MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mplbaspropd Structured version   Visualization version   Unicode version

Theorem mplbaspropd 19607
Description: Property deduction for polynomial base set. (Contributed by Stefan O'Rear, 27-Mar-2015.) (Proof shortened by AV, 19-Jul-2019.)
Hypotheses
Ref Expression
psrplusgpropd.b1  |-  ( ph  ->  B  =  ( Base `  R ) )
psrplusgpropd.b2  |-  ( ph  ->  B  =  ( Base `  S ) )
psrplusgpropd.p  |-  ( (
ph  /\  ( x  e.  B  /\  y  e.  B ) )  -> 
( x ( +g  `  R ) y )  =  ( x ( +g  `  S ) y ) )
Assertion
Ref Expression
mplbaspropd  |-  ( ph  ->  ( Base `  (
I mPoly  R ) )  =  ( Base `  (
I mPoly  S ) ) )
Distinct variable groups:    ph, y, x   
x, B, y    y, R, x    y, S, x
Allowed substitution hints:    I( x, y)

Proof of Theorem mplbaspropd
Dummy variable  a is distinct from all other variables.
StepHypRef Expression
1 psrplusgpropd.b1 . . . . . . 7  |-  ( ph  ->  B  =  ( Base `  R ) )
2 psrplusgpropd.b2 . . . . . . 7  |-  ( ph  ->  B  =  ( Base `  S ) )
31, 2eqtr3d 2658 . . . . . 6  |-  ( ph  ->  ( Base `  R
)  =  ( Base `  S ) )
43psrbaspropd 19605 . . . . 5  |-  ( ph  ->  ( Base `  (
I mPwSer  R ) )  =  ( Base `  (
I mPwSer  S ) ) )
54adantr 481 . . . 4  |-  ( (
ph  /\  I  e.  _V )  ->  ( Base `  ( I mPwSer  R ) )  =  ( Base `  ( I mPwSer  S ) ) )
6 psrplusgpropd.p . . . . . . 7  |-  ( (
ph  /\  ( x  e.  B  /\  y  e.  B ) )  -> 
( x ( +g  `  R ) y )  =  ( x ( +g  `  S ) y ) )
71, 2, 6grpidpropd 17261 . . . . . 6  |-  ( ph  ->  ( 0g `  R
)  =  ( 0g
`  S ) )
87breq2d 4665 . . . . 5  |-  ( ph  ->  ( a finSupp  ( 0g
`  R )  <->  a finSupp  ( 0g
`  S ) ) )
98adantr 481 . . . 4  |-  ( (
ph  /\  I  e.  _V )  ->  ( a finSupp 
( 0g `  R
)  <->  a finSupp  ( 0g `  S ) ) )
105, 9rabeqbidv 3195 . . 3  |-  ( (
ph  /\  I  e.  _V )  ->  { a  e.  ( Base `  (
I mPwSer  R ) )  |  a finSupp  ( 0g `  R ) }  =  { a  e.  (
Base `  ( I mPwSer  S ) )  |  a finSupp 
( 0g `  S
) } )
11 eqid 2622 . . . 4  |-  ( I mPoly 
R )  =  ( I mPoly  R )
12 eqid 2622 . . . 4  |-  ( I mPwSer  R )  =  ( I mPwSer  R )
13 eqid 2622 . . . 4  |-  ( Base `  ( I mPwSer  R ) )  =  ( Base `  ( I mPwSer  R ) )
14 eqid 2622 . . . 4  |-  ( 0g
`  R )  =  ( 0g `  R
)
15 eqid 2622 . . . 4  |-  ( Base `  ( I mPoly  R ) )  =  ( Base `  ( I mPoly  R ) )
1611, 12, 13, 14, 15mplbas 19429 . . 3  |-  ( Base `  ( I mPoly  R ) )  =  { a  e.  ( Base `  (
I mPwSer  R ) )  |  a finSupp  ( 0g `  R ) }
17 eqid 2622 . . . 4  |-  ( I mPoly 
S )  =  ( I mPoly  S )
18 eqid 2622 . . . 4  |-  ( I mPwSer  S )  =  ( I mPwSer  S )
19 eqid 2622 . . . 4  |-  ( Base `  ( I mPwSer  S ) )  =  ( Base `  ( I mPwSer  S ) )
20 eqid 2622 . . . 4  |-  ( 0g
`  S )  =  ( 0g `  S
)
21 eqid 2622 . . . 4  |-  ( Base `  ( I mPoly  S ) )  =  ( Base `  ( I mPoly  S ) )
2217, 18, 19, 20, 21mplbas 19429 . . 3  |-  ( Base `  ( I mPoly  S ) )  =  { a  e.  ( Base `  (
I mPwSer  S ) )  |  a finSupp  ( 0g `  S ) }
2310, 16, 223eqtr4g 2681 . 2  |-  ( (
ph  /\  I  e.  _V )  ->  ( Base `  ( I mPoly  R ) )  =  ( Base `  ( I mPoly  S ) ) )
24 reldmmpl 19427 . . . . . 6  |-  Rel  dom mPoly
2524ovprc1 6684 . . . . 5  |-  ( -.  I  e.  _V  ->  ( I mPoly  R )  =  (/) )
2624ovprc1 6684 . . . . 5  |-  ( -.  I  e.  _V  ->  ( I mPoly  S )  =  (/) )
2725, 26eqtr4d 2659 . . . 4  |-  ( -.  I  e.  _V  ->  ( I mPoly  R )  =  ( I mPoly  S ) )
2827fveq2d 6195 . . 3  |-  ( -.  I  e.  _V  ->  (
Base `  ( I mPoly  R ) )  =  (
Base `  ( I mPoly  S ) ) )
2928adantl 482 . 2  |-  ( (
ph  /\  -.  I  e.  _V )  ->  ( Base `  ( I mPoly  R
) )  =  (
Base `  ( I mPoly  S ) ) )
3023, 29pm2.61dan 832 1  |-  ( ph  ->  ( Base `  (
I mPoly  R ) )  =  ( Base `  (
I mPoly  S ) ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 196    /\ wa 384    = wceq 1483    e. wcel 1990   {crab 2916   _Vcvv 3200   (/)c0 3915   class class class wbr 4653   ` cfv 5888  (class class class)co 6650   finSupp cfsupp 8275   Basecbs 15857   +g cplusg 15941   0gc0g 16100   mPwSer cmps 19351   mPoly cmpl 19353
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-of 6897  df-om 7066  df-1st 7168  df-2nd 7169  df-supp 7296  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-oadd 7564  df-er 7742  df-map 7859  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-fsupp 8276  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-nn 11021  df-2 11079  df-3 11080  df-4 11081  df-5 11082  df-6 11083  df-7 11084  df-8 11085  df-9 11086  df-n0 11293  df-z 11378  df-uz 11688  df-fz 12327  df-struct 15859  df-ndx 15860  df-slot 15861  df-base 15863  df-sets 15864  df-ress 15865  df-plusg 15954  df-mulr 15955  df-sca 15957  df-vsca 15958  df-tset 15960  df-0g 16102  df-psr 19356  df-mpl 19358
This theorem is referenced by:  ply1baspropd  19613  mdegpropd  23844
  Copyright terms: Public domain W3C validator