Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  qqhucn Structured version   Visualization version   Unicode version

Theorem qqhucn 30036
Description: The QQHom homomorphism is uniformly continuous. (Contributed by Thierry Arnoux, 28-Jan-2018.)
Hypotheses
Ref Expression
qqhucn.b  |-  B  =  ( Base `  R
)
qqhucn.q  |-  Q  =  (flds  QQ )
qqhucn.u  |-  U  =  (UnifSt `  Q )
qqhucn.v  |-  V  =  (metUnif `  ( ( dist `  R )  |`  ( B  X.  B
) ) )
qqhucn.z  |-  Z  =  ( ZMod `  R
)
qqhucn.1  |-  ( ph  ->  R  e. NrmRing )
qqhucn.2  |-  ( ph  ->  R  e.  DivRing )
qqhucn.3  |-  ( ph  ->  Z  e. NrmMod )
qqhucn.4  |-  ( ph  ->  (chr `  R )  =  0 )
Assertion
Ref Expression
qqhucn  |-  ( ph  ->  (QQHom `  R )  e.  ( U Cnu V ) )

Proof of Theorem qqhucn
Dummy variables  e 
d  p  q are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 qqhucn.2 . . . 4  |-  ( ph  ->  R  e.  DivRing )
2 qqhucn.4 . . . 4  |-  ( ph  ->  (chr `  R )  =  0 )
3 qqhucn.b . . . . 5  |-  B  =  ( Base `  R
)
4 eqid 2622 . . . . 5  |-  (/r `  R
)  =  (/r `  R
)
5 eqid 2622 . . . . 5  |-  ( ZRHom `  R )  =  ( ZRHom `  R )
63, 4, 5qqhf 30030 . . . 4  |-  ( ( R  e.  DivRing  /\  (chr `  R )  =  0 )  ->  (QQHom `  R
) : QQ --> B )
71, 2, 6syl2anc 693 . . 3  |-  ( ph  ->  (QQHom `  R ) : QQ --> B )
8 simpr 477 . . . . 5  |-  ( (
ph  /\  e  e.  RR+ )  ->  e  e.  RR+ )
9 qqhucn.1 . . . . . . . . . . . . . . 15  |-  ( ph  ->  R  e. NrmRing )
10 nrgngp 22466 . . . . . . . . . . . . . . 15  |-  ( R  e. NrmRing  ->  R  e. NrmGrp )
119, 10syl 17 . . . . . . . . . . . . . 14  |-  ( ph  ->  R  e. NrmGrp )
1211ad2antrr 762 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  p  e.  QQ )  /\  q  e.  QQ )  ->  R  e. NrmGrp )
137ffvelrnda 6359 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  p  e.  QQ )  ->  ( (QQHom `  R ) `  p
)  e.  B )
1413adantr 481 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  p  e.  QQ )  /\  q  e.  QQ )  ->  (
(QQHom `  R ) `  p )  e.  B
)
157adantr 481 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  p  e.  QQ )  ->  (QQHom `  R ) : QQ --> B )
1615ffvelrnda 6359 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  p  e.  QQ )  /\  q  e.  QQ )  ->  (
(QQHom `  R ) `  q )  e.  B
)
17 eqid 2622 . . . . . . . . . . . . . 14  |-  ( norm `  R )  =  (
norm `  R )
18 eqid 2622 . . . . . . . . . . . . . 14  |-  ( -g `  R )  =  (
-g `  R )
19 eqid 2622 . . . . . . . . . . . . . 14  |-  ( dist `  R )  =  (
dist `  R )
2017, 3, 18, 19ngpdsr 22409 . . . . . . . . . . . . 13  |-  ( ( R  e. NrmGrp  /\  (
(QQHom `  R ) `  p )  e.  B  /\  ( (QQHom `  R
) `  q )  e.  B )  ->  (
( (QQHom `  R
) `  p )
( dist `  R )
( (QQHom `  R
) `  q )
)  =  ( (
norm `  R ) `  ( ( (QQHom `  R ) `  q
) ( -g `  R
) ( (QQHom `  R ) `  p
) ) ) )
2112, 14, 16, 20syl3anc 1326 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  p  e.  QQ )  /\  q  e.  QQ )  ->  (
( (QQHom `  R
) `  p )
( dist `  R )
( (QQHom `  R
) `  q )
)  =  ( (
norm `  R ) `  ( ( (QQHom `  R ) `  q
) ( -g `  R
) ( (QQHom `  R ) `  p
) ) ) )
22 simpr 477 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  p  e.  QQ )  /\  q  e.  QQ )  ->  q  e.  QQ )
23 simplr 792 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  p  e.  QQ )  /\  q  e.  QQ )  ->  p  e.  QQ )
24 qsubdrg 19798 . . . . . . . . . . . . . . . . . . 19  |-  ( QQ  e.  (SubRing ` fld )  /\  (flds  QQ )  e.  DivRing )
2524simpli 474 . . . . . . . . . . . . . . . . . 18  |-  QQ  e.  (SubRing ` fld )
26 subrgsubg 18786 . . . . . . . . . . . . . . . . . 18  |-  ( QQ  e.  (SubRing ` fld )  ->  QQ  e.  (SubGrp ` fld ) )
2725, 26ax-mp 5 . . . . . . . . . . . . . . . . 17  |-  QQ  e.  (SubGrp ` fld )
28 cnfldsub 19774 . . . . . . . . . . . . . . . . . 18  |-  -  =  ( -g ` fld )
29 qqhucn.q . . . . . . . . . . . . . . . . . 18  |-  Q  =  (flds  QQ )
30 eqid 2622 . . . . . . . . . . . . . . . . . 18  |-  ( -g `  Q )  =  (
-g `  Q )
3128, 29, 30subgsub 17606 . . . . . . . . . . . . . . . . 17  |-  ( ( QQ  e.  (SubGrp ` fld )  /\  q  e.  QQ  /\  p  e.  QQ )  ->  ( q  -  p )  =  ( q ( -g `  Q
) p ) )
3227, 31mp3an1 1411 . . . . . . . . . . . . . . . 16  |-  ( ( q  e.  QQ  /\  p  e.  QQ )  ->  ( q  -  p
)  =  ( q ( -g `  Q
) p ) )
3322, 23, 32syl2anc 693 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  p  e.  QQ )  /\  q  e.  QQ )  ->  (
q  -  p )  =  ( q (
-g `  Q )
p ) )
3433fveq2d 6195 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  p  e.  QQ )  /\  q  e.  QQ )  ->  (
(QQHom `  R ) `  ( q  -  p
) )  =  ( (QQHom `  R ) `  ( q ( -g `  Q ) p ) ) )
353, 4, 5, 29qqhghm 30032 . . . . . . . . . . . . . . . . 17  |-  ( ( R  e.  DivRing  /\  (chr `  R )  =  0 )  ->  (QQHom `  R
)  e.  ( Q 
GrpHom  R ) )
361, 2, 35syl2anc 693 . . . . . . . . . . . . . . . 16  |-  ( ph  ->  (QQHom `  R )  e.  ( Q  GrpHom  R ) )
3736ad2antrr 762 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  p  e.  QQ )  /\  q  e.  QQ )  ->  (QQHom `  R )  e.  ( Q  GrpHom  R ) )
3829qrngbas 25308 . . . . . . . . . . . . . . . 16  |-  QQ  =  ( Base `  Q )
3938, 30, 18ghmsub 17668 . . . . . . . . . . . . . . 15  |-  ( ( (QQHom `  R )  e.  ( Q  GrpHom  R )  /\  q  e.  QQ  /\  p  e.  QQ )  ->  ( (QQHom `  R ) `  (
q ( -g `  Q
) p ) )  =  ( ( (QQHom `  R ) `  q
) ( -g `  R
) ( (QQHom `  R ) `  p
) ) )
4037, 22, 23, 39syl3anc 1326 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  p  e.  QQ )  /\  q  e.  QQ )  ->  (
(QQHom `  R ) `  ( q ( -g `  Q ) p ) )  =  ( ( (QQHom `  R ) `  q ) ( -g `  R ) ( (QQHom `  R ) `  p
) ) )
4134, 40eqtr2d 2657 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  p  e.  QQ )  /\  q  e.  QQ )  ->  (
( (QQHom `  R
) `  q )
( -g `  R ) ( (QQHom `  R
) `  p )
)  =  ( (QQHom `  R ) `  (
q  -  p ) ) )
4241fveq2d 6195 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  p  e.  QQ )  /\  q  e.  QQ )  ->  (
( norm `  R ) `  ( ( (QQHom `  R ) `  q
) ( -g `  R
) ( (QQHom `  R ) `  p
) ) )  =  ( ( norm `  R
) `  ( (QQHom `  R ) `  (
q  -  p ) ) ) )
439, 1elind 3798 . . . . . . . . . . . . . 14  |-  ( ph  ->  R  e.  (NrmRing  i^i  DivRing ) )
4443ad2antrr 762 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  p  e.  QQ )  /\  q  e.  QQ )  ->  R  e.  (NrmRing  i^i  DivRing ) )
45 qqhucn.3 . . . . . . . . . . . . . 14  |-  ( ph  ->  Z  e. NrmMod )
4645ad2antrr 762 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  p  e.  QQ )  /\  q  e.  QQ )  ->  Z  e. NrmMod )
472ad2antrr 762 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  p  e.  QQ )  /\  q  e.  QQ )  ->  (chr `  R )  =  0 )
48 qsubcl 11807 . . . . . . . . . . . . . 14  |-  ( ( q  e.  QQ  /\  p  e.  QQ )  ->  ( q  -  p
)  e.  QQ )
4922, 23, 48syl2anc 693 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  p  e.  QQ )  /\  q  e.  QQ )  ->  (
q  -  p )  e.  QQ )
50 qqhucn.z . . . . . . . . . . . . . 14  |-  Z  =  ( ZMod `  R
)
5117, 50qqhnm 30034 . . . . . . . . . . . . 13  |-  ( ( ( R  e.  (NrmRing  i^i 
DivRing )  /\  Z  e. NrmMod  /\  (chr `  R )  =  0 )  /\  ( q  -  p
)  e.  QQ )  ->  ( ( norm `  R ) `  (
(QQHom `  R ) `  ( q  -  p
) ) )  =  ( abs `  (
q  -  p ) ) )
5244, 46, 47, 49, 51syl31anc 1329 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  p  e.  QQ )  /\  q  e.  QQ )  ->  (
( norm `  R ) `  ( (QQHom `  R
) `  ( q  -  p ) ) )  =  ( abs `  (
q  -  p ) ) )
5321, 42, 523eqtrd 2660 . . . . . . . . . . 11  |-  ( ( ( ph  /\  p  e.  QQ )  /\  q  e.  QQ )  ->  (
( (QQHom `  R
) `  p )
( dist `  R )
( (QQHom `  R
) `  q )
)  =  ( abs `  ( q  -  p
) ) )
5414, 16ovresd 6801 . . . . . . . . . . 11  |-  ( ( ( ph  /\  p  e.  QQ )  /\  q  e.  QQ )  ->  (
( (QQHom `  R
) `  p )
( ( dist `  R
)  |`  ( B  X.  B ) ) ( (QQHom `  R ) `  q ) )  =  ( ( (QQHom `  R ) `  p
) ( dist `  R
) ( (QQHom `  R ) `  q
) ) )
55 qsscn 11799 . . . . . . . . . . . . . 14  |-  QQ  C_  CC
5655, 23sseldi 3601 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  p  e.  QQ )  /\  q  e.  QQ )  ->  p  e.  CC )
5755, 22sseldi 3601 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  p  e.  QQ )  /\  q  e.  QQ )  ->  q  e.  CC )
58 eqid 2622 . . . . . . . . . . . . . 14  |-  ( abs 
o.  -  )  =  ( abs  o.  -  )
5958cnmetdval 22574 . . . . . . . . . . . . 13  |-  ( ( p  e.  CC  /\  q  e.  CC )  ->  ( p ( abs 
o.  -  ) q
)  =  ( abs `  ( p  -  q
) ) )
6056, 57, 59syl2anc 693 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  p  e.  QQ )  /\  q  e.  QQ )  ->  (
p ( abs  o.  -  ) q )  =  ( abs `  (
p  -  q ) ) )
6123, 22ovresd 6801 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  p  e.  QQ )  /\  q  e.  QQ )  ->  (
p ( ( abs 
o.  -  )  |`  ( QQ  X.  QQ ) ) q )  =  ( p ( abs  o.  -  ) q ) )
6257, 56abssubd 14192 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  p  e.  QQ )  /\  q  e.  QQ )  ->  ( abs `  ( q  -  p ) )  =  ( abs `  (
p  -  q ) ) )
6360, 61, 623eqtr4d 2666 . . . . . . . . . . 11  |-  ( ( ( ph  /\  p  e.  QQ )  /\  q  e.  QQ )  ->  (
p ( ( abs 
o.  -  )  |`  ( QQ  X.  QQ ) ) q )  =  ( abs `  ( q  -  p ) ) )
6453, 54, 633eqtr4rd 2667 . . . . . . . . . 10  |-  ( ( ( ph  /\  p  e.  QQ )  /\  q  e.  QQ )  ->  (
p ( ( abs 
o.  -  )  |`  ( QQ  X.  QQ ) ) q )  =  ( ( (QQHom `  R
) `  p )
( ( dist `  R
)  |`  ( B  X.  B ) ) ( (QQHom `  R ) `  q ) ) )
6564breq1d 4663 . . . . . . . . 9  |-  ( ( ( ph  /\  p  e.  QQ )  /\  q  e.  QQ )  ->  (
( p ( ( abs  o.  -  )  |`  ( QQ  X.  QQ ) ) q )  <  e  <->  ( (
(QQHom `  R ) `  p ) ( (
dist `  R )  |`  ( B  X.  B
) ) ( (QQHom `  R ) `  q
) )  <  e
) )
6665biimpd 219 . . . . . . . 8  |-  ( ( ( ph  /\  p  e.  QQ )  /\  q  e.  QQ )  ->  (
( p ( ( abs  o.  -  )  |`  ( QQ  X.  QQ ) ) q )  <  e  ->  (
( (QQHom `  R
) `  p )
( ( dist `  R
)  |`  ( B  X.  B ) ) ( (QQHom `  R ) `  q ) )  < 
e ) )
6766ralrimiva 2966 . . . . . . 7  |-  ( (
ph  /\  p  e.  QQ )  ->  A. q  e.  QQ  ( ( p ( ( abs  o.  -  )  |`  ( QQ 
X.  QQ ) ) q )  <  e  ->  ( ( (QQHom `  R ) `  p
) ( ( dist `  R )  |`  ( B  X.  B ) ) ( (QQHom `  R
) `  q )
)  <  e )
)
6867ralrimiva 2966 . . . . . 6  |-  ( ph  ->  A. p  e.  QQ  A. q  e.  QQ  (
( p ( ( abs  o.  -  )  |`  ( QQ  X.  QQ ) ) q )  <  e  ->  (
( (QQHom `  R
) `  p )
( ( dist `  R
)  |`  ( B  X.  B ) ) ( (QQHom `  R ) `  q ) )  < 
e ) )
6968adantr 481 . . . . 5  |-  ( (
ph  /\  e  e.  RR+ )  ->  A. p  e.  QQ  A. q  e.  QQ  ( ( p ( ( abs  o.  -  )  |`  ( QQ 
X.  QQ ) ) q )  <  e  ->  ( ( (QQHom `  R ) `  p
) ( ( dist `  R )  |`  ( B  X.  B ) ) ( (QQHom `  R
) `  q )
)  <  e )
)
70 breq2 4657 . . . . . . . 8  |-  ( d  =  e  ->  (
( p ( ( abs  o.  -  )  |`  ( QQ  X.  QQ ) ) q )  <  d  <->  ( p
( ( abs  o.  -  )  |`  ( QQ 
X.  QQ ) ) q )  <  e
) )
7170imbi1d 331 . . . . . . 7  |-  ( d  =  e  ->  (
( ( p ( ( abs  o.  -  )  |`  ( QQ  X.  QQ ) ) q )  <  d  ->  (
( (QQHom `  R
) `  p )
( ( dist `  R
)  |`  ( B  X.  B ) ) ( (QQHom `  R ) `  q ) )  < 
e )  <->  ( (
p ( ( abs 
o.  -  )  |`  ( QQ  X.  QQ ) ) q )  <  e  ->  ( ( (QQHom `  R ) `  p
) ( ( dist `  R )  |`  ( B  X.  B ) ) ( (QQHom `  R
) `  q )
)  <  e )
) )
72712ralbidv 2989 . . . . . 6  |-  ( d  =  e  ->  ( A. p  e.  QQ  A. q  e.  QQ  (
( p ( ( abs  o.  -  )  |`  ( QQ  X.  QQ ) ) q )  <  d  ->  (
( (QQHom `  R
) `  p )
( ( dist `  R
)  |`  ( B  X.  B ) ) ( (QQHom `  R ) `  q ) )  < 
e )  <->  A. p  e.  QQ  A. q  e.  QQ  ( ( p ( ( abs  o.  -  )  |`  ( QQ 
X.  QQ ) ) q )  <  e  ->  ( ( (QQHom `  R ) `  p
) ( ( dist `  R )  |`  ( B  X.  B ) ) ( (QQHom `  R
) `  q )
)  <  e )
) )
7372rspcev 3309 . . . . 5  |-  ( ( e  e.  RR+  /\  A. p  e.  QQ  A. q  e.  QQ  ( ( p ( ( abs  o.  -  )  |`  ( QQ 
X.  QQ ) ) q )  <  e  ->  ( ( (QQHom `  R ) `  p
) ( ( dist `  R )  |`  ( B  X.  B ) ) ( (QQHom `  R
) `  q )
)  <  e )
)  ->  E. d  e.  RR+  A. p  e.  QQ  A. q  e.  QQ  ( ( p ( ( abs  o.  -  )  |`  ( QQ 
X.  QQ ) ) q )  <  d  ->  ( ( (QQHom `  R ) `  p
) ( ( dist `  R )  |`  ( B  X.  B ) ) ( (QQHom `  R
) `  q )
)  <  e )
)
748, 69, 73syl2anc 693 . . . 4  |-  ( (
ph  /\  e  e.  RR+ )  ->  E. d  e.  RR+  A. p  e.  QQ  A. q  e.  QQ  ( ( p ( ( abs  o.  -  )  |`  ( QQ 
X.  QQ ) ) q )  <  d  ->  ( ( (QQHom `  R ) `  p
) ( ( dist `  R )  |`  ( B  X.  B ) ) ( (QQHom `  R
) `  q )
)  <  e )
)
7574ralrimiva 2966 . . 3  |-  ( ph  ->  A. e  e.  RR+  E. d  e.  RR+  A. p  e.  QQ  A. q  e.  QQ  ( ( p ( ( abs  o.  -  )  |`  ( QQ 
X.  QQ ) ) q )  <  d  ->  ( ( (QQHom `  R ) `  p
) ( ( dist `  R )  |`  ( B  X.  B ) ) ( (QQHom `  R
) `  q )
)  <  e )
)
76 eqid 2622 . . . 4  |-  (metUnif `  (
( abs  o.  -  )  |`  ( QQ  X.  QQ ) ) )  =  (metUnif `  ( ( abs  o.  -  )  |`  ( QQ  X.  QQ ) ) )
77 qqhucn.v . . . 4  |-  V  =  (metUnif `  ( ( dist `  R )  |`  ( B  X.  B
) ) )
78 0z 11388 . . . . . 6  |-  0  e.  ZZ
79 zq 11794 . . . . . 6  |-  ( 0  e.  ZZ  ->  0  e.  QQ )
80 ne0i 3921 . . . . . 6  |-  ( 0  e.  QQ  ->  QQ  =/=  (/) )
8178, 79, 80mp2b 10 . . . . 5  |-  QQ  =/=  (/)
8281a1i 11 . . . 4  |-  ( ph  ->  QQ  =/=  (/) )
83 drngring 18754 . . . . 5  |-  ( R  e.  DivRing  ->  R  e.  Ring )
84 eqid 2622 . . . . . 6  |-  ( 1r
`  R )  =  ( 1r `  R
)
853, 84ringidcl 18568 . . . . 5  |-  ( R  e.  Ring  ->  ( 1r
`  R )  e.  B )
86 ne0i 3921 . . . . 5  |-  ( ( 1r `  R )  e.  B  ->  B  =/=  (/) )
871, 83, 85, 864syl 19 . . . 4  |-  ( ph  ->  B  =/=  (/) )
88 cnfldxms 22580 . . . . . . . 8  |-fld  e.  *MetSp
89 qex 11800 . . . . . . . 8  |-  QQ  e.  _V
90 ressxms 22330 . . . . . . . 8  |-  ( (fld  e. 
*MetSp  /\  QQ  e.  _V )  ->  (flds  QQ )  e.  *MetSp )
9188, 89, 90mp2an 708 . . . . . . 7  |-  (flds  QQ )  e.  *MetSp
9229, 91eqeltri 2697 . . . . . 6  |-  Q  e. 
*MetSp
93 cnfldds 19756 . . . . . . . . 9  |-  ( abs 
o.  -  )  =  ( dist ` fld )
9429, 93ressds 16073 . . . . . . . 8  |-  ( QQ  e.  _V  ->  ( abs  o.  -  )  =  ( dist `  Q
) )
9589, 94ax-mp 5 . . . . . . 7  |-  ( abs 
o.  -  )  =  ( dist `  Q )
9638, 95xmsxmet2 22264 . . . . . 6  |-  ( Q  e.  *MetSp  ->  (
( abs  o.  -  )  |`  ( QQ  X.  QQ ) )  e.  ( *Met `  QQ ) )
9792, 96mp1i 13 . . . . 5  |-  ( ph  ->  ( ( abs  o.  -  )  |`  ( QQ 
X.  QQ ) )  e.  ( *Met `  QQ ) )
98 xmetpsmet 22153 . . . . 5  |-  ( ( ( abs  o.  -  )  |`  ( QQ  X.  QQ ) )  e.  ( *Met `  QQ )  ->  ( ( abs 
o.  -  )  |`  ( QQ  X.  QQ ) )  e.  (PsMet `  QQ ) )
9997, 98syl 17 . . . 4  |-  ( ph  ->  ( ( abs  o.  -  )  |`  ( QQ 
X.  QQ ) )  e.  (PsMet `  QQ ) )
100 ngpxms 22405 . . . . . 6  |-  ( R  e. NrmGrp  ->  R  e.  *MetSp )
1013, 19xmsxmet2 22264 . . . . . 6  |-  ( R  e.  *MetSp  ->  (
( dist `  R )  |`  ( B  X.  B
) )  e.  ( *Met `  B
) )
1029, 10, 100, 1014syl 19 . . . . 5  |-  ( ph  ->  ( ( dist `  R
)  |`  ( B  X.  B ) )  e.  ( *Met `  B ) )
103 xmetpsmet 22153 . . . . 5  |-  ( ( ( dist `  R
)  |`  ( B  X.  B ) )  e.  ( *Met `  B )  ->  (
( dist `  R )  |`  ( B  X.  B
) )  e.  (PsMet `  B ) )
104102, 103syl 17 . . . 4  |-  ( ph  ->  ( ( dist `  R
)  |`  ( B  X.  B ) )  e.  (PsMet `  B )
)
10576, 77, 82, 87, 99, 104metucn 22376 . . 3  |-  ( ph  ->  ( (QQHom `  R
)  e.  ( (metUnif `  ( ( abs  o.  -  )  |`  ( QQ 
X.  QQ ) ) ) Cnu V )  <->  ( (QQHom `  R ) : QQ --> B  /\  A. e  e.  RR+  E. d  e.  RR+  A. p  e.  QQ  A. q  e.  QQ  (
( p ( ( abs  o.  -  )  |`  ( QQ  X.  QQ ) ) q )  <  d  ->  (
( (QQHom `  R
) `  p )
( ( dist `  R
)  |`  ( B  X.  B ) ) ( (QQHom `  R ) `  q ) )  < 
e ) ) ) )
1067, 75, 105mpbir2and 957 . 2  |-  ( ph  ->  (QQHom `  R )  e.  ( (metUnif `  (
( abs  o.  -  )  |`  ( QQ  X.  QQ ) ) ) Cnu V ) )
107 qqhucn.u . . . . . 6  |-  U  =  (UnifSt `  Q )
10829fveq2i 6194 . . . . . 6  |-  (UnifSt `  Q )  =  (UnifSt `  (flds  QQ ) )
109 ressuss 22067 . . . . . . 7  |-  ( QQ  e.  _V  ->  (UnifSt `  (flds  QQ ) )  =  ( (UnifSt ` fld )t  ( QQ  X.  QQ ) ) )
11089, 109ax-mp 5 . . . . . 6  |-  (UnifSt `  (flds  QQ ) )  =  ( (UnifSt ` fld )t  ( QQ  X.  QQ ) )
111107, 108, 1103eqtri 2648 . . . . 5  |-  U  =  ( (UnifSt ` fld )t  ( QQ  X.  QQ ) )
112 eqid 2622 . . . . . . 7  |-  (UnifSt ` fld )  =  (UnifSt ` fld )
113112cnflduss 23152 . . . . . 6  |-  (UnifSt ` fld )  =  (metUnif `  ( abs  o. 
-  ) )
114113oveq1i 6660 . . . . 5  |-  ( (UnifSt ` fld )t  ( QQ  X.  QQ ) )  =  ( (metUnif `  ( abs  o. 
-  ) )t  ( QQ 
X.  QQ ) )
115 cnxmet 22576 . . . . . . 7  |-  ( abs 
o.  -  )  e.  ( *Met `  CC )
116 xmetpsmet 22153 . . . . . . 7  |-  ( ( abs  o.  -  )  e.  ( *Met `  CC )  ->  ( abs 
o.  -  )  e.  (PsMet `  CC ) )
117115, 116ax-mp 5 . . . . . 6  |-  ( abs 
o.  -  )  e.  (PsMet `  CC )
118 restmetu 22375 . . . . . 6  |-  ( ( QQ  =/=  (/)  /\  ( abs  o.  -  )  e.  (PsMet `  CC )  /\  QQ  C_  CC )  ->  ( (metUnif `  ( abs  o.  -  ) )t  ( QQ  X.  QQ ) )  =  (metUnif `  (
( abs  o.  -  )  |`  ( QQ  X.  QQ ) ) ) )
11981, 117, 55, 118mp3an 1424 . . . . 5  |-  ( (metUnif `  ( abs  o.  -  ) )t  ( QQ  X.  QQ ) )  =  (metUnif `  ( ( abs  o.  -  )  |`  ( QQ 
X.  QQ ) ) )
120111, 114, 1193eqtri 2648 . . . 4  |-  U  =  (metUnif `  ( ( abs  o.  -  )  |`  ( QQ  X.  QQ ) ) )
121120a1i 11 . . 3  |-  ( ph  ->  U  =  (metUnif `  (
( abs  o.  -  )  |`  ( QQ  X.  QQ ) ) ) )
122121oveq1d 6665 . 2  |-  ( ph  ->  ( U Cnu V )  =  ( (metUnif `  (
( abs  o.  -  )  |`  ( QQ  X.  QQ ) ) ) Cnu V ) )
123106, 122eleqtrrd 2704 1  |-  ( ph  ->  (QQHom `  R )  e.  ( U Cnu V ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 384    = wceq 1483    e. wcel 1990    =/= wne 2794   A.wral 2912   E.wrex 2913   _Vcvv 3200    i^i cin 3573    C_ wss 3574   (/)c0 3915   class class class wbr 4653    X. cxp 5112    |` cres 5116    o. ccom 5118   -->wf 5884   ` cfv 5888  (class class class)co 6650   CCcc 9934   0cc0 9936    < clt 10074    - cmin 10266   ZZcz 11377   QQcq 11788   RR+crp 11832   abscabs 13974   Basecbs 15857   ↾s cress 15858   distcds 15950   ↾t crest 16081   -gcsg 17424  SubGrpcsubg 17588    GrpHom cghm 17657   1rcur 18501   Ringcrg 18547  /rcdvr 18682   DivRingcdr 18747  SubRingcsubrg 18776  PsMetcpsmet 19730   *Metcxmt 19731  metUnifcmetu 19737  ℂfldccnfld 19746   ZRHomczrh 19848   ZModczlm 19849  chrcchr 19850  UnifStcuss 22057   Cnucucn 22079   *MetSpcxme 22122   normcnm 22381  NrmGrpcngp 22382  NrmRingcnrg 22384  NrmModcnlm 22385  QQHomcqqh 30016
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-inf2 8538  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014  ax-addf 10015  ax-mulf 10016
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-tpos 7352  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-oadd 7564  df-er 7742  df-map 7859  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-sup 8348  df-inf 8349  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-2 11079  df-3 11080  df-4 11081  df-5 11082  df-6 11083  df-7 11084  df-8 11085  df-9 11086  df-n0 11293  df-z 11378  df-dec 11494  df-uz 11688  df-q 11789  df-rp 11833  df-xneg 11946  df-xadd 11947  df-xmul 11948  df-ico 12181  df-fz 12327  df-fzo 12466  df-fl 12593  df-mod 12669  df-seq 12802  df-exp 12861  df-cj 13839  df-re 13840  df-im 13841  df-sqrt 13975  df-abs 13976  df-dvds 14984  df-gcd 15217  df-numer 15443  df-denom 15444  df-gz 15634  df-struct 15859  df-ndx 15860  df-slot 15861  df-base 15863  df-sets 15864  df-ress 15865  df-plusg 15954  df-mulr 15955  df-starv 15956  df-sca 15957  df-vsca 15958  df-tset 15960  df-ple 15961  df-ds 15964  df-unif 15965  df-rest 16083  df-topn 16084  df-0g 16102  df-topgen 16104  df-mgm 17242  df-sgrp 17284  df-mnd 17295  df-mhm 17335  df-grp 17425  df-minusg 17426  df-sbg 17427  df-mulg 17541  df-subg 17591  df-ghm 17658  df-od 17948  df-cmn 18195  df-abl 18196  df-mgp 18490  df-ur 18502  df-ring 18549  df-cring 18550  df-oppr 18623  df-dvdsr 18641  df-unit 18642  df-invr 18672  df-dvr 18683  df-rnghom 18715  df-drng 18749  df-subrg 18778  df-abv 18817  df-lmod 18865  df-nzr 19258  df-psmet 19738  df-xmet 19739  df-met 19740  df-bl 19741  df-mopn 19742  df-fbas 19743  df-fg 19744  df-metu 19745  df-cnfld 19747  df-zring 19819  df-zrh 19852  df-zlm 19853  df-chr 19854  df-top 20699  df-topon 20716  df-topsp 20737  df-bases 20750  df-fil 21650  df-ust 22004  df-uss 22060  df-ucn 22080  df-xms 22125  df-ms 22126  df-nm 22387  df-ngp 22388  df-nrg 22390  df-nlm 22391  df-qqh 30017
This theorem is referenced by:  rrhcn  30041
  Copyright terms: Public domain W3C validator