| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > genpcl | Structured version Visualization version Unicode version | ||
| Description: Closure of an operation on reals. (Contributed by NM, 13-Mar-1996.) (Revised by Mario Carneiro, 17-Nov-2014.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| genp.1 |
|
| genp.2 |
|
| genpcl.3 |
|
| genpcl.4 |
|
| genpcl.5 |
|
| Ref | Expression |
|---|---|
| genpcl |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | genp.1 |
. . . 4
| |
| 2 | genp.2 |
. . . 4
| |
| 3 | 1, 2 | genpn0 9825 |
. . 3
|
| 4 | 1, 2 | genpss 9826 |
. . . 4
|
| 5 | vex 3203 |
. . . . . 6
| |
| 6 | vex 3203 |
. . . . . 6
| |
| 7 | genpcl.3 |
. . . . . 6
| |
| 8 | 5, 6, 7 | caovord 6845 |
. . . . 5
|
| 9 | genpcl.4 |
. . . . 5
| |
| 10 | 1, 2, 8, 9 | genpnnp 9827 |
. . . 4
|
| 11 | dfpss2 3692 |
. . . 4
| |
| 12 | 4, 10, 11 | sylanbrc 698 |
. . 3
|
| 13 | genpcl.5 |
. . . . . . 7
| |
| 14 | 1, 2, 13 | genpcd 9828 |
. . . . . 6
|
| 15 | 14 | alrimdv 1857 |
. . . . 5
|
| 16 | vex 3203 |
. . . . . . 7
| |
| 17 | vex 3203 |
. . . . . . 7
| |
| 18 | 16, 17, 7 | caovord 6845 |
. . . . . 6
|
| 19 | 16, 17, 9 | caovcom 6831 |
. . . . . 6
|
| 20 | 1, 2, 18, 19 | genpnmax 9829 |
. . . . 5
|
| 21 | 15, 20 | jcad 555 |
. . . 4
|
| 22 | 21 | ralrimiv 2965 |
. . 3
|
| 23 | 3, 12, 22 | jca31 557 |
. 2
|
| 24 | elnp 9809 |
. 2
| |
| 25 | 23, 24 | sylibr 224 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-sep 4781 ax-nul 4789 ax-pow 4843 ax-pr 4906 ax-un 6949 ax-inf2 8538 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3or 1038 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-ral 2917 df-rex 2918 df-reu 2919 df-rmo 2920 df-rab 2921 df-v 3202 df-sbc 3436 df-csb 3534 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-pss 3590 df-nul 3916 df-if 4087 df-pw 4160 df-sn 4178 df-pr 4180 df-tp 4182 df-op 4184 df-uni 4437 df-iun 4522 df-br 4654 df-opab 4713 df-mpt 4730 df-tr 4753 df-id 5024 df-eprel 5029 df-po 5035 df-so 5036 df-fr 5073 df-we 5075 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-rn 5125 df-res 5126 df-ima 5127 df-pred 5680 df-ord 5726 df-on 5727 df-lim 5728 df-suc 5729 df-iota 5851 df-fun 5890 df-fn 5891 df-f 5892 df-f1 5893 df-fo 5894 df-f1o 5895 df-fv 5896 df-ov 6653 df-oprab 6654 df-mpt2 6655 df-om 7066 df-1st 7168 df-2nd 7169 df-wrecs 7407 df-recs 7468 df-rdg 7506 df-oadd 7564 df-omul 7565 df-er 7742 df-ni 9694 df-mi 9696 df-lti 9697 df-ltpq 9732 df-enq 9733 df-nq 9734 df-ltnq 9740 df-np 9803 |
| This theorem is referenced by: addclpr 9840 mulclpr 9842 |
| Copyright terms: Public domain | W3C validator |