Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fourierdlem12 Structured version   Visualization version   Unicode version

Theorem fourierdlem12 40336
Description: A point of a partition is not an element of any open interval determined by the partition. (Contributed by Glauco Siliprandi, 11-Dec-2019.)
Hypotheses
Ref Expression
fourierdlem12.1  |-  P  =  ( m  e.  NN  |->  { p  e.  ( RR  ^m  ( 0 ... m ) )  |  ( ( ( p `
 0 )  =  A  /\  ( p `
 m )  =  B )  /\  A. i  e.  ( 0..^ m ) ( p `
 i )  < 
( p `  (
i  +  1 ) ) ) } )
fourierdlem12.2  |-  ( ph  ->  M  e.  NN )
fourierdlem12.3  |-  ( ph  ->  Q  e.  ( P `
 M ) )
fourierdlem12.4  |-  ( ph  ->  X  e.  ran  Q
)
Assertion
Ref Expression
fourierdlem12  |-  ( (
ph  /\  i  e.  ( 0..^ M ) )  ->  -.  X  e.  ( ( Q `  i ) (,) ( Q `  ( i  +  1 ) ) ) )
Distinct variable groups:    A, m, p    B, m, p    i, M, m, p    Q, i, p    ph, i
Allowed substitution hints:    ph( m, p)    A( i)    B( i)    P( i, m, p)    Q( m)    X( i, m, p)

Proof of Theorem fourierdlem12
Dummy variables  j  w are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fourierdlem12.4 . . . 4  |-  ( ph  ->  X  e.  ran  Q
)
2 fourierdlem12.3 . . . . . . . 8  |-  ( ph  ->  Q  e.  ( P `
 M ) )
3 fourierdlem12.2 . . . . . . . . 9  |-  ( ph  ->  M  e.  NN )
4 fourierdlem12.1 . . . . . . . . . 10  |-  P  =  ( m  e.  NN  |->  { p  e.  ( RR  ^m  ( 0 ... m ) )  |  ( ( ( p `
 0 )  =  A  /\  ( p `
 m )  =  B )  /\  A. i  e.  ( 0..^ m ) ( p `
 i )  < 
( p `  (
i  +  1 ) ) ) } )
54fourierdlem2 40326 . . . . . . . . 9  |-  ( M  e.  NN  ->  ( Q  e.  ( P `  M )  <->  ( Q  e.  ( RR  ^m  (
0 ... M ) )  /\  ( ( ( Q `  0 )  =  A  /\  ( Q `  M )  =  B )  /\  A. i  e.  ( 0..^ M ) ( Q `
 i )  < 
( Q `  (
i  +  1 ) ) ) ) ) )
63, 5syl 17 . . . . . . . 8  |-  ( ph  ->  ( Q  e.  ( P `  M )  <-> 
( Q  e.  ( RR  ^m  ( 0 ... M ) )  /\  ( ( ( Q `  0 )  =  A  /\  ( Q `  M )  =  B )  /\  A. i  e.  ( 0..^ M ) ( Q `
 i )  < 
( Q `  (
i  +  1 ) ) ) ) ) )
72, 6mpbid 222 . . . . . . 7  |-  ( ph  ->  ( Q  e.  ( RR  ^m  ( 0 ... M ) )  /\  ( ( ( Q `  0 )  =  A  /\  ( Q `  M )  =  B )  /\  A. i  e.  ( 0..^ M ) ( Q `
 i )  < 
( Q `  (
i  +  1 ) ) ) ) )
87simpld 475 . . . . . 6  |-  ( ph  ->  Q  e.  ( RR 
^m  ( 0 ... M ) ) )
9 elmapi 7879 . . . . . 6  |-  ( Q  e.  ( RR  ^m  ( 0 ... M
) )  ->  Q : ( 0 ... M ) --> RR )
10 ffn 6045 . . . . . 6  |-  ( Q : ( 0 ... M ) --> RR  ->  Q  Fn  ( 0 ... M ) )
118, 9, 103syl 18 . . . . 5  |-  ( ph  ->  Q  Fn  ( 0 ... M ) )
12 fvelrnb 6243 . . . . 5  |-  ( Q  Fn  ( 0 ... M )  ->  ( X  e.  ran  Q  <->  E. j  e.  ( 0 ... M
) ( Q `  j )  =  X ) )
1311, 12syl 17 . . . 4  |-  ( ph  ->  ( X  e.  ran  Q  <->  E. j  e.  (
0 ... M ) ( Q `  j )  =  X ) )
141, 13mpbid 222 . . 3  |-  ( ph  ->  E. j  e.  ( 0 ... M ) ( Q `  j
)  =  X )
1514adantr 481 . 2  |-  ( (
ph  /\  i  e.  ( 0..^ M ) )  ->  E. j  e.  ( 0 ... M ) ( Q `  j
)  =  X )
168, 9syl 17 . . . . . . . . . . . 12  |-  ( ph  ->  Q : ( 0 ... M ) --> RR )
1716adantr 481 . . . . . . . . . . 11  |-  ( (
ph  /\  i  e.  ( 0..^ M ) )  ->  Q : ( 0 ... M ) --> RR )
18 fzofzp1 12565 . . . . . . . . . . . 12  |-  ( i  e.  ( 0..^ M )  ->  ( i  +  1 )  e.  ( 0 ... M
) )
1918adantl 482 . . . . . . . . . . 11  |-  ( (
ph  /\  i  e.  ( 0..^ M ) )  ->  ( i  +  1 )  e.  ( 0 ... M ) )
2017, 19ffvelrnd 6360 . . . . . . . . . 10  |-  ( (
ph  /\  i  e.  ( 0..^ M ) )  ->  ( Q `  ( i  +  1 ) )  e.  RR )
2120adantr 481 . . . . . . . . 9  |-  ( ( ( ph  /\  i  e.  ( 0..^ M ) )  /\  i  < 
j )  ->  ( Q `  ( i  +  1 ) )  e.  RR )
22213ad2antl1 1223 . . . . . . . 8  |-  ( ( ( ( ph  /\  i  e.  ( 0..^ M ) )  /\  j  e.  ( 0 ... M )  /\  ( Q `  j )  =  X )  /\  i  <  j )  -> 
( Q `  (
i  +  1 ) )  e.  RR )
23 frn 6053 . . . . . . . . . . . 12  |-  ( Q : ( 0 ... M ) --> RR  ->  ran 
Q  C_  RR )
2416, 23syl 17 . . . . . . . . . . 11  |-  ( ph  ->  ran  Q  C_  RR )
2524, 1sseldd 3604 . . . . . . . . . 10  |-  ( ph  ->  X  e.  RR )
2625ad2antrr 762 . . . . . . . . 9  |-  ( ( ( ph  /\  i  e.  ( 0..^ M ) )  /\  i  < 
j )  ->  X  e.  RR )
27263ad2antl1 1223 . . . . . . . 8  |-  ( ( ( ( ph  /\  i  e.  ( 0..^ M ) )  /\  j  e.  ( 0 ... M )  /\  ( Q `  j )  =  X )  /\  i  <  j )  ->  X  e.  RR )
2817ffvelrnda 6359 . . . . . . . . . . 11  |-  ( ( ( ph  /\  i  e.  ( 0..^ M ) )  /\  j  e.  ( 0 ... M
) )  ->  ( Q `  j )  e.  RR )
29283adant3 1081 . . . . . . . . . 10  |-  ( ( ( ph  /\  i  e.  ( 0..^ M ) )  /\  j  e.  ( 0 ... M
)  /\  ( Q `  j )  =  X )  ->  ( Q `  j )  e.  RR )
3029adantr 481 . . . . . . . . 9  |-  ( ( ( ( ph  /\  i  e.  ( 0..^ M ) )  /\  j  e.  ( 0 ... M )  /\  ( Q `  j )  =  X )  /\  i  <  j )  -> 
( Q `  j
)  e.  RR )
31 simpr 477 . . . . . . . . . . . . . 14  |-  ( ( ( i  e.  ( 0..^ M )  /\  j  e.  ( 0 ... M ) )  /\  i  <  j
)  ->  i  <  j )
32 elfzoelz 12470 . . . . . . . . . . . . . . . 16  |-  ( i  e.  ( 0..^ M )  ->  i  e.  ZZ )
3332ad2antrr 762 . . . . . . . . . . . . . . 15  |-  ( ( ( i  e.  ( 0..^ M )  /\  j  e.  ( 0 ... M ) )  /\  i  <  j
)  ->  i  e.  ZZ )
34 elfzelz 12342 . . . . . . . . . . . . . . . 16  |-  ( j  e.  ( 0 ... M )  ->  j  e.  ZZ )
3534ad2antlr 763 . . . . . . . . . . . . . . 15  |-  ( ( ( i  e.  ( 0..^ M )  /\  j  e.  ( 0 ... M ) )  /\  i  <  j
)  ->  j  e.  ZZ )
36 zltp1le 11427 . . . . . . . . . . . . . . 15  |-  ( ( i  e.  ZZ  /\  j  e.  ZZ )  ->  ( i  <  j  <->  ( i  +  1 )  <_  j ) )
3733, 35, 36syl2anc 693 . . . . . . . . . . . . . 14  |-  ( ( ( i  e.  ( 0..^ M )  /\  j  e.  ( 0 ... M ) )  /\  i  <  j
)  ->  ( i  <  j  <->  ( i  +  1 )  <_  j
) )
3831, 37mpbid 222 . . . . . . . . . . . . 13  |-  ( ( ( i  e.  ( 0..^ M )  /\  j  e.  ( 0 ... M ) )  /\  i  <  j
)  ->  ( i  +  1 )  <_ 
j )
3933peano2zd 11485 . . . . . . . . . . . . . 14  |-  ( ( ( i  e.  ( 0..^ M )  /\  j  e.  ( 0 ... M ) )  /\  i  <  j
)  ->  ( i  +  1 )  e.  ZZ )
40 eluz 11701 . . . . . . . . . . . . . 14  |-  ( ( ( i  +  1 )  e.  ZZ  /\  j  e.  ZZ )  ->  ( j  e.  (
ZZ>= `  ( i  +  1 ) )  <->  ( i  +  1 )  <_ 
j ) )
4139, 35, 40syl2anc 693 . . . . . . . . . . . . 13  |-  ( ( ( i  e.  ( 0..^ M )  /\  j  e.  ( 0 ... M ) )  /\  i  <  j
)  ->  ( j  e.  ( ZZ>= `  ( i  +  1 ) )  <-> 
( i  +  1 )  <_  j )
)
4238, 41mpbird 247 . . . . . . . . . . . 12  |-  ( ( ( i  e.  ( 0..^ M )  /\  j  e.  ( 0 ... M ) )  /\  i  <  j
)  ->  j  e.  ( ZZ>= `  ( i  +  1 ) ) )
4342adantlll 754 . . . . . . . . . . 11  |-  ( ( ( ( ph  /\  i  e.  ( 0..^ M ) )  /\  j  e.  ( 0 ... M ) )  /\  i  <  j
)  ->  j  e.  ( ZZ>= `  ( i  +  1 ) ) )
4417ad2antrr 762 . . . . . . . . . . . . 13  |-  ( ( ( ( ph  /\  i  e.  ( 0..^ M ) )  /\  j  e.  ( 0 ... M ) )  /\  w  e.  ( ( i  +  1 ) ... j ) )  ->  Q :
( 0 ... M
) --> RR )
45 0red 10041 . . . . . . . . . . . . . . . . 17  |-  ( ( i  e.  ( 0..^ M )  /\  w  e.  ( ( i  +  1 ) ... j
) )  ->  0  e.  RR )
46 elfzelz 12342 . . . . . . . . . . . . . . . . . . 19  |-  ( w  e.  ( ( i  +  1 ) ... j )  ->  w  e.  ZZ )
4746zred 11482 . . . . . . . . . . . . . . . . . 18  |-  ( w  e.  ( ( i  +  1 ) ... j )  ->  w  e.  RR )
4847adantl 482 . . . . . . . . . . . . . . . . 17  |-  ( ( i  e.  ( 0..^ M )  /\  w  e.  ( ( i  +  1 ) ... j
) )  ->  w  e.  RR )
4932peano2zd 11485 . . . . . . . . . . . . . . . . . . . 20  |-  ( i  e.  ( 0..^ M )  ->  ( i  +  1 )  e.  ZZ )
5049zred 11482 . . . . . . . . . . . . . . . . . . 19  |-  ( i  e.  ( 0..^ M )  ->  ( i  +  1 )  e.  RR )
5150adantr 481 . . . . . . . . . . . . . . . . . 18  |-  ( ( i  e.  ( 0..^ M )  /\  w  e.  ( ( i  +  1 ) ... j
) )  ->  (
i  +  1 )  e.  RR )
5232zred 11482 . . . . . . . . . . . . . . . . . . . 20  |-  ( i  e.  ( 0..^ M )  ->  i  e.  RR )
5352adantr 481 . . . . . . . . . . . . . . . . . . 19  |-  ( ( i  e.  ( 0..^ M )  /\  w  e.  ( ( i  +  1 ) ... j
) )  ->  i  e.  RR )
54 elfzole1 12478 . . . . . . . . . . . . . . . . . . . 20  |-  ( i  e.  ( 0..^ M )  ->  0  <_  i )
5554adantr 481 . . . . . . . . . . . . . . . . . . 19  |-  ( ( i  e.  ( 0..^ M )  /\  w  e.  ( ( i  +  1 ) ... j
) )  ->  0  <_  i )
5653ltp1d 10954 . . . . . . . . . . . . . . . . . . 19  |-  ( ( i  e.  ( 0..^ M )  /\  w  e.  ( ( i  +  1 ) ... j
) )  ->  i  <  ( i  +  1 ) )
5745, 53, 51, 55, 56lelttrd 10195 . . . . . . . . . . . . . . . . . 18  |-  ( ( i  e.  ( 0..^ M )  /\  w  e.  ( ( i  +  1 ) ... j
) )  ->  0  <  ( i  +  1 ) )
58 elfzle1 12344 . . . . . . . . . . . . . . . . . . 19  |-  ( w  e.  ( ( i  +  1 ) ... j )  ->  (
i  +  1 )  <_  w )
5958adantl 482 . . . . . . . . . . . . . . . . . 18  |-  ( ( i  e.  ( 0..^ M )  /\  w  e.  ( ( i  +  1 ) ... j
) )  ->  (
i  +  1 )  <_  w )
6045, 51, 48, 57, 59ltletrd 10197 . . . . . . . . . . . . . . . . 17  |-  ( ( i  e.  ( 0..^ M )  /\  w  e.  ( ( i  +  1 ) ... j
) )  ->  0  <  w )
6145, 48, 60ltled 10185 . . . . . . . . . . . . . . . 16  |-  ( ( i  e.  ( 0..^ M )  /\  w  e.  ( ( i  +  1 ) ... j
) )  ->  0  <_  w )
6261adantlr 751 . . . . . . . . . . . . . . 15  |-  ( ( ( i  e.  ( 0..^ M )  /\  j  e.  ( 0 ... M ) )  /\  w  e.  ( ( i  +  1 ) ... j ) )  ->  0  <_  w )
6347adantl 482 . . . . . . . . . . . . . . . . 17  |-  ( ( j  e.  ( 0 ... M )  /\  w  e.  ( (
i  +  1 ) ... j ) )  ->  w  e.  RR )
6434zred 11482 . . . . . . . . . . . . . . . . . 18  |-  ( j  e.  ( 0 ... M )  ->  j  e.  RR )
6564adantr 481 . . . . . . . . . . . . . . . . 17  |-  ( ( j  e.  ( 0 ... M )  /\  w  e.  ( (
i  +  1 ) ... j ) )  ->  j  e.  RR )
66 elfzel2 12340 . . . . . . . . . . . . . . . . . . 19  |-  ( j  e.  ( 0 ... M )  ->  M  e.  ZZ )
6766zred 11482 . . . . . . . . . . . . . . . . . 18  |-  ( j  e.  ( 0 ... M )  ->  M  e.  RR )
6867adantr 481 . . . . . . . . . . . . . . . . 17  |-  ( ( j  e.  ( 0 ... M )  /\  w  e.  ( (
i  +  1 ) ... j ) )  ->  M  e.  RR )
69 elfzle2 12345 . . . . . . . . . . . . . . . . . 18  |-  ( w  e.  ( ( i  +  1 ) ... j )  ->  w  <_  j )
7069adantl 482 . . . . . . . . . . . . . . . . 17  |-  ( ( j  e.  ( 0 ... M )  /\  w  e.  ( (
i  +  1 ) ... j ) )  ->  w  <_  j
)
71 elfzle2 12345 . . . . . . . . . . . . . . . . . 18  |-  ( j  e.  ( 0 ... M )  ->  j  <_  M )
7271adantr 481 . . . . . . . . . . . . . . . . 17  |-  ( ( j  e.  ( 0 ... M )  /\  w  e.  ( (
i  +  1 ) ... j ) )  ->  j  <_  M
)
7363, 65, 68, 70, 72letrd 10194 . . . . . . . . . . . . . . . 16  |-  ( ( j  e.  ( 0 ... M )  /\  w  e.  ( (
i  +  1 ) ... j ) )  ->  w  <_  M
)
7473adantll 750 . . . . . . . . . . . . . . 15  |-  ( ( ( i  e.  ( 0..^ M )  /\  j  e.  ( 0 ... M ) )  /\  w  e.  ( ( i  +  1 ) ... j ) )  ->  w  <_  M )
7546adantl 482 . . . . . . . . . . . . . . . 16  |-  ( ( ( i  e.  ( 0..^ M )  /\  j  e.  ( 0 ... M ) )  /\  w  e.  ( ( i  +  1 ) ... j ) )  ->  w  e.  ZZ )
76 0zd 11389 . . . . . . . . . . . . . . . 16  |-  ( ( ( i  e.  ( 0..^ M )  /\  j  e.  ( 0 ... M ) )  /\  w  e.  ( ( i  +  1 ) ... j ) )  ->  0  e.  ZZ )
7766ad2antlr 763 . . . . . . . . . . . . . . . 16  |-  ( ( ( i  e.  ( 0..^ M )  /\  j  e.  ( 0 ... M ) )  /\  w  e.  ( ( i  +  1 ) ... j ) )  ->  M  e.  ZZ )
78 elfz 12332 . . . . . . . . . . . . . . . 16  |-  ( ( w  e.  ZZ  /\  0  e.  ZZ  /\  M  e.  ZZ )  ->  (
w  e.  ( 0 ... M )  <->  ( 0  <_  w  /\  w  <_  M ) ) )
7975, 76, 77, 78syl3anc 1326 . . . . . . . . . . . . . . 15  |-  ( ( ( i  e.  ( 0..^ M )  /\  j  e.  ( 0 ... M ) )  /\  w  e.  ( ( i  +  1 ) ... j ) )  ->  ( w  e.  ( 0 ... M
)  <->  ( 0  <_  w  /\  w  <_  M
) ) )
8062, 74, 79mpbir2and 957 . . . . . . . . . . . . . 14  |-  ( ( ( i  e.  ( 0..^ M )  /\  j  e.  ( 0 ... M ) )  /\  w  e.  ( ( i  +  1 ) ... j ) )  ->  w  e.  ( 0 ... M
) )
8180adantlll 754 . . . . . . . . . . . . 13  |-  ( ( ( ( ph  /\  i  e.  ( 0..^ M ) )  /\  j  e.  ( 0 ... M ) )  /\  w  e.  ( ( i  +  1 ) ... j ) )  ->  w  e.  ( 0 ... M
) )
8244, 81ffvelrnd 6360 . . . . . . . . . . . 12  |-  ( ( ( ( ph  /\  i  e.  ( 0..^ M ) )  /\  j  e.  ( 0 ... M ) )  /\  w  e.  ( ( i  +  1 ) ... j ) )  ->  ( Q `  w )  e.  RR )
8382adantlr 751 . . . . . . . . . . 11  |-  ( ( ( ( ( ph  /\  i  e.  ( 0..^ M ) )  /\  j  e.  ( 0 ... M ) )  /\  i  <  j
)  /\  w  e.  ( ( i  +  1 ) ... j
) )  ->  ( Q `  w )  e.  RR )
84 simp-4l 806 . . . . . . . . . . . 12  |-  ( ( ( ( ( ph  /\  i  e.  ( 0..^ M ) )  /\  j  e.  ( 0 ... M ) )  /\  i  <  j
)  /\  w  e.  ( ( i  +  1 ) ... (
j  -  1 ) ) )  ->  ph )
85 0red 10041 . . . . . . . . . . . . . . . 16  |-  ( ( ( i  e.  ( 0..^ M )  /\  j  e.  ( 0 ... M ) )  /\  w  e.  ( ( i  +  1 ) ... ( j  -  1 ) ) )  ->  0  e.  RR )
86 elfzelz 12342 . . . . . . . . . . . . . . . . . 18  |-  ( w  e.  ( ( i  +  1 ) ... ( j  -  1 ) )  ->  w  e.  ZZ )
8786zred 11482 . . . . . . . . . . . . . . . . 17  |-  ( w  e.  ( ( i  +  1 ) ... ( j  -  1 ) )  ->  w  e.  RR )
8887adantl 482 . . . . . . . . . . . . . . . 16  |-  ( ( ( i  e.  ( 0..^ M )  /\  j  e.  ( 0 ... M ) )  /\  w  e.  ( ( i  +  1 ) ... ( j  -  1 ) ) )  ->  w  e.  RR )
89 0red 10041 . . . . . . . . . . . . . . . . . 18  |-  ( ( i  e.  ( 0..^ M )  /\  w  e.  ( ( i  +  1 ) ... (
j  -  1 ) ) )  ->  0  e.  RR )
9050adantr 481 . . . . . . . . . . . . . . . . . 18  |-  ( ( i  e.  ( 0..^ M )  /\  w  e.  ( ( i  +  1 ) ... (
j  -  1 ) ) )  ->  (
i  +  1 )  e.  RR )
9187adantl 482 . . . . . . . . . . . . . . . . . 18  |-  ( ( i  e.  ( 0..^ M )  /\  w  e.  ( ( i  +  1 ) ... (
j  -  1 ) ) )  ->  w  e.  RR )
92 0red 10041 . . . . . . . . . . . . . . . . . . . 20  |-  ( i  e.  ( 0..^ M )  ->  0  e.  RR )
9352ltp1d 10954 . . . . . . . . . . . . . . . . . . . 20  |-  ( i  e.  ( 0..^ M )  ->  i  <  ( i  +  1 ) )
9492, 52, 50, 54, 93lelttrd 10195 . . . . . . . . . . . . . . . . . . 19  |-  ( i  e.  ( 0..^ M )  ->  0  <  ( i  +  1 ) )
9594adantr 481 . . . . . . . . . . . . . . . . . 18  |-  ( ( i  e.  ( 0..^ M )  /\  w  e.  ( ( i  +  1 ) ... (
j  -  1 ) ) )  ->  0  <  ( i  +  1 ) )
96 elfzle1 12344 . . . . . . . . . . . . . . . . . . 19  |-  ( w  e.  ( ( i  +  1 ) ... ( j  -  1 ) )  ->  (
i  +  1 )  <_  w )
9796adantl 482 . . . . . . . . . . . . . . . . . 18  |-  ( ( i  e.  ( 0..^ M )  /\  w  e.  ( ( i  +  1 ) ... (
j  -  1 ) ) )  ->  (
i  +  1 )  <_  w )
9889, 90, 91, 95, 97ltletrd 10197 . . . . . . . . . . . . . . . . 17  |-  ( ( i  e.  ( 0..^ M )  /\  w  e.  ( ( i  +  1 ) ... (
j  -  1 ) ) )  ->  0  <  w )
9998adantlr 751 . . . . . . . . . . . . . . . 16  |-  ( ( ( i  e.  ( 0..^ M )  /\  j  e.  ( 0 ... M ) )  /\  w  e.  ( ( i  +  1 ) ... ( j  -  1 ) ) )  ->  0  <  w )
10085, 88, 99ltled 10185 . . . . . . . . . . . . . . 15  |-  ( ( ( i  e.  ( 0..^ M )  /\  j  e.  ( 0 ... M ) )  /\  w  e.  ( ( i  +  1 ) ... ( j  -  1 ) ) )  ->  0  <_  w )
101100adantlll 754 . . . . . . . . . . . . . 14  |-  ( ( ( ( ph  /\  i  e.  ( 0..^ M ) )  /\  j  e.  ( 0 ... M ) )  /\  w  e.  ( ( i  +  1 ) ... ( j  -  1 ) ) )  ->  0  <_  w )
102101adantlr 751 . . . . . . . . . . . . 13  |-  ( ( ( ( ( ph  /\  i  e.  ( 0..^ M ) )  /\  j  e.  ( 0 ... M ) )  /\  i  <  j
)  /\  w  e.  ( ( i  +  1 ) ... (
j  -  1 ) ) )  ->  0  <_  w )
10387adantl 482 . . . . . . . . . . . . . . . 16  |-  ( ( j  e.  ( 0 ... M )  /\  w  e.  ( (
i  +  1 ) ... ( j  - 
1 ) ) )  ->  w  e.  RR )
104 peano2rem 10348 . . . . . . . . . . . . . . . . . 18  |-  ( j  e.  RR  ->  (
j  -  1 )  e.  RR )
10564, 104syl 17 . . . . . . . . . . . . . . . . 17  |-  ( j  e.  ( 0 ... M )  ->  (
j  -  1 )  e.  RR )
106105adantr 481 . . . . . . . . . . . . . . . 16  |-  ( ( j  e.  ( 0 ... M )  /\  w  e.  ( (
i  +  1 ) ... ( j  - 
1 ) ) )  ->  ( j  - 
1 )  e.  RR )
10767adantr 481 . . . . . . . . . . . . . . . 16  |-  ( ( j  e.  ( 0 ... M )  /\  w  e.  ( (
i  +  1 ) ... ( j  - 
1 ) ) )  ->  M  e.  RR )
108 elfzle2 12345 . . . . . . . . . . . . . . . . 17  |-  ( w  e.  ( ( i  +  1 ) ... ( j  -  1 ) )  ->  w  <_  ( j  -  1 ) )
109108adantl 482 . . . . . . . . . . . . . . . 16  |-  ( ( j  e.  ( 0 ... M )  /\  w  e.  ( (
i  +  1 ) ... ( j  - 
1 ) ) )  ->  w  <_  (
j  -  1 ) )
110 zlem1lt 11429 . . . . . . . . . . . . . . . . . . 19  |-  ( ( j  e.  ZZ  /\  M  e.  ZZ )  ->  ( j  <_  M  <->  ( j  -  1 )  <  M ) )
11134, 66, 110syl2anc 693 . . . . . . . . . . . . . . . . . 18  |-  ( j  e.  ( 0 ... M )  ->  (
j  <_  M  <->  ( j  -  1 )  < 
M ) )
11271, 111mpbid 222 . . . . . . . . . . . . . . . . 17  |-  ( j  e.  ( 0 ... M )  ->  (
j  -  1 )  <  M )
113112adantr 481 . . . . . . . . . . . . . . . 16  |-  ( ( j  e.  ( 0 ... M )  /\  w  e.  ( (
i  +  1 ) ... ( j  - 
1 ) ) )  ->  ( j  - 
1 )  <  M
)
114103, 106, 107, 109, 113lelttrd 10195 . . . . . . . . . . . . . . 15  |-  ( ( j  e.  ( 0 ... M )  /\  w  e.  ( (
i  +  1 ) ... ( j  - 
1 ) ) )  ->  w  <  M
)
115114adantlr 751 . . . . . . . . . . . . . 14  |-  ( ( ( j  e.  ( 0 ... M )  /\  i  <  j
)  /\  w  e.  ( ( i  +  1 ) ... (
j  -  1 ) ) )  ->  w  <  M )
116115adantlll 754 . . . . . . . . . . . . 13  |-  ( ( ( ( ( ph  /\  i  e.  ( 0..^ M ) )  /\  j  e.  ( 0 ... M ) )  /\  i  <  j
)  /\  w  e.  ( ( i  +  1 ) ... (
j  -  1 ) ) )  ->  w  <  M )
11786adantl 482 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( ph  /\  i  e.  ( 0..^ M ) )  /\  j  e.  ( 0 ... M ) )  /\  i  <  j
)  /\  w  e.  ( ( i  +  1 ) ... (
j  -  1 ) ) )  ->  w  e.  ZZ )
118 0zd 11389 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( ph  /\  i  e.  ( 0..^ M ) )  /\  j  e.  ( 0 ... M ) )  /\  i  <  j
)  /\  w  e.  ( ( i  +  1 ) ... (
j  -  1 ) ) )  ->  0  e.  ZZ )
11966ad3antlr 767 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( ph  /\  i  e.  ( 0..^ M ) )  /\  j  e.  ( 0 ... M ) )  /\  i  <  j
)  /\  w  e.  ( ( i  +  1 ) ... (
j  -  1 ) ) )  ->  M  e.  ZZ )
120 elfzo 12472 . . . . . . . . . . . . . 14  |-  ( ( w  e.  ZZ  /\  0  e.  ZZ  /\  M  e.  ZZ )  ->  (
w  e.  ( 0..^ M )  <->  ( 0  <_  w  /\  w  <  M ) ) )
121117, 118, 119, 120syl3anc 1326 . . . . . . . . . . . . 13  |-  ( ( ( ( ( ph  /\  i  e.  ( 0..^ M ) )  /\  j  e.  ( 0 ... M ) )  /\  i  <  j
)  /\  w  e.  ( ( i  +  1 ) ... (
j  -  1 ) ) )  ->  (
w  e.  ( 0..^ M )  <->  ( 0  <_  w  /\  w  <  M ) ) )
122102, 116, 121mpbir2and 957 . . . . . . . . . . . 12  |-  ( ( ( ( ( ph  /\  i  e.  ( 0..^ M ) )  /\  j  e.  ( 0 ... M ) )  /\  i  <  j
)  /\  w  e.  ( ( i  +  1 ) ... (
j  -  1 ) ) )  ->  w  e.  ( 0..^ M ) )
12316adantr 481 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  w  e.  ( 0..^ M ) )  ->  Q : ( 0 ... M ) --> RR )
124 elfzofz 12485 . . . . . . . . . . . . . . 15  |-  ( w  e.  ( 0..^ M )  ->  w  e.  ( 0 ... M
) )
125124adantl 482 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  w  e.  ( 0..^ M ) )  ->  w  e.  ( 0 ... M ) )
126123, 125ffvelrnd 6360 . . . . . . . . . . . . 13  |-  ( (
ph  /\  w  e.  ( 0..^ M ) )  ->  ( Q `  w )  e.  RR )
127 fzofzp1 12565 . . . . . . . . . . . . . . 15  |-  ( w  e.  ( 0..^ M )  ->  ( w  +  1 )  e.  ( 0 ... M
) )
128127adantl 482 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  w  e.  ( 0..^ M ) )  ->  ( w  + 
1 )  e.  ( 0 ... M ) )
129123, 128ffvelrnd 6360 . . . . . . . . . . . . 13  |-  ( (
ph  /\  w  e.  ( 0..^ M ) )  ->  ( Q `  ( w  +  1
) )  e.  RR )
130 eleq1 2689 . . . . . . . . . . . . . . . 16  |-  ( i  =  w  ->  (
i  e.  ( 0..^ M )  <->  w  e.  ( 0..^ M ) ) )
131130anbi2d 740 . . . . . . . . . . . . . . 15  |-  ( i  =  w  ->  (
( ph  /\  i  e.  ( 0..^ M ) )  <->  ( ph  /\  w  e.  ( 0..^ M ) ) ) )
132 fveq2 6191 . . . . . . . . . . . . . . . 16  |-  ( i  =  w  ->  ( Q `  i )  =  ( Q `  w ) )
133 oveq1 6657 . . . . . . . . . . . . . . . . 17  |-  ( i  =  w  ->  (
i  +  1 )  =  ( w  + 
1 ) )
134133fveq2d 6195 . . . . . . . . . . . . . . . 16  |-  ( i  =  w  ->  ( Q `  ( i  +  1 ) )  =  ( Q `  ( w  +  1
) ) )
135132, 134breq12d 4666 . . . . . . . . . . . . . . 15  |-  ( i  =  w  ->  (
( Q `  i
)  <  ( Q `  ( i  +  1 ) )  <->  ( Q `  w )  <  ( Q `  ( w  +  1 ) ) ) )
136131, 135imbi12d 334 . . . . . . . . . . . . . 14  |-  ( i  =  w  ->  (
( ( ph  /\  i  e.  ( 0..^ M ) )  -> 
( Q `  i
)  <  ( Q `  ( i  +  1 ) ) )  <->  ( ( ph  /\  w  e.  ( 0..^ M ) )  ->  ( Q `  w )  <  ( Q `  ( w  +  1 ) ) ) ) )
1377simprrd 797 . . . . . . . . . . . . . . 15  |-  ( ph  ->  A. i  e.  ( 0..^ M ) ( Q `  i )  <  ( Q `  ( i  +  1 ) ) )
138137r19.21bi 2932 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  i  e.  ( 0..^ M ) )  ->  ( Q `  i )  <  ( Q `  ( i  +  1 ) ) )
139136, 138chvarv 2263 . . . . . . . . . . . . 13  |-  ( (
ph  /\  w  e.  ( 0..^ M ) )  ->  ( Q `  w )  <  ( Q `  ( w  +  1 ) ) )
140126, 129, 139ltled 10185 . . . . . . . . . . . 12  |-  ( (
ph  /\  w  e.  ( 0..^ M ) )  ->  ( Q `  w )  <_  ( Q `  ( w  +  1 ) ) )
14184, 122, 140syl2anc 693 . . . . . . . . . . 11  |-  ( ( ( ( ( ph  /\  i  e.  ( 0..^ M ) )  /\  j  e.  ( 0 ... M ) )  /\  i  <  j
)  /\  w  e.  ( ( i  +  1 ) ... (
j  -  1 ) ) )  ->  ( Q `  w )  <_  ( Q `  (
w  +  1 ) ) )
14243, 83, 141monoord 12831 . . . . . . . . . 10  |-  ( ( ( ( ph  /\  i  e.  ( 0..^ M ) )  /\  j  e.  ( 0 ... M ) )  /\  i  <  j
)  ->  ( Q `  ( i  +  1 ) )  <_  ( Q `  j )
)
1431423adantl3 1219 . . . . . . . . 9  |-  ( ( ( ( ph  /\  i  e.  ( 0..^ M ) )  /\  j  e.  ( 0 ... M )  /\  ( Q `  j )  =  X )  /\  i  <  j )  -> 
( Q `  (
i  +  1 ) )  <_  ( Q `  j ) )
14416ffvelrnda 6359 . . . . . . . . . . . . 13  |-  ( (
ph  /\  j  e.  ( 0 ... M
) )  ->  ( Q `  j )  e.  RR )
1451443adant3 1081 . . . . . . . . . . . 12  |-  ( (
ph  /\  j  e.  ( 0 ... M
)  /\  ( Q `  j )  =  X )  ->  ( Q `  j )  e.  RR )
146 simp3 1063 . . . . . . . . . . . 12  |-  ( (
ph  /\  j  e.  ( 0 ... M
)  /\  ( Q `  j )  =  X )  ->  ( Q `  j )  =  X )
147145, 146eqled 10140 . . . . . . . . . . 11  |-  ( (
ph  /\  j  e.  ( 0 ... M
)  /\  ( Q `  j )  =  X )  ->  ( Q `  j )  <_  X
)
1481473adant1r 1319 . . . . . . . . . 10  |-  ( ( ( ph  /\  i  e.  ( 0..^ M ) )  /\  j  e.  ( 0 ... M
)  /\  ( Q `  j )  =  X )  ->  ( Q `  j )  <_  X
)
149148adantr 481 . . . . . . . . 9  |-  ( ( ( ( ph  /\  i  e.  ( 0..^ M ) )  /\  j  e.  ( 0 ... M )  /\  ( Q `  j )  =  X )  /\  i  <  j )  -> 
( Q `  j
)  <_  X )
15022, 30, 27, 143, 149letrd 10194 . . . . . . . 8  |-  ( ( ( ( ph  /\  i  e.  ( 0..^ M ) )  /\  j  e.  ( 0 ... M )  /\  ( Q `  j )  =  X )  /\  i  <  j )  -> 
( Q `  (
i  +  1 ) )  <_  X )
15122, 27, 150lensymd 10188 . . . . . . 7  |-  ( ( ( ( ph  /\  i  e.  ( 0..^ M ) )  /\  j  e.  ( 0 ... M )  /\  ( Q `  j )  =  X )  /\  i  <  j )  ->  -.  X  <  ( Q `
 ( i  +  1 ) ) )
152151intnand 962 . . . . . 6  |-  ( ( ( ( ph  /\  i  e.  ( 0..^ M ) )  /\  j  e.  ( 0 ... M )  /\  ( Q `  j )  =  X )  /\  i  <  j )  ->  -.  ( ( Q `  i )  <  X  /\  X  <  ( Q `
 ( i  +  1 ) ) ) )
15364ad2antlr 763 . . . . . . . . . 10  |-  ( ( ( ( ph  /\  i  e.  ( 0..^ M ) )  /\  j  e.  ( 0 ... M ) )  /\  -.  i  < 
j )  ->  j  e.  RR )
15452ad3antlr 767 . . . . . . . . . 10  |-  ( ( ( ( ph  /\  i  e.  ( 0..^ M ) )  /\  j  e.  ( 0 ... M ) )  /\  -.  i  < 
j )  ->  i  e.  RR )
155 simpr 477 . . . . . . . . . 10  |-  ( ( ( ( ph  /\  i  e.  ( 0..^ M ) )  /\  j  e.  ( 0 ... M ) )  /\  -.  i  < 
j )  ->  -.  i  <  j )
156153, 154, 155nltled 10187 . . . . . . . . 9  |-  ( ( ( ( ph  /\  i  e.  ( 0..^ M ) )  /\  j  e.  ( 0 ... M ) )  /\  -.  i  < 
j )  ->  j  <_  i )
1571563adantl3 1219 . . . . . . . 8  |-  ( ( ( ( ph  /\  i  e.  ( 0..^ M ) )  /\  j  e.  ( 0 ... M )  /\  ( Q `  j )  =  X )  /\  -.  i  <  j )  ->  j  <_  i
)
158 eqcom 2629 . . . . . . . . . . . . 13  |-  ( ( Q `  j )  =  X  <->  X  =  ( Q `  j ) )
159158biimpi 206 . . . . . . . . . . . 12  |-  ( ( Q `  j )  =  X  ->  X  =  ( Q `  j ) )
160159adantr 481 . . . . . . . . . . 11  |-  ( ( ( Q `  j
)  =  X  /\  j  <_  i )  ->  X  =  ( Q `  j ) )
1611603ad2antl3 1225 . . . . . . . . . 10  |-  ( ( ( ( ph  /\  i  e.  ( 0..^ M ) )  /\  j  e.  ( 0 ... M )  /\  ( Q `  j )  =  X )  /\  j  <_  i )  ->  X  =  ( Q `  j ) )
16234ad2antlr 763 . . . . . . . . . . . . . 14  |-  ( ( ( i  e.  ( 0..^ M )  /\  j  e.  ( 0 ... M ) )  /\  j  <_  i
)  ->  j  e.  ZZ )
16332ad2antrr 762 . . . . . . . . . . . . . 14  |-  ( ( ( i  e.  ( 0..^ M )  /\  j  e.  ( 0 ... M ) )  /\  j  <_  i
)  ->  i  e.  ZZ )
164 simpr 477 . . . . . . . . . . . . . 14  |-  ( ( ( i  e.  ( 0..^ M )  /\  j  e.  ( 0 ... M ) )  /\  j  <_  i
)  ->  j  <_  i )
165 eluz2 11693 . . . . . . . . . . . . . 14  |-  ( i  e.  ( ZZ>= `  j
)  <->  ( j  e.  ZZ  /\  i  e.  ZZ  /\  j  <_ 
i ) )
166162, 163, 164, 165syl3anbrc 1246 . . . . . . . . . . . . 13  |-  ( ( ( i  e.  ( 0..^ M )  /\  j  e.  ( 0 ... M ) )  /\  j  <_  i
)  ->  i  e.  ( ZZ>= `  j )
)
167166adantlll 754 . . . . . . . . . . . 12  |-  ( ( ( ( ph  /\  i  e.  ( 0..^ M ) )  /\  j  e.  ( 0 ... M ) )  /\  j  <_  i
)  ->  i  e.  ( ZZ>= `  j )
)
16817ad2antrr 762 . . . . . . . . . . . . . 14  |-  ( ( ( ( ph  /\  i  e.  ( 0..^ M ) )  /\  j  e.  ( 0 ... M ) )  /\  w  e.  ( j ... i ) )  ->  Q :
( 0 ... M
) --> RR )
169 0zd 11389 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( i  e.  ( 0..^ M )  /\  j  e.  ( 0 ... M ) )  /\  w  e.  ( j ... i ) )  ->  0  e.  ZZ )
17066ad2antlr 763 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( i  e.  ( 0..^ M )  /\  j  e.  ( 0 ... M ) )  /\  w  e.  ( j ... i ) )  ->  M  e.  ZZ )
171 elfzelz 12342 . . . . . . . . . . . . . . . . . . 19  |-  ( w  e.  ( j ... i )  ->  w  e.  ZZ )
172171adantl 482 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( i  e.  ( 0..^ M )  /\  j  e.  ( 0 ... M ) )  /\  w  e.  ( j ... i ) )  ->  w  e.  ZZ )
173169, 170, 1723jca 1242 . . . . . . . . . . . . . . . . 17  |-  ( ( ( i  e.  ( 0..^ M )  /\  j  e.  ( 0 ... M ) )  /\  w  e.  ( j ... i ) )  ->  ( 0  e.  ZZ  /\  M  e.  ZZ  /\  w  e.  ZZ ) )
174 0red 10041 . . . . . . . . . . . . . . . . . . 19  |-  ( ( j  e.  ( 0 ... M )  /\  w  e.  ( j ... i ) )  -> 
0  e.  RR )
17564adantr 481 . . . . . . . . . . . . . . . . . . 19  |-  ( ( j  e.  ( 0 ... M )  /\  w  e.  ( j ... i ) )  -> 
j  e.  RR )
176171zred 11482 . . . . . . . . . . . . . . . . . . . 20  |-  ( w  e.  ( j ... i )  ->  w  e.  RR )
177176adantl 482 . . . . . . . . . . . . . . . . . . 19  |-  ( ( j  e.  ( 0 ... M )  /\  w  e.  ( j ... i ) )  ->  w  e.  RR )
178 elfzle1 12344 . . . . . . . . . . . . . . . . . . . 20  |-  ( j  e.  ( 0 ... M )  ->  0  <_  j )
179178adantr 481 . . . . . . . . . . . . . . . . . . 19  |-  ( ( j  e.  ( 0 ... M )  /\  w  e.  ( j ... i ) )  -> 
0  <_  j )
180 elfzle1 12344 . . . . . . . . . . . . . . . . . . . 20  |-  ( w  e.  ( j ... i )  ->  j  <_  w )
181180adantl 482 . . . . . . . . . . . . . . . . . . 19  |-  ( ( j  e.  ( 0 ... M )  /\  w  e.  ( j ... i ) )  -> 
j  <_  w )
182174, 175, 177, 179, 181letrd 10194 . . . . . . . . . . . . . . . . . 18  |-  ( ( j  e.  ( 0 ... M )  /\  w  e.  ( j ... i ) )  -> 
0  <_  w )
183182adantll 750 . . . . . . . . . . . . . . . . 17  |-  ( ( ( i  e.  ( 0..^ M )  /\  j  e.  ( 0 ... M ) )  /\  w  e.  ( j ... i ) )  ->  0  <_  w )
184176adantl 482 . . . . . . . . . . . . . . . . . . 19  |-  ( ( i  e.  ( 0..^ M )  /\  w  e.  ( j ... i
) )  ->  w  e.  RR )
185 elfzoel2 12469 . . . . . . . . . . . . . . . . . . . . 21  |-  ( i  e.  ( 0..^ M )  ->  M  e.  ZZ )
186185zred 11482 . . . . . . . . . . . . . . . . . . . 20  |-  ( i  e.  ( 0..^ M )  ->  M  e.  RR )
187186adantr 481 . . . . . . . . . . . . . . . . . . 19  |-  ( ( i  e.  ( 0..^ M )  /\  w  e.  ( j ... i
) )  ->  M  e.  RR )
18852adantr 481 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( i  e.  ( 0..^ M )  /\  w  e.  ( j ... i
) )  ->  i  e.  RR )
189 elfzle2 12345 . . . . . . . . . . . . . . . . . . . . 21  |-  ( w  e.  ( j ... i )  ->  w  <_  i )
190189adantl 482 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( i  e.  ( 0..^ M )  /\  w  e.  ( j ... i
) )  ->  w  <_  i )
191 elfzolt2 12479 . . . . . . . . . . . . . . . . . . . . 21  |-  ( i  e.  ( 0..^ M )  ->  i  <  M )
192191adantr 481 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( i  e.  ( 0..^ M )  /\  w  e.  ( j ... i
) )  ->  i  <  M )
193184, 188, 187, 190, 192lelttrd 10195 . . . . . . . . . . . . . . . . . . 19  |-  ( ( i  e.  ( 0..^ M )  /\  w  e.  ( j ... i
) )  ->  w  <  M )
194184, 187, 193ltled 10185 . . . . . . . . . . . . . . . . . 18  |-  ( ( i  e.  ( 0..^ M )  /\  w  e.  ( j ... i
) )  ->  w  <_  M )
195194adantlr 751 . . . . . . . . . . . . . . . . 17  |-  ( ( ( i  e.  ( 0..^ M )  /\  j  e.  ( 0 ... M ) )  /\  w  e.  ( j ... i ) )  ->  w  <_  M )
196173, 183, 195jca32 558 . . . . . . . . . . . . . . . 16  |-  ( ( ( i  e.  ( 0..^ M )  /\  j  e.  ( 0 ... M ) )  /\  w  e.  ( j ... i ) )  ->  ( (
0  e.  ZZ  /\  M  e.  ZZ  /\  w  e.  ZZ )  /\  (
0  <_  w  /\  w  <_  M ) ) )
197196adantlll 754 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ph  /\  i  e.  ( 0..^ M ) )  /\  j  e.  ( 0 ... M ) )  /\  w  e.  ( j ... i ) )  ->  ( (
0  e.  ZZ  /\  M  e.  ZZ  /\  w  e.  ZZ )  /\  (
0  <_  w  /\  w  <_  M ) ) )
198 elfz2 12333 . . . . . . . . . . . . . . 15  |-  ( w  e.  ( 0 ... M )  <->  ( (
0  e.  ZZ  /\  M  e.  ZZ  /\  w  e.  ZZ )  /\  (
0  <_  w  /\  w  <_  M ) ) )
199197, 198sylibr 224 . . . . . . . . . . . . . 14  |-  ( ( ( ( ph  /\  i  e.  ( 0..^ M ) )  /\  j  e.  ( 0 ... M ) )  /\  w  e.  ( j ... i ) )  ->  w  e.  ( 0 ... M
) )
200168, 199ffvelrnd 6360 . . . . . . . . . . . . 13  |-  ( ( ( ( ph  /\  i  e.  ( 0..^ M ) )  /\  j  e.  ( 0 ... M ) )  /\  w  e.  ( j ... i ) )  ->  ( Q `  w )  e.  RR )
201200adantlr 751 . . . . . . . . . . . 12  |-  ( ( ( ( ( ph  /\  i  e.  ( 0..^ M ) )  /\  j  e.  ( 0 ... M ) )  /\  j  <_  i
)  /\  w  e.  ( j ... i
) )  ->  ( Q `  w )  e.  RR )
202 simplll 798 . . . . . . . . . . . . . 14  |-  ( ( ( ( ph  /\  i  e.  ( 0..^ M ) )  /\  j  e.  ( 0 ... M ) )  /\  w  e.  ( j ... ( i  -  1 ) ) )  ->  ph )
203 0red 10041 . . . . . . . . . . . . . . . . 17  |-  ( ( ( i  e.  ( 0..^ M )  /\  j  e.  ( 0 ... M ) )  /\  w  e.  ( j ... ( i  -  1 ) ) )  ->  0  e.  RR )
20464ad2antlr 763 . . . . . . . . . . . . . . . . 17  |-  ( ( ( i  e.  ( 0..^ M )  /\  j  e.  ( 0 ... M ) )  /\  w  e.  ( j ... ( i  -  1 ) ) )  ->  j  e.  RR )
205 elfzelz 12342 . . . . . . . . . . . . . . . . . . 19  |-  ( w  e.  ( j ... ( i  -  1 ) )  ->  w  e.  ZZ )
206205zred 11482 . . . . . . . . . . . . . . . . . 18  |-  ( w  e.  ( j ... ( i  -  1 ) )  ->  w  e.  RR )
207206adantl 482 . . . . . . . . . . . . . . . . 17  |-  ( ( ( i  e.  ( 0..^ M )  /\  j  e.  ( 0 ... M ) )  /\  w  e.  ( j ... ( i  -  1 ) ) )  ->  w  e.  RR )
208178ad2antlr 763 . . . . . . . . . . . . . . . . 17  |-  ( ( ( i  e.  ( 0..^ M )  /\  j  e.  ( 0 ... M ) )  /\  w  e.  ( j ... ( i  -  1 ) ) )  ->  0  <_  j )
209 elfzle1 12344 . . . . . . . . . . . . . . . . . 18  |-  ( w  e.  ( j ... ( i  -  1 ) )  ->  j  <_  w )
210209adantl 482 . . . . . . . . . . . . . . . . 17  |-  ( ( ( i  e.  ( 0..^ M )  /\  j  e.  ( 0 ... M ) )  /\  w  e.  ( j ... ( i  -  1 ) ) )  ->  j  <_  w )
211203, 204, 207, 208, 210letrd 10194 . . . . . . . . . . . . . . . 16  |-  ( ( ( i  e.  ( 0..^ M )  /\  j  e.  ( 0 ... M ) )  /\  w  e.  ( j ... ( i  -  1 ) ) )  ->  0  <_  w )
212206adantl 482 . . . . . . . . . . . . . . . . . 18  |-  ( ( i  e.  ( 0..^ M )  /\  w  e.  ( j ... (
i  -  1 ) ) )  ->  w  e.  RR )
21352adantr 481 . . . . . . . . . . . . . . . . . 18  |-  ( ( i  e.  ( 0..^ M )  /\  w  e.  ( j ... (
i  -  1 ) ) )  ->  i  e.  RR )
214186adantr 481 . . . . . . . . . . . . . . . . . 18  |-  ( ( i  e.  ( 0..^ M )  /\  w  e.  ( j ... (
i  -  1 ) ) )  ->  M  e.  RR )
215 peano2rem 10348 . . . . . . . . . . . . . . . . . . . 20  |-  ( i  e.  RR  ->  (
i  -  1 )  e.  RR )
216213, 215syl 17 . . . . . . . . . . . . . . . . . . 19  |-  ( ( i  e.  ( 0..^ M )  /\  w  e.  ( j ... (
i  -  1 ) ) )  ->  (
i  -  1 )  e.  RR )
217 elfzle2 12345 . . . . . . . . . . . . . . . . . . . 20  |-  ( w  e.  ( j ... ( i  -  1 ) )  ->  w  <_  ( i  -  1 ) )
218217adantl 482 . . . . . . . . . . . . . . . . . . 19  |-  ( ( i  e.  ( 0..^ M )  /\  w  e.  ( j ... (
i  -  1 ) ) )  ->  w  <_  ( i  -  1 ) )
219213ltm1d 10956 . . . . . . . . . . . . . . . . . . 19  |-  ( ( i  e.  ( 0..^ M )  /\  w  e.  ( j ... (
i  -  1 ) ) )  ->  (
i  -  1 )  <  i )
220212, 216, 213, 218, 219lelttrd 10195 . . . . . . . . . . . . . . . . . 18  |-  ( ( i  e.  ( 0..^ M )  /\  w  e.  ( j ... (
i  -  1 ) ) )  ->  w  <  i )
221191adantr 481 . . . . . . . . . . . . . . . . . 18  |-  ( ( i  e.  ( 0..^ M )  /\  w  e.  ( j ... (
i  -  1 ) ) )  ->  i  <  M )
222212, 213, 214, 220, 221lttrd 10198 . . . . . . . . . . . . . . . . 17  |-  ( ( i  e.  ( 0..^ M )  /\  w  e.  ( j ... (
i  -  1 ) ) )  ->  w  <  M )
223222adantlr 751 . . . . . . . . . . . . . . . 16  |-  ( ( ( i  e.  ( 0..^ M )  /\  j  e.  ( 0 ... M ) )  /\  w  e.  ( j ... ( i  -  1 ) ) )  ->  w  <  M )
224205adantl 482 . . . . . . . . . . . . . . . . 17  |-  ( ( ( i  e.  ( 0..^ M )  /\  j  e.  ( 0 ... M ) )  /\  w  e.  ( j ... ( i  -  1 ) ) )  ->  w  e.  ZZ )
225 0zd 11389 . . . . . . . . . . . . . . . . 17  |-  ( ( ( i  e.  ( 0..^ M )  /\  j  e.  ( 0 ... M ) )  /\  w  e.  ( j ... ( i  -  1 ) ) )  ->  0  e.  ZZ )
226185ad2antrr 762 . . . . . . . . . . . . . . . . 17  |-  ( ( ( i  e.  ( 0..^ M )  /\  j  e.  ( 0 ... M ) )  /\  w  e.  ( j ... ( i  -  1 ) ) )  ->  M  e.  ZZ )
227224, 225, 226, 120syl3anc 1326 . . . . . . . . . . . . . . . 16  |-  ( ( ( i  e.  ( 0..^ M )  /\  j  e.  ( 0 ... M ) )  /\  w  e.  ( j ... ( i  -  1 ) ) )  ->  ( w  e.  ( 0..^ M )  <-> 
( 0  <_  w  /\  w  <  M ) ) )
228211, 223, 227mpbir2and 957 . . . . . . . . . . . . . . 15  |-  ( ( ( i  e.  ( 0..^ M )  /\  j  e.  ( 0 ... M ) )  /\  w  e.  ( j ... ( i  -  1 ) ) )  ->  w  e.  ( 0..^ M ) )
229228adantlll 754 . . . . . . . . . . . . . 14  |-  ( ( ( ( ph  /\  i  e.  ( 0..^ M ) )  /\  j  e.  ( 0 ... M ) )  /\  w  e.  ( j ... ( i  -  1 ) ) )  ->  w  e.  ( 0..^ M ) )
230202, 229, 140syl2anc 693 . . . . . . . . . . . . 13  |-  ( ( ( ( ph  /\  i  e.  ( 0..^ M ) )  /\  j  e.  ( 0 ... M ) )  /\  w  e.  ( j ... ( i  -  1 ) ) )  ->  ( Q `  w )  <_  ( Q `  ( w  +  1 ) ) )
231230adantlr 751 . . . . . . . . . . . 12  |-  ( ( ( ( ( ph  /\  i  e.  ( 0..^ M ) )  /\  j  e.  ( 0 ... M ) )  /\  j  <_  i
)  /\  w  e.  ( j ... (
i  -  1 ) ) )  ->  ( Q `  w )  <_  ( Q `  (
w  +  1 ) ) )
232167, 201, 231monoord 12831 . . . . . . . . . . 11  |-  ( ( ( ( ph  /\  i  e.  ( 0..^ M ) )  /\  j  e.  ( 0 ... M ) )  /\  j  <_  i
)  ->  ( Q `  j )  <_  ( Q `  i )
)
2332323adantl3 1219 . . . . . . . . . 10  |-  ( ( ( ( ph  /\  i  e.  ( 0..^ M ) )  /\  j  e.  ( 0 ... M )  /\  ( Q `  j )  =  X )  /\  j  <_  i )  -> 
( Q `  j
)  <_  ( Q `  i ) )
234161, 233eqbrtrd 4675 . . . . . . . . 9  |-  ( ( ( ( ph  /\  i  e.  ( 0..^ M ) )  /\  j  e.  ( 0 ... M )  /\  ( Q `  j )  =  X )  /\  j  <_  i )  ->  X  <_  ( Q `  i ) )
23525adantr 481 . . . . . . . . . . . 12  |-  ( (
ph  /\  i  e.  ( 0..^ M ) )  ->  X  e.  RR )
236 elfzofz 12485 . . . . . . . . . . . . . 14  |-  ( i  e.  ( 0..^ M )  ->  i  e.  ( 0 ... M
) )
237236adantl 482 . . . . . . . . . . . . 13  |-  ( (
ph  /\  i  e.  ( 0..^ M ) )  ->  i  e.  ( 0 ... M ) )
23817, 237ffvelrnd 6360 . . . . . . . . . . . 12  |-  ( (
ph  /\  i  e.  ( 0..^ M ) )  ->  ( Q `  i )  e.  RR )
239235, 238lenltd 10183 . . . . . . . . . . 11  |-  ( (
ph  /\  i  e.  ( 0..^ M ) )  ->  ( X  <_ 
( Q `  i
)  <->  -.  ( Q `  i )  <  X
) )
240239adantr 481 . . . . . . . . . 10  |-  ( ( ( ph  /\  i  e.  ( 0..^ M ) )  /\  j  <_ 
i )  ->  ( X  <_  ( Q `  i )  <->  -.  ( Q `  i )  <  X ) )
2412403ad2antl1 1223 . . . . . . . . 9  |-  ( ( ( ( ph  /\  i  e.  ( 0..^ M ) )  /\  j  e.  ( 0 ... M )  /\  ( Q `  j )  =  X )  /\  j  <_  i )  -> 
( X  <_  ( Q `  i )  <->  -.  ( Q `  i
)  <  X )
)
242234, 241mpbid 222 . . . . . . . 8  |-  ( ( ( ( ph  /\  i  e.  ( 0..^ M ) )  /\  j  e.  ( 0 ... M )  /\  ( Q `  j )  =  X )  /\  j  <_  i )  ->  -.  ( Q `  i
)  <  X )
243157, 242syldan 487 . . . . . . 7  |-  ( ( ( ( ph  /\  i  e.  ( 0..^ M ) )  /\  j  e.  ( 0 ... M )  /\  ( Q `  j )  =  X )  /\  -.  i  <  j )  ->  -.  ( Q `  i )  <  X
)
244243intnanrd 963 . . . . . 6  |-  ( ( ( ( ph  /\  i  e.  ( 0..^ M ) )  /\  j  e.  ( 0 ... M )  /\  ( Q `  j )  =  X )  /\  -.  i  <  j )  ->  -.  ( ( Q `  i )  <  X  /\  X  < 
( Q `  (
i  +  1 ) ) ) )
245152, 244pm2.61dan 832 . . . . 5  |-  ( ( ( ph  /\  i  e.  ( 0..^ M ) )  /\  j  e.  ( 0 ... M
)  /\  ( Q `  j )  =  X )  ->  -.  (
( Q `  i
)  <  X  /\  X  <  ( Q `  ( i  +  1 ) ) ) )
246245intnand 962 . . . 4  |-  ( ( ( ph  /\  i  e.  ( 0..^ M ) )  /\  j  e.  ( 0 ... M
)  /\  ( Q `  j )  =  X )  ->  -.  (
( ( Q `  i )  e.  RR*  /\  ( Q `  (
i  +  1 ) )  e.  RR*  /\  X  e.  RR* )  /\  (
( Q `  i
)  <  X  /\  X  <  ( Q `  ( i  +  1 ) ) ) ) )
247 elioo3g 12204 . . . 4  |-  ( X  e.  ( ( Q `
 i ) (,) ( Q `  (
i  +  1 ) ) )  <->  ( (
( Q `  i
)  e.  RR*  /\  ( Q `  ( i  +  1 ) )  e.  RR*  /\  X  e. 
RR* )  /\  (
( Q `  i
)  <  X  /\  X  <  ( Q `  ( i  +  1 ) ) ) ) )
248246, 247sylnibr 319 . . 3  |-  ( ( ( ph  /\  i  e.  ( 0..^ M ) )  /\  j  e.  ( 0 ... M
)  /\  ( Q `  j )  =  X )  ->  -.  X  e.  ( ( Q `  i ) (,) ( Q `  ( i  +  1 ) ) ) )
249248rexlimdv3a 3033 . 2  |-  ( (
ph  /\  i  e.  ( 0..^ M ) )  ->  ( E. j  e.  ( 0 ... M
) ( Q `  j )  =  X  ->  -.  X  e.  ( ( Q `  i ) (,) ( Q `  ( i  +  1 ) ) ) ) )
25015, 249mpd 15 1  |-  ( (
ph  /\  i  e.  ( 0..^ M ) )  ->  -.  X  e.  ( ( Q `  i ) (,) ( Q `  ( i  +  1 ) ) ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 196    /\ wa 384    /\ w3a 1037    = wceq 1483    e. wcel 1990   A.wral 2912   E.wrex 2913   {crab 2916    C_ wss 3574   class class class wbr 4653    |-> cmpt 4729   ran crn 5115    Fn wfn 5883   -->wf 5884   ` cfv 5888  (class class class)co 6650    ^m cmap 7857   RRcr 9935   0cc0 9936   1c1 9937    + caddc 9939   RR*cxr 10073    < clt 10074    <_ cle 10075    - cmin 10266   NNcn 11020   ZZcz 11377   ZZ>=cuz 11687   (,)cioo 12175   ...cfz 12326  ..^cfzo 12465
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-er 7742  df-map 7859  df-en 7956  df-dom 7957  df-sdom 7958  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-nn 11021  df-n0 11293  df-z 11378  df-uz 11688  df-ioo 12179  df-fz 12327  df-fzo 12466
This theorem is referenced by:  fourierdlem38  40362  fourierdlem74  40397  fourierdlem75  40398  fourierdlem88  40411  fourierdlem103  40426  fourierdlem104  40427
  Copyright terms: Public domain W3C validator