| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > sylow1lem4 | Structured version Visualization version Unicode version | ||
| Description: Lemma for sylow1 18018. The stabilizer subgroup of any element of
|
| Ref | Expression |
|---|---|
| sylow1.x |
|
| sylow1.g |
|
| sylow1.f |
|
| sylow1.p |
|
| sylow1.n |
|
| sylow1.d |
|
| sylow1lem.a |
|
| sylow1lem.s |
|
| sylow1lem.m |
|
| sylow1lem3.1 |
|
| sylow1lem4.b |
|
| sylow1lem4.h |
|
| Ref | Expression |
|---|---|
| sylow1lem4 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sylow1lem4.b |
. . . . . . . . . 10
| |
| 2 | fveq2 6191 |
. . . . . . . . . . . 12
| |
| 3 | 2 | eqeq1d 2624 |
. . . . . . . . . . 11
|
| 4 | sylow1lem.s |
. . . . . . . . . . 11
| |
| 5 | 3, 4 | elrab2 3366 |
. . . . . . . . . 10
|
| 6 | 1, 5 | sylib 208 |
. . . . . . . . 9
|
| 7 | 6 | simprd 479 |
. . . . . . . 8
|
| 8 | sylow1.p |
. . . . . . . . . 10
| |
| 9 | prmnn 15388 |
. . . . . . . . . 10
| |
| 10 | 8, 9 | syl 17 |
. . . . . . . . 9
|
| 11 | sylow1.n |
. . . . . . . . 9
| |
| 12 | 10, 11 | nnexpcld 13030 |
. . . . . . . 8
|
| 13 | 7, 12 | eqeltrd 2701 |
. . . . . . 7
|
| 14 | 13 | nnne0d 11065 |
. . . . . 6
|
| 15 | hasheq0 13154 |
. . . . . . . 8
| |
| 16 | 15 | necon3bid 2838 |
. . . . . . 7
|
| 17 | 1, 16 | syl 17 |
. . . . . 6
|
| 18 | 14, 17 | mpbid 222 |
. . . . 5
|
| 19 | n0 3931 |
. . . . 5
| |
| 20 | 18, 19 | sylib 208 |
. . . 4
|
| 21 | 1 | adantr 481 |
. . . . 5
|
| 22 | simplr 792 |
. . . . . . . . . . 11
| |
| 23 | oveq2 6658 |
. . . . . . . . . . . 12
| |
| 24 | eqid 2622 |
. . . . . . . . . . . 12
| |
| 25 | ovex 6678 |
. . . . . . . . . . . 12
| |
| 26 | 23, 24, 25 | fvmpt 6282 |
. . . . . . . . . . 11
|
| 27 | 22, 26 | syl 17 |
. . . . . . . . . 10
|
| 28 | ovex 6678 |
. . . . . . . . . . . 12
| |
| 29 | 28, 24 | fnmpti 6022 |
. . . . . . . . . . 11
|
| 30 | fnfvelrn 6356 |
. . . . . . . . . . 11
| |
| 31 | 29, 22, 30 | sylancr 695 |
. . . . . . . . . 10
|
| 32 | 27, 31 | eqeltrrd 2702 |
. . . . . . . . 9
|
| 33 | sylow1lem4.h |
. . . . . . . . . . . 12
| |
| 34 | ssrab2 3687 |
. . . . . . . . . . . 12
| |
| 35 | 33, 34 | eqsstri 3635 |
. . . . . . . . . . 11
|
| 36 | simpr 477 |
. . . . . . . . . . 11
| |
| 37 | 35, 36 | sseldi 3601 |
. . . . . . . . . 10
|
| 38 | 1 | ad2antrr 762 |
. . . . . . . . . 10
|
| 39 | mptexg 6484 |
. . . . . . . . . . 11
| |
| 40 | rnexg 7098 |
. . . . . . . . . . 11
| |
| 41 | 38, 39, 40 | 3syl 18 |
. . . . . . . . . 10
|
| 42 | simpr 477 |
. . . . . . . . . . . . 13
| |
| 43 | simpl 473 |
. . . . . . . . . . . . . 14
| |
| 44 | 43 | oveq1d 6665 |
. . . . . . . . . . . . 13
|
| 45 | 42, 44 | mpteq12dv 4733 |
. . . . . . . . . . . 12
|
| 46 | 45 | rneqd 5353 |
. . . . . . . . . . 11
|
| 47 | sylow1lem.m |
. . . . . . . . . . 11
| |
| 48 | 46, 47 | ovmpt2ga 6790 |
. . . . . . . . . 10
|
| 49 | 37, 38, 41, 48 | syl3anc 1326 |
. . . . . . . . 9
|
| 50 | 32, 49 | eleqtrrd 2704 |
. . . . . . . 8
|
| 51 | oveq1 6657 |
. . . . . . . . . . . 12
| |
| 52 | 51 | eqeq1d 2624 |
. . . . . . . . . . 11
|
| 53 | 52, 33 | elrab2 3366 |
. . . . . . . . . 10
|
| 54 | 53 | simprbi 480 |
. . . . . . . . 9
|
| 55 | 54 | adantl 482 |
. . . . . . . 8
|
| 56 | 50, 55 | eleqtrd 2703 |
. . . . . . 7
|
| 57 | 56 | ex 450 |
. . . . . 6
|
| 58 | sylow1.g |
. . . . . . . . 9
| |
| 59 | 58 | ad2antrr 762 |
. . . . . . . 8
|
| 60 | simprl 794 |
. . . . . . . . 9
| |
| 61 | 35, 60 | sseldi 3601 |
. . . . . . . 8
|
| 62 | simprr 796 |
. . . . . . . . 9
| |
| 63 | 35, 62 | sseldi 3601 |
. . . . . . . 8
|
| 64 | 6 | simpld 475 |
. . . . . . . . . . 11
|
| 65 | 64 | elpwid 4170 |
. . . . . . . . . 10
|
| 66 | 65 | sselda 3603 |
. . . . . . . . 9
|
| 67 | 66 | adantr 481 |
. . . . . . . 8
|
| 68 | sylow1.x |
. . . . . . . . 9
| |
| 69 | sylow1lem.a |
. . . . . . . . 9
| |
| 70 | 68, 69 | grprcan 17455 |
. . . . . . . 8
|
| 71 | 59, 61, 63, 67, 70 | syl13anc 1328 |
. . . . . . 7
|
| 72 | 71 | ex 450 |
. . . . . 6
|
| 73 | 57, 72 | dom2d 7996 |
. . . . 5
|
| 74 | 21, 73 | mpd 15 |
. . . 4
|
| 75 | 20, 74 | exlimddv 1863 |
. . 3
|
| 76 | sylow1.f |
. . . . 5
| |
| 77 | ssfi 8180 |
. . . . 5
| |
| 78 | 76, 35, 77 | sylancl 694 |
. . . 4
|
| 79 | ssfi 8180 |
. . . . 5
| |
| 80 | 76, 65, 79 | syl2anc 693 |
. . . 4
|
| 81 | hashdom 13168 |
. . . 4
| |
| 82 | 78, 80, 81 | syl2anc 693 |
. . 3
|
| 83 | 75, 82 | mpbird 247 |
. 2
|
| 84 | 83, 7 | breqtrd 4679 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-rep 4771 ax-sep 4781 ax-nul 4789 ax-pow 4843 ax-pr 4906 ax-un 6949 ax-cnex 9992 ax-resscn 9993 ax-1cn 9994 ax-icn 9995 ax-addcl 9996 ax-addrcl 9997 ax-mulcl 9998 ax-mulrcl 9999 ax-mulcom 10000 ax-addass 10001 ax-mulass 10002 ax-distr 10003 ax-i2m1 10004 ax-1ne0 10005 ax-1rid 10006 ax-rnegex 10007 ax-rrecex 10008 ax-cnre 10009 ax-pre-lttri 10010 ax-pre-lttrn 10011 ax-pre-ltadd 10012 ax-pre-mulgt0 10013 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3or 1038 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-nel 2898 df-ral 2917 df-rex 2918 df-reu 2919 df-rmo 2920 df-rab 2921 df-v 3202 df-sbc 3436 df-csb 3534 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-pss 3590 df-nul 3916 df-if 4087 df-pw 4160 df-sn 4178 df-pr 4180 df-tp 4182 df-op 4184 df-uni 4437 df-int 4476 df-iun 4522 df-br 4654 df-opab 4713 df-mpt 4730 df-tr 4753 df-id 5024 df-eprel 5029 df-po 5035 df-so 5036 df-fr 5073 df-we 5075 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-rn 5125 df-res 5126 df-ima 5127 df-pred 5680 df-ord 5726 df-on 5727 df-lim 5728 df-suc 5729 df-iota 5851 df-fun 5890 df-fn 5891 df-f 5892 df-f1 5893 df-fo 5894 df-f1o 5895 df-fv 5896 df-riota 6611 df-ov 6653 df-oprab 6654 df-mpt2 6655 df-om 7066 df-1st 7168 df-2nd 7169 df-wrecs 7407 df-recs 7468 df-rdg 7506 df-1o 7560 df-oadd 7564 df-er 7742 df-en 7956 df-dom 7957 df-sdom 7958 df-fin 7959 df-card 8765 df-pnf 10076 df-mnf 10077 df-xr 10078 df-ltxr 10079 df-le 10080 df-sub 10268 df-neg 10269 df-nn 11021 df-n0 11293 df-xnn0 11364 df-z 11378 df-uz 11688 df-fz 12327 df-seq 12802 df-exp 12861 df-hash 13118 df-prm 15386 df-0g 16102 df-mgm 17242 df-sgrp 17284 df-mnd 17295 df-grp 17425 |
| This theorem is referenced by: sylow1lem5 18017 |
| Copyright terms: Public domain | W3C validator |