MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  genpn0 Structured version   Visualization version   Unicode version

Theorem genpn0 9825
Description: The result of an operation on positive reals is not empty. (Contributed by NM, 28-Feb-1996.) (Revised by Mario Carneiro, 12-Jun-2013.) (New usage is discouraged.)
Hypotheses
Ref Expression
genp.1  |-  F  =  ( w  e.  P. ,  v  e.  P.  |->  { x  |  E. y  e.  w  E. z  e.  v  x  =  ( y G z ) } )
genp.2  |-  ( ( y  e.  Q.  /\  z  e.  Q. )  ->  ( y G z )  e.  Q. )
Assertion
Ref Expression
genpn0  |-  ( ( A  e.  P.  /\  B  e.  P. )  -> 
(/)  C.  ( A F B ) )
Distinct variable groups:    x, y,
z, A    x, B, y, z    x, w, v, G, y, z
Allowed substitution hints:    A( w, v)    B( w, v)    F( x, y, z, w, v)

Proof of Theorem genpn0
Dummy variables  f 
g are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 prn0 9811 . . . 4  |-  ( A  e.  P.  ->  A  =/=  (/) )
2 n0 3931 . . . 4  |-  ( A  =/=  (/)  <->  E. f  f  e.  A )
31, 2sylib 208 . . 3  |-  ( A  e.  P.  ->  E. f 
f  e.  A )
4 prn0 9811 . . . 4  |-  ( B  e.  P.  ->  B  =/=  (/) )
5 n0 3931 . . . 4  |-  ( B  =/=  (/)  <->  E. g  g  e.  B )
64, 5sylib 208 . . 3  |-  ( B  e.  P.  ->  E. g 
g  e.  B )
73, 6anim12i 590 . 2  |-  ( ( A  e.  P.  /\  B  e.  P. )  ->  ( E. f  f  e.  A  /\  E. g  g  e.  B
) )
8 genp.1 . . . . . . . . 9  |-  F  =  ( w  e.  P. ,  v  e.  P.  |->  { x  |  E. y  e.  w  E. z  e.  v  x  =  ( y G z ) } )
9 genp.2 . . . . . . . . 9  |-  ( ( y  e.  Q.  /\  z  e.  Q. )  ->  ( y G z )  e.  Q. )
108, 9genpprecl 9823 . . . . . . . 8  |-  ( ( A  e.  P.  /\  B  e.  P. )  ->  ( ( f  e.  A  /\  g  e.  B )  ->  (
f G g )  e.  ( A F B ) ) )
11 ne0i 3921 . . . . . . . . 9  |-  ( ( f G g )  e.  ( A F B )  ->  ( A F B )  =/=  (/) )
12 0pss 4013 . . . . . . . . 9  |-  ( (/)  C.  ( A F B )  <->  ( A F B )  =/=  (/) )
1311, 12sylibr 224 . . . . . . . 8  |-  ( ( f G g )  e.  ( A F B )  ->  (/)  C.  ( A F B ) )
1410, 13syl6 35 . . . . . . 7  |-  ( ( A  e.  P.  /\  B  e.  P. )  ->  ( ( f  e.  A  /\  g  e.  B )  ->  (/)  C.  ( A F B ) ) )
1514expcomd 454 . . . . . 6  |-  ( ( A  e.  P.  /\  B  e.  P. )  ->  ( g  e.  B  ->  ( f  e.  A  -> 
(/)  C.  ( A F B ) ) ) )
1615exlimdv 1861 . . . . 5  |-  ( ( A  e.  P.  /\  B  e.  P. )  ->  ( E. g  g  e.  B  ->  (
f  e.  A  ->  (/)  C.  ( A F B ) ) ) )
1716com23 86 . . . 4  |-  ( ( A  e.  P.  /\  B  e.  P. )  ->  ( f  e.  A  ->  ( E. g  g  e.  B  ->  (/)  C.  ( A F B ) ) ) )
1817exlimdv 1861 . . 3  |-  ( ( A  e.  P.  /\  B  e.  P. )  ->  ( E. f  f  e.  A  ->  ( E. g  g  e.  B  ->  (/)  C.  ( A F B ) ) ) )
1918impd 447 . 2  |-  ( ( A  e.  P.  /\  B  e.  P. )  ->  ( ( E. f 
f  e.  A  /\  E. g  g  e.  B
)  ->  (/)  C.  ( A F B ) ) )
207, 19mpd 15 1  |-  ( ( A  e.  P.  /\  B  e.  P. )  -> 
(/)  C.  ( A F B ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 384    = wceq 1483   E.wex 1704    e. wcel 1990   {cab 2608    =/= wne 2794   E.wrex 2913    C. wpss 3575   (/)c0 3915  (class class class)co 6650    |-> cmpt2 6652   Q.cnq 9674   P.cnp 9681
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-inf2 8538
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-br 4654  df-opab 4713  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fv 5896  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-ni 9694  df-nq 9734  df-np 9803
This theorem is referenced by:  genpcl  9830
  Copyright terms: Public domain W3C validator