 222 . . . . . . . . 9  |-  ( ph  ->  ( V  e.  ( RR  ^m  ( 0 ... M ) )  /\  ( ( ( V `  0 )  =  ( A  +  X )  /\  ( V `  M )  =  ( B  +  X ) )  /\  A. i  e.  ( 0..^ M ) ( V `
 i )  < 
( V `  (
i  +  1 ) ) ) ) )
76simpld 475 . . . . . . . 8  |-  ( ph  ->  V  e.  ( RR 
^m  ( 0 ... M ) ) )
8 elmapi 7879 . . . . . . . 8  |-  ( V  e.  ( RR  ^m  ( 0 ... M
) )  ->  V : ( 0 ... M ) --> RR )
97, 8syl 17 . . . . . . 7  |-  ( ph  ->  V : ( 0 ... M ) --> RR )
109ffvelrnda 6359 . . . . . 6  |-  ( (
ph  /\  i  e.  ( 0 ... M
) )  ->  ( V `  i )  e.  RR )
11 fourierdlem14.x . . . . . . 7  |-  ( ph  ->  X  e.  RR )
1211adantr 481 . . . . . 6  |-  ( (
ph  /\  i  e.  ( 0 ... M
) )  ->  X  e.  RR )
1310, 12resubcld 10458 . . . . 5  |-  ( (
ph  /\  i  e.  ( 0 ... M
) )  ->  (
( V `  i
)  -  X )  e.  RR )
14 fourierdlem14.q . . . . 5  |-  Q  =  ( i  e.  ( 0 ... M ) 
|->  ( ( V `  i )  -  X
) )
1513, 14fmptd 6385 . . . 4  |-  ( ph  ->  Q : ( 0 ... M ) --> RR )
16 reex 10027 . . . . . 6  |-  RR  e.  _V
1716a1i 11 . . . . 5  |-  ( ph  ->  RR  e.  _V )
18 ovex 6678 . . . . . 6  |-  ( 0 ... M )  e. 
_V
1918a1i 11 . . . . 5  |-  ( ph  ->  ( 0 ... M
)  e.  _V )
2017, 19elmapd 7871 . . . 4  |-  ( ph  ->  ( Q  e.  ( RR  ^m  ( 0 ... M ) )  <-> 
Q : ( 0 ... M ) --> RR ) )
2115, 20mpbird 247 . . 3  |-  ( ph  ->  Q  e.  ( RR 
^m  ( 0 ... M ) ) )
2214a1i 11 . . . . . 6  |-  ( ph  ->  Q  =  ( i  e.  ( 0 ... M )  |->  ( ( V `  i )  -  X ) ) )
23 fveq2 6191 . . . . . . . 8  |-  ( i  =  0  ->  ( V `  i )  =  ( V ` 
0 ) )
2423oveq1d 6665 . . . . . . 7  |-  ( i  =  0  ->  (
( V `  i
)  -  X )  =  ( ( V `
 0 )  -  X ) )
2524adantl 482 . . . . . 6  |-  ( (
ph  /\  i  = 
0 )  ->  (
( V `  i
)  -  X )  =  ( ( V `
 0 )  -  X ) )
26 0zd 11389 . . . . . . . . 9  |-  ( ph  ->  0  e.  ZZ )
272nnzd 11481 . . . . . . . . 9  |-  ( ph  ->  M  e.  ZZ )
2826, 27, 263jca 1242 . . . . . . . 8  |-  ( ph  ->  ( 0  e.  ZZ  /\  M  e.  ZZ  /\  0  e.  ZZ )
)
29 0le0 11110 . . . . . . . . 9  |-  0  <_  0
3029a1i 11 . . . . . . . 8  |-  ( ph  ->  0  <_  0 )
31 0red 10041 . . . . . . . . 9  |-  ( ph  ->  0  e.  RR )
322nnred 11035 . . . . . . . . 9  |-  ( ph  ->  M  e.  RR )
332nngt0d 11064 . . . . . . . . 9  |-  ( ph  ->  0  <  M )
3431, 32, 33ltled 10185 . . . . . . . 8  |-  ( ph  ->  0  <_  M )
3528, 30, 34jca32 558 . . . . . . 7  |-  ( ph  ->  ( ( 0  e.  ZZ  /\  M  e.  ZZ  /\  0  e.  ZZ )  /\  (
0  <_  0  /\  0  <_  M ) ) )
36 elfz2 12333 . . . . . . 7  |-  ( 0  e.  ( 0 ... M )  <->  ( (
0  e.  ZZ  /\  M  e.  ZZ  /\  0  e.  ZZ )  /\  (
0  <_  0  /\  0  <_  M ) ) )
3735, 36sylibr 224 . . . . . 6  |-  ( ph  ->  0  e.  ( 0 ... M ) )
389, 37ffvelrnd 6360 . . . . . . 7  |-  ( ph  ->  ( V `  0
)  e.  RR )
3938, 11resubcld 10458 . . . . . 6  |-  ( ph  ->  ( ( V ` 
0 )  -  X
)  e.  RR )
4022, 25, 37, 39fvmptd 6288 . . . . 5  |-  ( ph  ->  ( Q `  0
)  =  ( ( V `  0 )  -  X ) )
416simprd 479 . . . . . . . 8  |-  ( ph  ->  ( ( ( V `
 0 )  =  ( A  +  X
)  /\  ( V `  M )  =  ( B  +  X ) )  /\  A. i  e.  ( 0..^ M ) ( V `  i
)  <  ( V `  ( i  +  1 ) ) ) )
4241simpld 475 . . . . . . 7  |-  ( ph  ->  ( ( V ` 
0 )  =  ( A  +  X )  /\  ( V `  M )  =  ( B  +  X ) ) )
4342simpld 475 . . . . . 6  |-  ( ph  ->  ( V `  0
)  =  ( A  +  X ) )
4443oveq1d 6665 . . . . 5  |-  ( ph  ->  ( ( V ` 
0 )  -  X
)  =  ( ( A  +  X )  -  X ) )
45 fourierdlem14.1 . . . . . . 7  |-  ( ph  ->  A  e.  RR )
4645recnd 10068 . . . . . 6  |-  ( ph  ->  A  e.  CC )
4711recnd 10068 . . . . . 6  |-  ( ph  ->  X  e.  CC )
4846, 47pncand 10393 . . . . 5  |-  ( ph  ->  ( ( A  +  X )  -  X
)  =  A )
4940, 44, 483eqtrd 2660 . . . 4  |-  ( ph  ->  ( Q `  0
)  =  A )
50 fveq2 6191 . . . . . . . 8  |-  ( i  =  M  ->  ( V `  i )  =  ( V `  M ) )
5150oveq1d 6665 . . . . . . 7  |-  ( i  =  M  ->  (
( V `  i
)  -  X )  =  ( ( V `
 M )  -  X ) )
5251adantl 482 . . . . . 6  |-  ( (
ph  /\  i  =  M )  ->  (
( V `  i
)  -  X )  =  ( ( V `
 M )  -  X ) )
5326, 27, 273jca 1242 . . . . . . . 8  |-  ( ph  ->  ( 0  e.  ZZ  /\  M  e.  ZZ  /\  M  e.  ZZ )
)
5432leidd 10594 . . . . . . . 8  |-  ( ph  ->  M  <_  M )
5553, 34, 54jca32 558 . . . . . . 7  |-  ( ph  ->  ( ( 0  e.  ZZ  /\  M  e.  ZZ  /\  M  e.  ZZ )  /\  (
0  <_  M  /\  M  <_  M ) ) )
56 elfz2 12333 . . . . . . 7  |-  ( M  e.  ( 0 ... M )  <->  ( (
0  e.  ZZ  /\  M  e.  ZZ  /\  M  e.  ZZ )  /\  (
0  <_  M  /\  M  <_  M ) ) )
5755, 56sylibr 224 . . . . . 6  |-  ( ph  ->  M  e.  ( 0 ... M ) )
589, 57ffvelrnd 6360 . . . . . . 7  |-  ( ph  ->  ( V `  M
)  e.  RR )
5958, 11resubcld 10458 . . . . . 6  |-  ( ph  ->  ( ( V `  M )  -  X
)  e.  RR )
6022, 52, 57, 59fvmptd 6288 . . . . 5  |-  ( ph  ->  ( Q `  M
)  =  ( ( V `  M )  -  X ) )
6142simprd 479 . . . . . 6  |-  ( ph  ->  ( V `  M
)  =  ( B  +  X ) )
6261oveq1d 6665 . . . . 5  |-  ( ph  ->  ( ( V `  M )  -  X
)  =  ( ( B  +  X )  -  X ) )
63 fourierdlem14.2 . . . . . . 7  |-  ( ph  ->  B  e.  RR )
6463recnd 10068 . . . . . 6  |-  ( ph  ->  B  e.  CC )
6564, 47pncand 10393 . . . . 5  |-  ( ph  ->  ( ( B  +  X )  -  X
)  =  B )
6660, 62, 653eqtrd 2660 . . . 4  |-  ( ph  ->  ( Q `  M
)  =  B )
6749, 66jca 554 . . 3  |-  ( ph  ->  ( ( Q ` 
0 )  =  A  /\  ( Q `  M )  =  B ) )
68 elfzofz 12485 . . . . . . 7  |-  ( i  e.  ( 0..^ M )  ->  i  e.  ( 0 ... M
) )
6968, 10sylan2 491 . . . . . 6  |-  ( (
ph  /\  i  e.  ( 0..^ M ) )  ->  ( V `  i )  e.  RR )
709adantr 481 . . . . . . 7  |-  ( (
ph  /\  i  e.  ( 0..^ M ) )  ->  V : ( 0 ... M ) --> RR )
71 fzofzp1 12565 . . . . . . . 8  |-  ( i  e.  ( 0..^ M )  ->  ( i  +  1 )  e.  ( 0 ... M
) )
7271adantl 482 . . . . . . 7  |-  ( (
ph  /\  i  e.  ( 0..^ M ) )  ->  ( i  +  1 )  e.  ( 0 ... M ) )
7370, 72ffvelrnd 6360 . . . . . 6  |-  ( (
ph  /\  i  e.  ( 0..^ M ) )  ->  ( V `  ( i  +  1 ) )  e.  RR )
7411adantr 481 . . . . . 6  |-  ( (
ph  /\  i  e.  ( 0..^ M ) )  ->  X  e.  RR )
7541simprd 479 . . . . . . 7  |-  ( ph  ->  A. i  e.  ( 0..^ M ) ( V `  i )  <  ( V `  ( i  +  1 ) ) )
7675r19.21bi 2932 . . . . . 6  |-  ( (
ph  /\  i  e.  ( 0..^ M ) )  ->  ( V `  i )  <  ( V `  ( i  +  1 ) ) )
7769, 73, 74, 76ltsub1dd 10639 . . . . 5  |-  ( (
ph  /\  i  e.  ( 0..^ M ) )  ->  ( ( V `
 i )  -  X )  <  (
( V `  (
i  +  1 ) )  -  X ) )
7868adantl 482 . . . . . 6  |-  ( (
ph  /\  i  e.  ( 0..^ M ) )  ->  i  e.  ( 0 ... M ) )
7968, 13sylan2 491 . . . . . 6  |-  ( (
ph  /\  i  e.  ( 0..^ M ) )  ->  ( ( V `
 i )  -  X )  e.  RR )
8014fvmpt2 6291 . . . . . 6  |-  ( ( i  e.  ( 0 ... M )  /\  ( ( V `  i )  -  X
)  e.  RR )  ->  ( Q `  i )  =  ( ( V `  i
)  -  X ) )
8178, 79, 80syl2anc 693 . . . . 5  |-  ( (
ph  /\  i  e.  ( 0..^ M ) )  ->  ( Q `  i )  =  ( ( V `  i
)  -  X ) )
82 fveq2 6191 . . . . . . . . . 10  |-  ( i  =  j  ->  ( V `  i )  =  ( V `  j ) )
8382oveq1d 6665 . . . . . . . . 9  |-  ( i  =  j  ->  (
( V `  i
)  -  X )  =  ( ( V `
 j )  -  X ) )
8483cbvmptv 4750 . . . . . . . 8  |-  ( i  e.  ( 0 ... M )  |->  ( ( V `  i )  -  X ) )  =  ( j  e.  ( 0 ... M
)  |->  ( ( V `
 j )  -  X ) )
8514, 84eqtri 2644 . . . . . . 7  |-  Q  =  ( j  e.  ( 0 ... M ) 
|->  ( ( V `  j )  -  X
) )
8685a1i 11 . . . . . 6  |-  ( (
ph  /\  i  e.  ( 0..^ M ) )  ->  Q  =  ( j  e.  ( 0 ... M )  |->  ( ( V `  j
)  -  X ) ) )
87 fveq2 6191 . . . . . . . 8  |-  ( j  =  ( i  +  1 )  ->  ( V `  j )  =  ( V `  ( i  +  1 ) ) )
8887oveq1d 6665 . . . . . . 7  |-  ( j  =  ( i  +  1 )  ->  (
( V `  j
)  -  X )  =  ( ( V `
 ( i  +  1 ) )  -  X ) )
8988adantl 482 . . . . . 6  |-  ( ( ( ph  /\  i  e.  ( 0..^ M ) )  /\  j  =  ( i  +  1 ) )  ->  (
( V `  j
)  -  X )  =  ( ( V `
 ( i  +  1 ) )  -  X ) )
9073, 74resubcld 10458 . . . . . 6  |-  ( (
ph  /\  i  e.  ( 0..^ M ) )  ->  ( ( V `
 ( i  +  1 ) )  -  X )  e.  RR )
9186, 89, 72, 90fvmptd 6288 . . . . 5  |-  ( (
ph  /\  i  e.  ( 0..^ M ) )  ->  ( Q `  ( i  +  1 ) )  =  ( ( V `  (
i  +  1 ) )  -  X ) )
9277, 81, 913brtr4d 4685 . . . 4  |-  ( (
ph  /\  i  e.  ( 0..^ M ) )  ->  ( Q `  i )  <  ( Q `  ( i  +  1 ) ) )
9392ralrimiva 2966 . . 3  |-  ( ph  ->  A. i  e.  ( 0..^ M ) ( Q `  i )  <  ( Q `  ( i  +  1 ) ) )
9421, 67, 93jca32 558 . 2  |-  ( ph  ->  ( Q  e.  ( RR  ^m  ( 0 ... M ) )  /\  ( ( ( Q `  0 )  =  A  /\  ( Q `  M )  =  B )  /\  A. i  e.  ( 0..^ M ) ( Q `
 i )  < 
( Q `  (
i  +  1 ) ) ) ) )
95 fourierdlem14.o . . . 4  |-  O  =  ( m  e.  NN  |->  { p  e.  ( RR  ^m  ( 0 ... m ) )  |  ( ( ( p `
 0 )  =  A  /\  ( p `
 m )  =  B )  /\  A. i  e.  ( 0..^ m ) ( p `
 i )  < 
( p `  (
i  +  1 ) ) ) } )
9695fourierdlem2 40326 . . 3  |-  ( M  e.  NN  ->  ( Q  e.  ( O `  M )  <->  ( Q  e.  ( RR  ^m  (
0 ... M ) )  /\  ( ( ( Q `  0 )  =  A  /\  ( Q `  M )  =  B )  /\  A. i  e.  ( 0..^ M ) ( Q `
 i )  < 
( Q `  (
i  +  1 ) ) ) ) ) )
972, 96syl 17 . 2  |-  ( ph  ->  ( Q  e.  ( O `  M )  <-> 
( Q  e.  ( RR  ^m  ( 0 ... M ) )  /\  ( ( ( Q `  0 )  =  A  /\  ( Q `  M )  =  B )  /\  A. i  e.  ( 0..^ M ) ( Q `
 i )  < 
( Q `  (
i  +  1 ) ) ) ) ) )
9894, 97mpbird 247 1  |-  ( ph  ->  Q  e.  ( O `
 M ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    /\ wa 384    /\ w3a 1037    = wceq 1483    e. wcel 1990   A.wral 2912   {crab 2916   _Vcvv 3200   class class class wbr 4653    |-> cmpt 4729   -->wf 5884   ` cfv 5888  (class class class)co 6650    ^m cmap 7857   RRcr 9935   0cc0 9936   1c1 9937    + caddc 9939    < clt 10074    <_ cle 10075    - cmin 10266   NNcn 11020   ZZcz 11377   ...cfz 12326  ..^cfzo 12465
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-er 7742  df-map 7859  df-en 7956  df-dom 7957  df-sdom 7958  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-nn 11021  df-n0 11293  df-z 11378  df-uz 11688  df-fz 12327  df-fzo 12466
This theorem is referenced by:  fourierdlem74  40397  fourierdlem75  40398  fourierdlem84  40407  fourierdlem85  40408  fourierdlem88  40411  fourierdlem103  40426  fourierdlem104  40427
  Copyright terms: Public domain W3C validator