Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  isnumbasgrplem2 Structured version   Visualization version   Unicode version

Theorem isnumbasgrplem2 37674
Description: If the (to be thought of as disjoint, although the proof does not require this) union of a set and its Hartogs number supports a group structure (more generally, a cancellative magma), then the set must be numerable. (Contributed by Stefan O'Rear, 9-Jul-2015.)
Assertion
Ref Expression
isnumbasgrplem2  |-  ( ( S  u.  (har `  S ) )  e.  ( Base " Grp )  ->  S  e.  dom  card )

Proof of Theorem isnumbasgrplem2
Dummy variables  a 
b  c  d  x are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 basfn 15877 . . 3  |-  Base  Fn  _V
2 ssv 3625 . . 3  |-  Grp  C_  _V
3 fvelimab 6253 . . 3  |-  ( (
Base  Fn  _V  /\  Grp  C_ 
_V )  ->  (
( S  u.  (har `  S ) )  e.  ( Base " Grp ) 
<->  E. x  e.  Grp  ( Base `  x )  =  ( S  u.  (har `  S ) ) ) )
41, 2, 3mp2an 708 . 2  |-  ( ( S  u.  (har `  S ) )  e.  ( Base " Grp ) 
<->  E. x  e.  Grp  ( Base `  x )  =  ( S  u.  (har `  S ) ) )
5 harcl 8466 . . . . . 6  |-  (har `  S )  e.  On
6 onenon 8775 . . . . . 6  |-  ( (har
`  S )  e.  On  ->  (har `  S
)  e.  dom  card )
75, 6ax-mp 5 . . . . 5  |-  (har `  S )  e.  dom  card
8 xpnum 8777 . . . . 5  |-  ( ( (har `  S )  e.  dom  card  /\  (har `  S )  e.  dom  card )  ->  ( (har `  S )  X.  (har `  S ) )  e. 
dom  card )
97, 7, 8mp2an 708 . . . 4  |-  ( (har
`  S )  X.  (har `  S )
)  e.  dom  card
10 ssun1 3776 . . . . . . . 8  |-  S  C_  ( S  u.  (har `  S ) )
11 simpr 477 . . . . . . . 8  |-  ( ( x  e.  Grp  /\  ( Base `  x )  =  ( S  u.  (har `  S ) ) )  ->  ( Base `  x )  =  ( S  u.  (har `  S ) ) )
1210, 11syl5sseqr 3654 . . . . . . 7  |-  ( ( x  e.  Grp  /\  ( Base `  x )  =  ( S  u.  (har `  S ) ) )  ->  S  C_  ( Base `  x ) )
13 fvex 6201 . . . . . . . 8  |-  ( Base `  x )  e.  _V
1413ssex 4802 . . . . . . 7  |-  ( S 
C_  ( Base `  x
)  ->  S  e.  _V )
1512, 14syl 17 . . . . . 6  |-  ( ( x  e.  Grp  /\  ( Base `  x )  =  ( S  u.  (har `  S ) ) )  ->  S  e.  _V )
167a1i 11 . . . . . 6  |-  ( ( x  e.  Grp  /\  ( Base `  x )  =  ( S  u.  (har `  S ) ) )  ->  (har `  S
)  e.  dom  card )
17 simp1l 1085 . . . . . . . 8  |-  ( ( ( x  e.  Grp  /\  ( Base `  x
)  =  ( S  u.  (har `  S
) ) )  /\  a  e.  S  /\  c  e.  (har `  S
) )  ->  x  e.  Grp )
18123ad2ant1 1082 . . . . . . . . 9  |-  ( ( ( x  e.  Grp  /\  ( Base `  x
)  =  ( S  u.  (har `  S
) ) )  /\  a  e.  S  /\  c  e.  (har `  S
) )  ->  S  C_  ( Base `  x
) )
19 simp2 1062 . . . . . . . . 9  |-  ( ( ( x  e.  Grp  /\  ( Base `  x
)  =  ( S  u.  (har `  S
) ) )  /\  a  e.  S  /\  c  e.  (har `  S
) )  ->  a  e.  S )
2018, 19sseldd 3604 . . . . . . . 8  |-  ( ( ( x  e.  Grp  /\  ( Base `  x
)  =  ( S  u.  (har `  S
) ) )  /\  a  e.  S  /\  c  e.  (har `  S
) )  ->  a  e.  ( Base `  x
) )
21 ssun2 3777 . . . . . . . . . . 11  |-  (har `  S )  C_  ( S  u.  (har `  S
) )
2221, 11syl5sseqr 3654 . . . . . . . . . 10  |-  ( ( x  e.  Grp  /\  ( Base `  x )  =  ( S  u.  (har `  S ) ) )  ->  (har `  S
)  C_  ( Base `  x ) )
23223ad2ant1 1082 . . . . . . . . 9  |-  ( ( ( x  e.  Grp  /\  ( Base `  x
)  =  ( S  u.  (har `  S
) ) )  /\  a  e.  S  /\  c  e.  (har `  S
) )  ->  (har `  S )  C_  ( Base `  x ) )
24 simp3 1063 . . . . . . . . 9  |-  ( ( ( x  e.  Grp  /\  ( Base `  x
)  =  ( S  u.  (har `  S
) ) )  /\  a  e.  S  /\  c  e.  (har `  S
) )  ->  c  e.  (har `  S )
)
2523, 24sseldd 3604 . . . . . . . 8  |-  ( ( ( x  e.  Grp  /\  ( Base `  x
)  =  ( S  u.  (har `  S
) ) )  /\  a  e.  S  /\  c  e.  (har `  S
) )  ->  c  e.  ( Base `  x
) )
26 eqid 2622 . . . . . . . . 9  |-  ( Base `  x )  =  (
Base `  x )
27 eqid 2622 . . . . . . . . 9  |-  ( +g  `  x )  =  ( +g  `  x )
2826, 27grpcl 17430 . . . . . . . 8  |-  ( ( x  e.  Grp  /\  a  e.  ( Base `  x )  /\  c  e.  ( Base `  x
) )  ->  (
a ( +g  `  x
) c )  e.  ( Base `  x
) )
2917, 20, 25, 28syl3anc 1326 . . . . . . 7  |-  ( ( ( x  e.  Grp  /\  ( Base `  x
)  =  ( S  u.  (har `  S
) ) )  /\  a  e.  S  /\  c  e.  (har `  S
) )  ->  (
a ( +g  `  x
) c )  e.  ( Base `  x
) )
30 simp1r 1086 . . . . . . 7  |-  ( ( ( x  e.  Grp  /\  ( Base `  x
)  =  ( S  u.  (har `  S
) ) )  /\  a  e.  S  /\  c  e.  (har `  S
) )  ->  ( Base `  x )  =  ( S  u.  (har `  S ) ) )
3129, 30eleqtrd 2703 . . . . . 6  |-  ( ( ( x  e.  Grp  /\  ( Base `  x
)  =  ( S  u.  (har `  S
) ) )  /\  a  e.  S  /\  c  e.  (har `  S
) )  ->  (
a ( +g  `  x
) c )  e.  ( S  u.  (har `  S ) ) )
32 simplll 798 . . . . . . 7  |-  ( ( ( ( x  e. 
Grp  /\  ( Base `  x )  =  ( S  u.  (har `  S ) ) )  /\  a  e.  S
)  /\  ( c  e.  (har `  S )  /\  d  e.  (har `  S ) ) )  ->  x  e.  Grp )
3322ad2antrr 762 . . . . . . . 8  |-  ( ( ( ( x  e. 
Grp  /\  ( Base `  x )  =  ( S  u.  (har `  S ) ) )  /\  a  e.  S
)  /\  ( c  e.  (har `  S )  /\  d  e.  (har `  S ) ) )  ->  (har `  S
)  C_  ( Base `  x ) )
34 simprl 794 . . . . . . . 8  |-  ( ( ( ( x  e. 
Grp  /\  ( Base `  x )  =  ( S  u.  (har `  S ) ) )  /\  a  e.  S
)  /\  ( c  e.  (har `  S )  /\  d  e.  (har `  S ) ) )  ->  c  e.  (har
`  S ) )
3533, 34sseldd 3604 . . . . . . 7  |-  ( ( ( ( x  e. 
Grp  /\  ( Base `  x )  =  ( S  u.  (har `  S ) ) )  /\  a  e.  S
)  /\  ( c  e.  (har `  S )  /\  d  e.  (har `  S ) ) )  ->  c  e.  (
Base `  x )
)
36 simprr 796 . . . . . . . 8  |-  ( ( ( ( x  e. 
Grp  /\  ( Base `  x )  =  ( S  u.  (har `  S ) ) )  /\  a  e.  S
)  /\  ( c  e.  (har `  S )  /\  d  e.  (har `  S ) ) )  ->  d  e.  (har
`  S ) )
3733, 36sseldd 3604 . . . . . . 7  |-  ( ( ( ( x  e. 
Grp  /\  ( Base `  x )  =  ( S  u.  (har `  S ) ) )  /\  a  e.  S
)  /\  ( c  e.  (har `  S )  /\  d  e.  (har `  S ) ) )  ->  d  e.  (
Base `  x )
)
3812ad2antrr 762 . . . . . . . 8  |-  ( ( ( ( x  e. 
Grp  /\  ( Base `  x )  =  ( S  u.  (har `  S ) ) )  /\  a  e.  S
)  /\  ( c  e.  (har `  S )  /\  d  e.  (har `  S ) ) )  ->  S  C_  ( Base `  x ) )
39 simplr 792 . . . . . . . 8  |-  ( ( ( ( x  e. 
Grp  /\  ( Base `  x )  =  ( S  u.  (har `  S ) ) )  /\  a  e.  S
)  /\  ( c  e.  (har `  S )  /\  d  e.  (har `  S ) ) )  ->  a  e.  S
)
4038, 39sseldd 3604 . . . . . . 7  |-  ( ( ( ( x  e. 
Grp  /\  ( Base `  x )  =  ( S  u.  (har `  S ) ) )  /\  a  e.  S
)  /\  ( c  e.  (har `  S )  /\  d  e.  (har `  S ) ) )  ->  a  e.  (
Base `  x )
)
4126, 27grplcan 17477 . . . . . . 7  |-  ( ( x  e.  Grp  /\  ( c  e.  (
Base `  x )  /\  d  e.  ( Base `  x )  /\  a  e.  ( Base `  x ) ) )  ->  ( ( a ( +g  `  x
) c )  =  ( a ( +g  `  x ) d )  <-> 
c  =  d ) )
4232, 35, 37, 40, 41syl13anc 1328 . . . . . 6  |-  ( ( ( ( x  e. 
Grp  /\  ( Base `  x )  =  ( S  u.  (har `  S ) ) )  /\  a  e.  S
)  /\  ( c  e.  (har `  S )  /\  d  e.  (har `  S ) ) )  ->  ( ( a ( +g  `  x
) c )  =  ( a ( +g  `  x ) d )  <-> 
c  =  d ) )
43 simplll 798 . . . . . . 7  |-  ( ( ( ( x  e. 
Grp  /\  ( Base `  x )  =  ( S  u.  (har `  S ) ) )  /\  b  e.  (har
`  S ) )  /\  ( a  e.  S  /\  d  e.  S ) )  ->  x  e.  Grp )
4412ad2antrr 762 . . . . . . . 8  |-  ( ( ( ( x  e. 
Grp  /\  ( Base `  x )  =  ( S  u.  (har `  S ) ) )  /\  b  e.  (har
`  S ) )  /\  ( a  e.  S  /\  d  e.  S ) )  ->  S  C_  ( Base `  x
) )
45 simprr 796 . . . . . . . 8  |-  ( ( ( ( x  e. 
Grp  /\  ( Base `  x )  =  ( S  u.  (har `  S ) ) )  /\  b  e.  (har
`  S ) )  /\  ( a  e.  S  /\  d  e.  S ) )  -> 
d  e.  S )
4644, 45sseldd 3604 . . . . . . 7  |-  ( ( ( ( x  e. 
Grp  /\  ( Base `  x )  =  ( S  u.  (har `  S ) ) )  /\  b  e.  (har
`  S ) )  /\  ( a  e.  S  /\  d  e.  S ) )  -> 
d  e.  ( Base `  x ) )
47 simprl 794 . . . . . . . 8  |-  ( ( ( ( x  e. 
Grp  /\  ( Base `  x )  =  ( S  u.  (har `  S ) ) )  /\  b  e.  (har
`  S ) )  /\  ( a  e.  S  /\  d  e.  S ) )  -> 
a  e.  S )
4844, 47sseldd 3604 . . . . . . 7  |-  ( ( ( ( x  e. 
Grp  /\  ( Base `  x )  =  ( S  u.  (har `  S ) ) )  /\  b  e.  (har
`  S ) )  /\  ( a  e.  S  /\  d  e.  S ) )  -> 
a  e.  ( Base `  x ) )
4922ad2antrr 762 . . . . . . . 8  |-  ( ( ( ( x  e. 
Grp  /\  ( Base `  x )  =  ( S  u.  (har `  S ) ) )  /\  b  e.  (har
`  S ) )  /\  ( a  e.  S  /\  d  e.  S ) )  -> 
(har `  S )  C_  ( Base `  x
) )
50 simplr 792 . . . . . . . 8  |-  ( ( ( ( x  e. 
Grp  /\  ( Base `  x )  =  ( S  u.  (har `  S ) ) )  /\  b  e.  (har
`  S ) )  /\  ( a  e.  S  /\  d  e.  S ) )  -> 
b  e.  (har `  S ) )
5149, 50sseldd 3604 . . . . . . 7  |-  ( ( ( ( x  e. 
Grp  /\  ( Base `  x )  =  ( S  u.  (har `  S ) ) )  /\  b  e.  (har
`  S ) )  /\  ( a  e.  S  /\  d  e.  S ) )  -> 
b  e.  ( Base `  x ) )
5226, 27grprcan 17455 . . . . . . 7  |-  ( ( x  e.  Grp  /\  ( d  e.  (
Base `  x )  /\  a  e.  ( Base `  x )  /\  b  e.  ( Base `  x ) ) )  ->  ( ( d ( +g  `  x
) b )  =  ( a ( +g  `  x ) b )  <-> 
d  =  a ) )
5343, 46, 48, 51, 52syl13anc 1328 . . . . . 6  |-  ( ( ( ( x  e. 
Grp  /\  ( Base `  x )  =  ( S  u.  (har `  S ) ) )  /\  b  e.  (har
`  S ) )  /\  ( a  e.  S  /\  d  e.  S ) )  -> 
( ( d ( +g  `  x ) b )  =  ( a ( +g  `  x
) b )  <->  d  =  a ) )
54 harndom 8469 . . . . . . 7  |-  -.  (har `  S )  ~<_  S
5554a1i 11 . . . . . 6  |-  ( ( x  e.  Grp  /\  ( Base `  x )  =  ( S  u.  (har `  S ) ) )  ->  -.  (har `  S )  ~<_  S )
5615, 16, 16, 31, 42, 53, 55unxpwdom3 37665 . . . . 5  |-  ( ( x  e.  Grp  /\  ( Base `  x )  =  ( S  u.  (har `  S ) ) )  ->  S  ~<_*  ( (har `  S
)  X.  (har `  S ) ) )
57 wdomnumr 8887 . . . . . 6  |-  ( ( (har `  S )  X.  (har `  S )
)  e.  dom  card  -> 
( S  ~<_*  ( (har `  S
)  X.  (har `  S ) )  <->  S  ~<_  ( (har
`  S )  X.  (har `  S )
) ) )
589, 57ax-mp 5 . . . . 5  |-  ( S  ~<_*  ( (har `  S )  X.  (har `  S )
)  <->  S  ~<_  ( (har `  S )  X.  (har `  S ) ) )
5956, 58sylib 208 . . . 4  |-  ( ( x  e.  Grp  /\  ( Base `  x )  =  ( S  u.  (har `  S ) ) )  ->  S  ~<_  ( (har
`  S )  X.  (har `  S )
) )
60 numdom 8861 . . . 4  |-  ( ( ( (har `  S
)  X.  (har `  S ) )  e. 
dom  card  /\  S  ~<_  ( (har
`  S )  X.  (har `  S )
) )  ->  S  e.  dom  card )
619, 59, 60sylancr 695 . . 3  |-  ( ( x  e.  Grp  /\  ( Base `  x )  =  ( S  u.  (har `  S ) ) )  ->  S  e.  dom  card )
6261rexlimiva 3028 . 2  |-  ( E. x  e.  Grp  ( Base `  x )  =  ( S  u.  (har `  S ) )  ->  S  e.  dom  card )
634, 62sylbi 207 1  |-  ( ( S  u.  (har `  S ) )  e.  ( Base " Grp )  ->  S  e.  dom  card )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 196    /\ wa 384    /\ w3a 1037    = wceq 1483    e. wcel 1990   E.wrex 2913   _Vcvv 3200    u. cun 3572    C_ wss 3574   class class class wbr 4653    X. cxp 5112   dom cdm 5114   "cima 5117   Oncon0 5723    Fn wfn 5883   ` cfv 5888  (class class class)co 6650    ~<_ cdom 7953  harchar 8461    ~<_* cwdom 8462   cardccrd 8761   Basecbs 15857   +g cplusg 15941   Grpcgrp 17422
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-se 5074  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-isom 5897  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-oadd 7564  df-omul 7565  df-er 7742  df-map 7859  df-en 7956  df-dom 7957  df-sdom 7958  df-oi 8415  df-har 8463  df-wdom 8464  df-card 8765  df-acn 8768  df-slot 15861  df-base 15863  df-0g 16102  df-mgm 17242  df-sgrp 17284  df-mnd 17295  df-grp 17425  df-minusg 17426
This theorem is referenced by:  isnumbasabl  37676  isnumbasgrp  37677
  Copyright terms: Public domain W3C validator