MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ghmnsgima Structured version   Visualization version   Unicode version

Theorem ghmnsgima 17684
Description: The image of a normal subgroup under a surjective homomorphism is normal. (Contributed by Mario Carneiro, 4-Feb-2015.)
Hypothesis
Ref Expression
ghmnsgima.1  |-  Y  =  ( Base `  T
)
Assertion
Ref Expression
ghmnsgima  |-  ( ( F  e.  ( S 
GrpHom  T )  /\  U  e.  (NrmSGrp `  S )  /\  ran  F  =  Y )  ->  ( F " U )  e.  (NrmSGrp `  T ) )

Proof of Theorem ghmnsgima
Dummy variables  x  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simp1 1061 . . 3  |-  ( ( F  e.  ( S 
GrpHom  T )  /\  U  e.  (NrmSGrp `  S )  /\  ran  F  =  Y )  ->  F  e.  ( S  GrpHom  T ) )
2 nsgsubg 17626 . . . 4  |-  ( U  e.  (NrmSGrp `  S
)  ->  U  e.  (SubGrp `  S ) )
323ad2ant2 1083 . . 3  |-  ( ( F  e.  ( S 
GrpHom  T )  /\  U  e.  (NrmSGrp `  S )  /\  ran  F  =  Y )  ->  U  e.  (SubGrp `  S ) )
4 ghmima 17681 . . 3  |-  ( ( F  e.  ( S 
GrpHom  T )  /\  U  e.  (SubGrp `  S )
)  ->  ( F " U )  e.  (SubGrp `  T ) )
51, 3, 4syl2anc 693 . 2  |-  ( ( F  e.  ( S 
GrpHom  T )  /\  U  e.  (NrmSGrp `  S )  /\  ran  F  =  Y )  ->  ( F " U )  e.  (SubGrp `  T ) )
61adantr 481 . . . . . . 7  |-  ( ( ( F  e.  ( S  GrpHom  T )  /\  U  e.  (NrmSGrp `  S
)  /\  ran  F  =  Y )  /\  (
z  e.  ( Base `  S )  /\  x  e.  U ) )  ->  F  e.  ( S  GrpHom  T ) )
7 ghmgrp1 17662 . . . . . . . . 9  |-  ( F  e.  ( S  GrpHom  T )  ->  S  e.  Grp )
86, 7syl 17 . . . . . . . 8  |-  ( ( ( F  e.  ( S  GrpHom  T )  /\  U  e.  (NrmSGrp `  S
)  /\  ran  F  =  Y )  /\  (
z  e.  ( Base `  S )  /\  x  e.  U ) )  ->  S  e.  Grp )
9 simprl 794 . . . . . . . 8  |-  ( ( ( F  e.  ( S  GrpHom  T )  /\  U  e.  (NrmSGrp `  S
)  /\  ran  F  =  Y )  /\  (
z  e.  ( Base `  S )  /\  x  e.  U ) )  -> 
z  e.  ( Base `  S ) )
10 eqid 2622 . . . . . . . . . . . 12  |-  ( Base `  S )  =  (
Base `  S )
1110subgss 17595 . . . . . . . . . . 11  |-  ( U  e.  (SubGrp `  S
)  ->  U  C_  ( Base `  S ) )
123, 11syl 17 . . . . . . . . . 10  |-  ( ( F  e.  ( S 
GrpHom  T )  /\  U  e.  (NrmSGrp `  S )  /\  ran  F  =  Y )  ->  U  C_  ( Base `  S ) )
1312adantr 481 . . . . . . . . 9  |-  ( ( ( F  e.  ( S  GrpHom  T )  /\  U  e.  (NrmSGrp `  S
)  /\  ran  F  =  Y )  /\  (
z  e.  ( Base `  S )  /\  x  e.  U ) )  ->  U  C_  ( Base `  S
) )
14 simprr 796 . . . . . . . . 9  |-  ( ( ( F  e.  ( S  GrpHom  T )  /\  U  e.  (NrmSGrp `  S
)  /\  ran  F  =  Y )  /\  (
z  e.  ( Base `  S )  /\  x  e.  U ) )  ->  x  e.  U )
1513, 14sseldd 3604 . . . . . . . 8  |-  ( ( ( F  e.  ( S  GrpHom  T )  /\  U  e.  (NrmSGrp `  S
)  /\  ran  F  =  Y )  /\  (
z  e.  ( Base `  S )  /\  x  e.  U ) )  ->  x  e.  ( Base `  S ) )
16 eqid 2622 . . . . . . . . 9  |-  ( +g  `  S )  =  ( +g  `  S )
1710, 16grpcl 17430 . . . . . . . 8  |-  ( ( S  e.  Grp  /\  z  e.  ( Base `  S )  /\  x  e.  ( Base `  S
) )  ->  (
z ( +g  `  S
) x )  e.  ( Base `  S
) )
188, 9, 15, 17syl3anc 1326 . . . . . . 7  |-  ( ( ( F  e.  ( S  GrpHom  T )  /\  U  e.  (NrmSGrp `  S
)  /\  ran  F  =  Y )  /\  (
z  e.  ( Base `  S )  /\  x  e.  U ) )  -> 
( z ( +g  `  S ) x )  e.  ( Base `  S
) )
19 eqid 2622 . . . . . . . 8  |-  ( -g `  S )  =  (
-g `  S )
20 eqid 2622 . . . . . . . 8  |-  ( -g `  T )  =  (
-g `  T )
2110, 19, 20ghmsub 17668 . . . . . . 7  |-  ( ( F  e.  ( S 
GrpHom  T )  /\  (
z ( +g  `  S
) x )  e.  ( Base `  S
)  /\  z  e.  ( Base `  S )
)  ->  ( F `  ( ( z ( +g  `  S ) x ) ( -g `  S ) z ) )  =  ( ( F `  ( z ( +g  `  S
) x ) ) ( -g `  T
) ( F `  z ) ) )
226, 18, 9, 21syl3anc 1326 . . . . . 6  |-  ( ( ( F  e.  ( S  GrpHom  T )  /\  U  e.  (NrmSGrp `  S
)  /\  ran  F  =  Y )  /\  (
z  e.  ( Base `  S )  /\  x  e.  U ) )  -> 
( F `  (
( z ( +g  `  S ) x ) ( -g `  S
) z ) )  =  ( ( F `
 ( z ( +g  `  S ) x ) ) (
-g `  T )
( F `  z
) ) )
23 eqid 2622 . . . . . . . . 9  |-  ( +g  `  T )  =  ( +g  `  T )
2410, 16, 23ghmlin 17665 . . . . . . . 8  |-  ( ( F  e.  ( S 
GrpHom  T )  /\  z  e.  ( Base `  S
)  /\  x  e.  ( Base `  S )
)  ->  ( F `  ( z ( +g  `  S ) x ) )  =  ( ( F `  z ) ( +g  `  T
) ( F `  x ) ) )
256, 9, 15, 24syl3anc 1326 . . . . . . 7  |-  ( ( ( F  e.  ( S  GrpHom  T )  /\  U  e.  (NrmSGrp `  S
)  /\  ran  F  =  Y )  /\  (
z  e.  ( Base `  S )  /\  x  e.  U ) )  -> 
( F `  (
z ( +g  `  S
) x ) )  =  ( ( F `
 z ) ( +g  `  T ) ( F `  x
) ) )
2625oveq1d 6665 . . . . . 6  |-  ( ( ( F  e.  ( S  GrpHom  T )  /\  U  e.  (NrmSGrp `  S
)  /\  ran  F  =  Y )  /\  (
z  e.  ( Base `  S )  /\  x  e.  U ) )  -> 
( ( F `  ( z ( +g  `  S ) x ) ) ( -g `  T
) ( F `  z ) )  =  ( ( ( F `
 z ) ( +g  `  T ) ( F `  x
) ) ( -g `  T ) ( F `
 z ) ) )
2722, 26eqtrd 2656 . . . . 5  |-  ( ( ( F  e.  ( S  GrpHom  T )  /\  U  e.  (NrmSGrp `  S
)  /\  ran  F  =  Y )  /\  (
z  e.  ( Base `  S )  /\  x  e.  U ) )  -> 
( F `  (
( z ( +g  `  S ) x ) ( -g `  S
) z ) )  =  ( ( ( F `  z ) ( +g  `  T
) ( F `  x ) ) (
-g `  T )
( F `  z
) ) )
28 ghmnsgima.1 . . . . . . . . . 10  |-  Y  =  ( Base `  T
)
2910, 28ghmf 17664 . . . . . . . . 9  |-  ( F  e.  ( S  GrpHom  T )  ->  F :
( Base `  S ) --> Y )
301, 29syl 17 . . . . . . . 8  |-  ( ( F  e.  ( S 
GrpHom  T )  /\  U  e.  (NrmSGrp `  S )  /\  ran  F  =  Y )  ->  F :
( Base `  S ) --> Y )
3130adantr 481 . . . . . . 7  |-  ( ( ( F  e.  ( S  GrpHom  T )  /\  U  e.  (NrmSGrp `  S
)  /\  ran  F  =  Y )  /\  (
z  e.  ( Base `  S )  /\  x  e.  U ) )  ->  F : ( Base `  S
) --> Y )
32 ffn 6045 . . . . . . 7  |-  ( F : ( Base `  S
) --> Y  ->  F  Fn  ( Base `  S
) )
3331, 32syl 17 . . . . . 6  |-  ( ( ( F  e.  ( S  GrpHom  T )  /\  U  e.  (NrmSGrp `  S
)  /\  ran  F  =  Y )  /\  (
z  e.  ( Base `  S )  /\  x  e.  U ) )  ->  F  Fn  ( Base `  S ) )
34 simpl2 1065 . . . . . . 7  |-  ( ( ( F  e.  ( S  GrpHom  T )  /\  U  e.  (NrmSGrp `  S
)  /\  ran  F  =  Y )  /\  (
z  e.  ( Base `  S )  /\  x  e.  U ) )  ->  U  e.  (NrmSGrp `  S
) )
3510, 16, 19nsgconj 17627 . . . . . . 7  |-  ( ( U  e.  (NrmSGrp `  S
)  /\  z  e.  ( Base `  S )  /\  x  e.  U
)  ->  ( (
z ( +g  `  S
) x ) (
-g `  S )
z )  e.  U
)
3634, 9, 14, 35syl3anc 1326 . . . . . 6  |-  ( ( ( F  e.  ( S  GrpHom  T )  /\  U  e.  (NrmSGrp `  S
)  /\  ran  F  =  Y )  /\  (
z  e.  ( Base `  S )  /\  x  e.  U ) )  -> 
( ( z ( +g  `  S ) x ) ( -g `  S ) z )  e.  U )
37 fnfvima 6496 . . . . . 6  |-  ( ( F  Fn  ( Base `  S )  /\  U  C_  ( Base `  S
)  /\  ( (
z ( +g  `  S
) x ) (
-g `  S )
z )  e.  U
)  ->  ( F `  ( ( z ( +g  `  S ) x ) ( -g `  S ) z ) )  e.  ( F
" U ) )
3833, 13, 36, 37syl3anc 1326 . . . . 5  |-  ( ( ( F  e.  ( S  GrpHom  T )  /\  U  e.  (NrmSGrp `  S
)  /\  ran  F  =  Y )  /\  (
z  e.  ( Base `  S )  /\  x  e.  U ) )  -> 
( F `  (
( z ( +g  `  S ) x ) ( -g `  S
) z ) )  e.  ( F " U ) )
3927, 38eqeltrrd 2702 . . . 4  |-  ( ( ( F  e.  ( S  GrpHom  T )  /\  U  e.  (NrmSGrp `  S
)  /\  ran  F  =  Y )  /\  (
z  e.  ( Base `  S )  /\  x  e.  U ) )  -> 
( ( ( F `
 z ) ( +g  `  T ) ( F `  x
) ) ( -g `  T ) ( F `
 z ) )  e.  ( F " U ) )
4039ralrimivva 2971 . . 3  |-  ( ( F  e.  ( S 
GrpHom  T )  /\  U  e.  (NrmSGrp `  S )  /\  ran  F  =  Y )  ->  A. z  e.  ( Base `  S
) A. x  e.  U  ( ( ( F `  z ) ( +g  `  T
) ( F `  x ) ) (
-g `  T )
( F `  z
) )  e.  ( F " U ) )
4130, 32syl 17 . . . . 5  |-  ( ( F  e.  ( S 
GrpHom  T )  /\  U  e.  (NrmSGrp `  S )  /\  ran  F  =  Y )  ->  F  Fn  ( Base `  S )
)
42 oveq1 6657 . . . . . . . . 9  |-  ( x  =  ( F `  z )  ->  (
x ( +g  `  T
) y )  =  ( ( F `  z ) ( +g  `  T ) y ) )
43 id 22 . . . . . . . . 9  |-  ( x  =  ( F `  z )  ->  x  =  ( F `  z ) )
4442, 43oveq12d 6668 . . . . . . . 8  |-  ( x  =  ( F `  z )  ->  (
( x ( +g  `  T ) y ) ( -g `  T
) x )  =  ( ( ( F `
 z ) ( +g  `  T ) y ) ( -g `  T ) ( F `
 z ) ) )
4544eleq1d 2686 . . . . . . 7  |-  ( x  =  ( F `  z )  ->  (
( ( x ( +g  `  T ) y ) ( -g `  T ) x )  e.  ( F " U )  <->  ( (
( F `  z
) ( +g  `  T
) y ) (
-g `  T )
( F `  z
) )  e.  ( F " U ) ) )
4645ralbidv 2986 . . . . . 6  |-  ( x  =  ( F `  z )  ->  ( A. y  e.  ( F " U ) ( ( x ( +g  `  T ) y ) ( -g `  T
) x )  e.  ( F " U
)  <->  A. y  e.  ( F " U ) ( ( ( F `
 z ) ( +g  `  T ) y ) ( -g `  T ) ( F `
 z ) )  e.  ( F " U ) ) )
4746ralrn 6362 . . . . 5  |-  ( F  Fn  ( Base `  S
)  ->  ( A. x  e.  ran  F A. y  e.  ( F " U ) ( ( x ( +g  `  T
) y ) (
-g `  T )
x )  e.  ( F " U )  <->  A. z  e.  ( Base `  S ) A. y  e.  ( F " U ) ( ( ( F `  z
) ( +g  `  T
) y ) (
-g `  T )
( F `  z
) )  e.  ( F " U ) ) )
4841, 47syl 17 . . . 4  |-  ( ( F  e.  ( S 
GrpHom  T )  /\  U  e.  (NrmSGrp `  S )  /\  ran  F  =  Y )  ->  ( A. x  e.  ran  F A. y  e.  ( F " U ) ( ( x ( +g  `  T
) y ) (
-g `  T )
x )  e.  ( F " U )  <->  A. z  e.  ( Base `  S ) A. y  e.  ( F " U ) ( ( ( F `  z
) ( +g  `  T
) y ) (
-g `  T )
( F `  z
) )  e.  ( F " U ) ) )
49 simp3 1063 . . . . 5  |-  ( ( F  e.  ( S 
GrpHom  T )  /\  U  e.  (NrmSGrp `  S )  /\  ran  F  =  Y )  ->  ran  F  =  Y )
5049raleqdv 3144 . . . 4  |-  ( ( F  e.  ( S 
GrpHom  T )  /\  U  e.  (NrmSGrp `  S )  /\  ran  F  =  Y )  ->  ( A. x  e.  ran  F A. y  e.  ( F " U ) ( ( x ( +g  `  T
) y ) (
-g `  T )
x )  e.  ( F " U )  <->  A. x  e.  Y  A. y  e.  ( F " U ) ( ( x ( +g  `  T ) y ) ( -g `  T
) x )  e.  ( F " U
) ) )
51 oveq2 6658 . . . . . . . . 9  |-  ( y  =  ( F `  x )  ->  (
( F `  z
) ( +g  `  T
) y )  =  ( ( F `  z ) ( +g  `  T ) ( F `
 x ) ) )
5251oveq1d 6665 . . . . . . . 8  |-  ( y  =  ( F `  x )  ->  (
( ( F `  z ) ( +g  `  T ) y ) ( -g `  T
) ( F `  z ) )  =  ( ( ( F `
 z ) ( +g  `  T ) ( F `  x
) ) ( -g `  T ) ( F `
 z ) ) )
5352eleq1d 2686 . . . . . . 7  |-  ( y  =  ( F `  x )  ->  (
( ( ( F `
 z ) ( +g  `  T ) y ) ( -g `  T ) ( F `
 z ) )  e.  ( F " U )  <->  ( (
( F `  z
) ( +g  `  T
) ( F `  x ) ) (
-g `  T )
( F `  z
) )  e.  ( F " U ) ) )
5453ralima 6498 . . . . . 6  |-  ( ( F  Fn  ( Base `  S )  /\  U  C_  ( Base `  S
) )  ->  ( A. y  e.  ( F " U ) ( ( ( F `  z ) ( +g  `  T ) y ) ( -g `  T
) ( F `  z ) )  e.  ( F " U
)  <->  A. x  e.  U  ( ( ( F `
 z ) ( +g  `  T ) ( F `  x
) ) ( -g `  T ) ( F `
 z ) )  e.  ( F " U ) ) )
5541, 12, 54syl2anc 693 . . . . 5  |-  ( ( F  e.  ( S 
GrpHom  T )  /\  U  e.  (NrmSGrp `  S )  /\  ran  F  =  Y )  ->  ( A. y  e.  ( F " U ) ( ( ( F `  z
) ( +g  `  T
) y ) (
-g `  T )
( F `  z
) )  e.  ( F " U )  <->  A. x  e.  U  ( ( ( F `
 z ) ( +g  `  T ) ( F `  x
) ) ( -g `  T ) ( F `
 z ) )  e.  ( F " U ) ) )
5655ralbidv 2986 . . . 4  |-  ( ( F  e.  ( S 
GrpHom  T )  /\  U  e.  (NrmSGrp `  S )  /\  ran  F  =  Y )  ->  ( A. z  e.  ( Base `  S ) A. y  e.  ( F " U
) ( ( ( F `  z ) ( +g  `  T
) y ) (
-g `  T )
( F `  z
) )  e.  ( F " U )  <->  A. z  e.  ( Base `  S ) A. x  e.  U  (
( ( F `  z ) ( +g  `  T ) ( F `
 x ) ) ( -g `  T
) ( F `  z ) )  e.  ( F " U
) ) )
5748, 50, 563bitr3d 298 . . 3  |-  ( ( F  e.  ( S 
GrpHom  T )  /\  U  e.  (NrmSGrp `  S )  /\  ran  F  =  Y )  ->  ( A. x  e.  Y  A. y  e.  ( F " U ) ( ( x ( +g  `  T
) y ) (
-g `  T )
x )  e.  ( F " U )  <->  A. z  e.  ( Base `  S ) A. x  e.  U  (
( ( F `  z ) ( +g  `  T ) ( F `
 x ) ) ( -g `  T
) ( F `  z ) )  e.  ( F " U
) ) )
5840, 57mpbird 247 . 2  |-  ( ( F  e.  ( S 
GrpHom  T )  /\  U  e.  (NrmSGrp `  S )  /\  ran  F  =  Y )  ->  A. x  e.  Y  A. y  e.  ( F " U
) ( ( x ( +g  `  T
) y ) (
-g `  T )
x )  e.  ( F " U ) )
5928, 23, 20isnsg3 17628 . 2  |-  ( ( F " U )  e.  (NrmSGrp `  T
)  <->  ( ( F
" U )  e.  (SubGrp `  T )  /\  A. x  e.  Y  A. y  e.  ( F " U ) ( ( x ( +g  `  T ) y ) ( -g `  T
) x )  e.  ( F " U
) ) )
605, 58, 59sylanbrc 698 1  |-  ( ( F  e.  ( S 
GrpHom  T )  /\  U  e.  (NrmSGrp `  S )  /\  ran  F  =  Y )  ->  ( F " U )  e.  (NrmSGrp `  T ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    /\ wa 384    /\ w3a 1037    = wceq 1483    e. wcel 1990   A.wral 2912    C_ wss 3574   ran crn 5115   "cima 5117    Fn wfn 5883   -->wf 5884   ` cfv 5888  (class class class)co 6650   Basecbs 15857   +g cplusg 15941   Grpcgrp 17422   -gcsg 17424  SubGrpcsubg 17588  NrmSGrpcnsg 17589    GrpHom cghm 17657
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-nn 11021  df-2 11079  df-ndx 15860  df-slot 15861  df-base 15863  df-sets 15864  df-ress 15865  df-plusg 15954  df-0g 16102  df-mgm 17242  df-sgrp 17284  df-mnd 17295  df-grp 17425  df-minusg 17426  df-sbg 17427  df-subg 17591  df-nsg 17592  df-ghm 17658
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator