MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  gsumval3eu Structured version   Visualization version   Unicode version

Theorem gsumval3eu 18305
Description: The group sum as defined in gsumval3a 18304 is uniquely defined. (Contributed by Mario Carneiro, 8-Dec-2014.)
Hypotheses
Ref Expression
gsumval3.b  |-  B  =  ( Base `  G
)
gsumval3.0  |-  .0.  =  ( 0g `  G )
gsumval3.p  |-  .+  =  ( +g  `  G )
gsumval3.z  |-  Z  =  (Cntz `  G )
gsumval3.g  |-  ( ph  ->  G  e.  Mnd )
gsumval3.a  |-  ( ph  ->  A  e.  V )
gsumval3.f  |-  ( ph  ->  F : A --> B )
gsumval3.c  |-  ( ph  ->  ran  F  C_  ( Z `  ran  F ) )
gsumval3a.t  |-  ( ph  ->  W  e.  Fin )
gsumval3a.n  |-  ( ph  ->  W  =/=  (/) )
gsumval3a.s  |-  ( ph  ->  W  C_  A )
Assertion
Ref Expression
gsumval3eu  |-  ( ph  ->  E! x E. f
( f : ( 1 ... ( # `  W ) ) -1-1-onto-> W  /\  x  =  (  seq 1 (  .+  , 
( F  o.  f
) ) `  ( # `
 W ) ) ) )
Distinct variable groups:    x, f,  .+    A, f, x    ph, f, x    x,  .0.    f, G, x   
x, V    B, f, x    f, F, x    f, W, x
Allowed substitution hints:    V( f)    .0. ( f)    Z( x, f)

Proof of Theorem gsumval3eu
Dummy variables  g 
k  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 gsumval3a.n . . . . . 6  |-  ( ph  ->  W  =/=  (/) )
21neneqd 2799 . . . . 5  |-  ( ph  ->  -.  W  =  (/) )
3 gsumval3a.t . . . . . . 7  |-  ( ph  ->  W  e.  Fin )
4 fz1f1o 14441 . . . . . . 7  |-  ( W  e.  Fin  ->  ( W  =  (/)  \/  (
( # `  W )  e.  NN  /\  E. f  f : ( 1 ... ( # `  W ) ) -1-1-onto-> W ) ) )
53, 4syl 17 . . . . . 6  |-  ( ph  ->  ( W  =  (/)  \/  ( ( # `  W
)  e.  NN  /\  E. f  f : ( 1 ... ( # `  W ) ) -1-1-onto-> W ) ) )
65ord 392 . . . . 5  |-  ( ph  ->  ( -.  W  =  (/)  ->  ( ( # `  W )  e.  NN  /\ 
E. f  f : ( 1 ... ( # `
 W ) ) -1-1-onto-> W ) ) )
72, 6mpd 15 . . . 4  |-  ( ph  ->  ( ( # `  W
)  e.  NN  /\  E. f  f : ( 1 ... ( # `  W ) ) -1-1-onto-> W ) )
87simprd 479 . . 3  |-  ( ph  ->  E. f  f : ( 1 ... ( # `
 W ) ) -1-1-onto-> W )
9 excom 2042 . . . 4  |-  ( E. x E. f ( f : ( 1 ... ( # `  W
) ) -1-1-onto-> W  /\  x  =  (  seq 1 ( 
.+  ,  ( F  o.  f ) ) `
 ( # `  W
) ) )  <->  E. f E. x ( f : ( 1 ... ( # `
 W ) ) -1-1-onto-> W  /\  x  =  (  seq 1 (  .+  ,  ( F  o.  f ) ) `  ( # `  W ) ) ) )
10 exancom 1787 . . . . . 6  |-  ( E. x ( f : ( 1 ... ( # `
 W ) ) -1-1-onto-> W  /\  x  =  (  seq 1 (  .+  ,  ( F  o.  f ) ) `  ( # `  W ) ) )  <->  E. x
( x  =  (  seq 1 (  .+  ,  ( F  o.  f ) ) `  ( # `  W ) )  /\  f : ( 1 ... ( # `
 W ) ) -1-1-onto-> W ) )
11 fvex 6201 . . . . . . 7  |-  (  seq 1 (  .+  , 
( F  o.  f
) ) `  ( # `
 W ) )  e.  _V
12 biidd 252 . . . . . . 7  |-  ( x  =  (  seq 1
(  .+  ,  ( F  o.  f )
) `  ( # `  W
) )  ->  (
f : ( 1 ... ( # `  W
) ) -1-1-onto-> W  <->  f : ( 1 ... ( # `  W ) ) -1-1-onto-> W ) )
1311, 12ceqsexv 3242 . . . . . 6  |-  ( E. x ( x  =  (  seq 1 ( 
.+  ,  ( F  o.  f ) ) `
 ( # `  W
) )  /\  f : ( 1 ... ( # `  W
) ) -1-1-onto-> W )  <->  f :
( 1 ... ( # `
 W ) ) -1-1-onto-> W )
1410, 13bitri 264 . . . . 5  |-  ( E. x ( f : ( 1 ... ( # `
 W ) ) -1-1-onto-> W  /\  x  =  (  seq 1 (  .+  ,  ( F  o.  f ) ) `  ( # `  W ) ) )  <->  f :
( 1 ... ( # `
 W ) ) -1-1-onto-> W )
1514exbii 1774 . . . 4  |-  ( E. f E. x ( f : ( 1 ... ( # `  W
) ) -1-1-onto-> W  /\  x  =  (  seq 1 ( 
.+  ,  ( F  o.  f ) ) `
 ( # `  W
) ) )  <->  E. f 
f : ( 1 ... ( # `  W
) ) -1-1-onto-> W )
169, 15bitri 264 . . 3  |-  ( E. x E. f ( f : ( 1 ... ( # `  W
) ) -1-1-onto-> W  /\  x  =  (  seq 1 ( 
.+  ,  ( F  o.  f ) ) `
 ( # `  W
) ) )  <->  E. f 
f : ( 1 ... ( # `  W
) ) -1-1-onto-> W )
178, 16sylibr 224 . 2  |-  ( ph  ->  E. x E. f
( f : ( 1 ... ( # `  W ) ) -1-1-onto-> W  /\  x  =  (  seq 1 (  .+  , 
( F  o.  f
) ) `  ( # `
 W ) ) ) )
18 eeanv 2182 . . . 4  |-  ( E. f E. g ( ( f : ( 1 ... ( # `  W ) ) -1-1-onto-> W  /\  x  =  (  seq 1 (  .+  , 
( F  o.  f
) ) `  ( # `
 W ) ) )  /\  ( g : ( 1 ... ( # `  W
) ) -1-1-onto-> W  /\  y  =  (  seq 1 ( 
.+  ,  ( F  o.  g ) ) `
 ( # `  W
) ) ) )  <-> 
( E. f ( f : ( 1 ... ( # `  W
) ) -1-1-onto-> W  /\  x  =  (  seq 1 ( 
.+  ,  ( F  o.  f ) ) `
 ( # `  W
) ) )  /\  E. g ( g : ( 1 ... ( # `
 W ) ) -1-1-onto-> W  /\  y  =  (  seq 1 (  .+  ,  ( F  o.  g ) ) `  ( # `  W ) ) ) ) )
19 an4 865 . . . . . 6  |-  ( ( ( f : ( 1 ... ( # `  W ) ) -1-1-onto-> W  /\  g : ( 1 ... ( # `  W
) ) -1-1-onto-> W )  /\  (
x  =  (  seq 1 (  .+  , 
( F  o.  f
) ) `  ( # `
 W ) )  /\  y  =  (  seq 1 (  .+  ,  ( F  o.  g ) ) `  ( # `  W ) ) ) )  <->  ( (
f : ( 1 ... ( # `  W
) ) -1-1-onto-> W  /\  x  =  (  seq 1 ( 
.+  ,  ( F  o.  f ) ) `
 ( # `  W
) ) )  /\  ( g : ( 1 ... ( # `  W ) ) -1-1-onto-> W  /\  y  =  (  seq 1 (  .+  , 
( F  o.  g
) ) `  ( # `
 W ) ) ) ) )
20 gsumval3.g . . . . . . . . . . 11  |-  ( ph  ->  G  e.  Mnd )
2120adantr 481 . . . . . . . . . 10  |-  ( (
ph  /\  ( f : ( 1 ... ( # `  W
) ) -1-1-onto-> W  /\  g : ( 1 ... ( # `
 W ) ) -1-1-onto-> W ) )  ->  G  e.  Mnd )
22 gsumval3.b . . . . . . . . . . . 12  |-  B  =  ( Base `  G
)
23 gsumval3.p . . . . . . . . . . . 12  |-  .+  =  ( +g  `  G )
2422, 23mndcl 17301 . . . . . . . . . . 11  |-  ( ( G  e.  Mnd  /\  x  e.  B  /\  y  e.  B )  ->  ( x  .+  y
)  e.  B )
25243expb 1266 . . . . . . . . . 10  |-  ( ( G  e.  Mnd  /\  ( x  e.  B  /\  y  e.  B
) )  ->  (
x  .+  y )  e.  B )
2621, 25sylan 488 . . . . . . . . 9  |-  ( ( ( ph  /\  (
f : ( 1 ... ( # `  W
) ) -1-1-onto-> W  /\  g : ( 1 ... ( # `
 W ) ) -1-1-onto-> W ) )  /\  (
x  e.  B  /\  y  e.  B )
)  ->  ( x  .+  y )  e.  B
)
27 gsumval3.c . . . . . . . . . . . . 13  |-  ( ph  ->  ran  F  C_  ( Z `  ran  F ) )
2827adantr 481 . . . . . . . . . . . 12  |-  ( (
ph  /\  ( f : ( 1 ... ( # `  W
) ) -1-1-onto-> W  /\  g : ( 1 ... ( # `
 W ) ) -1-1-onto-> W ) )  ->  ran  F 
C_  ( Z `  ran  F ) )
2928sselda 3603 . . . . . . . . . . 11  |-  ( ( ( ph  /\  (
f : ( 1 ... ( # `  W
) ) -1-1-onto-> W  /\  g : ( 1 ... ( # `
 W ) ) -1-1-onto-> W ) )  /\  x  e.  ran  F )  ->  x  e.  ( Z `  ran  F ) )
3029adantrr 753 . . . . . . . . . 10  |-  ( ( ( ph  /\  (
f : ( 1 ... ( # `  W
) ) -1-1-onto-> W  /\  g : ( 1 ... ( # `
 W ) ) -1-1-onto-> W ) )  /\  (
x  e.  ran  F  /\  y  e.  ran  F ) )  ->  x  e.  ( Z `  ran  F ) )
31 simprr 796 . . . . . . . . . 10  |-  ( ( ( ph  /\  (
f : ( 1 ... ( # `  W
) ) -1-1-onto-> W  /\  g : ( 1 ... ( # `
 W ) ) -1-1-onto-> W ) )  /\  (
x  e.  ran  F  /\  y  e.  ran  F ) )  ->  y  e.  ran  F )
32 gsumval3.z . . . . . . . . . . 11  |-  Z  =  (Cntz `  G )
3323, 32cntzi 17762 . . . . . . . . . 10  |-  ( ( x  e.  ( Z `
 ran  F )  /\  y  e.  ran  F )  ->  ( x  .+  y )  =  ( y  .+  x ) )
3430, 31, 33syl2anc 693 . . . . . . . . 9  |-  ( ( ( ph  /\  (
f : ( 1 ... ( # `  W
) ) -1-1-onto-> W  /\  g : ( 1 ... ( # `
 W ) ) -1-1-onto-> W ) )  /\  (
x  e.  ran  F  /\  y  e.  ran  F ) )  ->  (
x  .+  y )  =  ( y  .+  x ) )
3522, 23mndass 17302 . . . . . . . . . 10  |-  ( ( G  e.  Mnd  /\  ( x  e.  B  /\  y  e.  B  /\  z  e.  B
) )  ->  (
( x  .+  y
)  .+  z )  =  ( x  .+  ( y  .+  z
) ) )
3621, 35sylan 488 . . . . . . . . 9  |-  ( ( ( ph  /\  (
f : ( 1 ... ( # `  W
) ) -1-1-onto-> W  /\  g : ( 1 ... ( # `
 W ) ) -1-1-onto-> W ) )  /\  (
x  e.  B  /\  y  e.  B  /\  z  e.  B )
)  ->  ( (
x  .+  y )  .+  z )  =  ( x  .+  ( y 
.+  z ) ) )
377simpld 475 . . . . . . . . . . 11  |-  ( ph  ->  ( # `  W
)  e.  NN )
3837adantr 481 . . . . . . . . . 10  |-  ( (
ph  /\  ( f : ( 1 ... ( # `  W
) ) -1-1-onto-> W  /\  g : ( 1 ... ( # `
 W ) ) -1-1-onto-> W ) )  ->  ( # `
 W )  e.  NN )
39 nnuz 11723 . . . . . . . . . 10  |-  NN  =  ( ZZ>= `  1 )
4038, 39syl6eleq 2711 . . . . . . . . 9  |-  ( (
ph  /\  ( f : ( 1 ... ( # `  W
) ) -1-1-onto-> W  /\  g : ( 1 ... ( # `
 W ) ) -1-1-onto-> W ) )  ->  ( # `
 W )  e.  ( ZZ>= `  1 )
)
41 gsumval3.f . . . . . . . . . . 11  |-  ( ph  ->  F : A --> B )
4241adantr 481 . . . . . . . . . 10  |-  ( (
ph  /\  ( f : ( 1 ... ( # `  W
) ) -1-1-onto-> W  /\  g : ( 1 ... ( # `
 W ) ) -1-1-onto-> W ) )  ->  F : A --> B )
43 frn 6053 . . . . . . . . . 10  |-  ( F : A --> B  ->  ran  F  C_  B )
4442, 43syl 17 . . . . . . . . 9  |-  ( (
ph  /\  ( f : ( 1 ... ( # `  W
) ) -1-1-onto-> W  /\  g : ( 1 ... ( # `
 W ) ) -1-1-onto-> W ) )  ->  ran  F 
C_  B )
45 simprr 796 . . . . . . . . . . 11  |-  ( (
ph  /\  ( f : ( 1 ... ( # `  W
) ) -1-1-onto-> W  /\  g : ( 1 ... ( # `
 W ) ) -1-1-onto-> W ) )  ->  g : ( 1 ... ( # `  W
) ) -1-1-onto-> W )
46 f1ocnv 6149 . . . . . . . . . . 11  |-  ( g : ( 1 ... ( # `  W
) ) -1-1-onto-> W  ->  `' g : W -1-1-onto-> ( 1 ... ( # `
 W ) ) )
4745, 46syl 17 . . . . . . . . . 10  |-  ( (
ph  /\  ( f : ( 1 ... ( # `  W
) ) -1-1-onto-> W  /\  g : ( 1 ... ( # `
 W ) ) -1-1-onto-> W ) )  ->  `' g : W -1-1-onto-> ( 1 ... ( # `
 W ) ) )
48 simprl 794 . . . . . . . . . 10  |-  ( (
ph  /\  ( f : ( 1 ... ( # `  W
) ) -1-1-onto-> W  /\  g : ( 1 ... ( # `
 W ) ) -1-1-onto-> W ) )  ->  f : ( 1 ... ( # `  W
) ) -1-1-onto-> W )
49 f1oco 6159 . . . . . . . . . 10  |-  ( ( `' g : W -1-1-onto-> (
1 ... ( # `  W
) )  /\  f : ( 1 ... ( # `  W
) ) -1-1-onto-> W )  ->  ( `' g  o.  f
) : ( 1 ... ( # `  W
) ) -1-1-onto-> ( 1 ... ( # `
 W ) ) )
5047, 48, 49syl2anc 693 . . . . . . . . 9  |-  ( (
ph  /\  ( f : ( 1 ... ( # `  W
) ) -1-1-onto-> W  /\  g : ( 1 ... ( # `
 W ) ) -1-1-onto-> W ) )  ->  ( `' g  o.  f
) : ( 1 ... ( # `  W
) ) -1-1-onto-> ( 1 ... ( # `
 W ) ) )
51 f1of 6137 . . . . . . . . . . . 12  |-  ( g : ( 1 ... ( # `  W
) ) -1-1-onto-> W  ->  g :
( 1 ... ( # `
 W ) ) --> W )
5245, 51syl 17 . . . . . . . . . . 11  |-  ( (
ph  /\  ( f : ( 1 ... ( # `  W
) ) -1-1-onto-> W  /\  g : ( 1 ... ( # `
 W ) ) -1-1-onto-> W ) )  ->  g : ( 1 ... ( # `  W
) ) --> W )
53 fvco3 6275 . . . . . . . . . . 11  |-  ( ( g : ( 1 ... ( # `  W
) ) --> W  /\  x  e.  ( 1 ... ( # `  W
) ) )  -> 
( ( F  o.  g ) `  x
)  =  ( F `
 ( g `  x ) ) )
5452, 53sylan 488 . . . . . . . . . 10  |-  ( ( ( ph  /\  (
f : ( 1 ... ( # `  W
) ) -1-1-onto-> W  /\  g : ( 1 ... ( # `
 W ) ) -1-1-onto-> W ) )  /\  x  e.  ( 1 ... ( # `
 W ) ) )  ->  ( ( F  o.  g ) `  x )  =  ( F `  ( g `
 x ) ) )
55 ffn 6045 . . . . . . . . . . . . 13  |-  ( F : A --> B  ->  F  Fn  A )
5642, 55syl 17 . . . . . . . . . . . 12  |-  ( (
ph  /\  ( f : ( 1 ... ( # `  W
) ) -1-1-onto-> W  /\  g : ( 1 ... ( # `
 W ) ) -1-1-onto-> W ) )  ->  F  Fn  A )
5756adantr 481 . . . . . . . . . . 11  |-  ( ( ( ph  /\  (
f : ( 1 ... ( # `  W
) ) -1-1-onto-> W  /\  g : ( 1 ... ( # `
 W ) ) -1-1-onto-> W ) )  /\  x  e.  ( 1 ... ( # `
 W ) ) )  ->  F  Fn  A )
58 gsumval3a.s . . . . . . . . . . . . . 14  |-  ( ph  ->  W  C_  A )
5958adantr 481 . . . . . . . . . . . . 13  |-  ( (
ph  /\  ( f : ( 1 ... ( # `  W
) ) -1-1-onto-> W  /\  g : ( 1 ... ( # `
 W ) ) -1-1-onto-> W ) )  ->  W  C_  A )
6052, 59fssd 6057 . . . . . . . . . . . 12  |-  ( (
ph  /\  ( f : ( 1 ... ( # `  W
) ) -1-1-onto-> W  /\  g : ( 1 ... ( # `
 W ) ) -1-1-onto-> W ) )  ->  g : ( 1 ... ( # `  W
) ) --> A )
6160ffvelrnda 6359 . . . . . . . . . . 11  |-  ( ( ( ph  /\  (
f : ( 1 ... ( # `  W
) ) -1-1-onto-> W  /\  g : ( 1 ... ( # `
 W ) ) -1-1-onto-> W ) )  /\  x  e.  ( 1 ... ( # `
 W ) ) )  ->  ( g `  x )  e.  A
)
62 fnfvelrn 6356 . . . . . . . . . . 11  |-  ( ( F  Fn  A  /\  ( g `  x
)  e.  A )  ->  ( F `  ( g `  x
) )  e.  ran  F )
6357, 61, 62syl2anc 693 . . . . . . . . . 10  |-  ( ( ( ph  /\  (
f : ( 1 ... ( # `  W
) ) -1-1-onto-> W  /\  g : ( 1 ... ( # `
 W ) ) -1-1-onto-> W ) )  /\  x  e.  ( 1 ... ( # `
 W ) ) )  ->  ( F `  ( g `  x
) )  e.  ran  F )
6454, 63eqeltrd 2701 . . . . . . . . 9  |-  ( ( ( ph  /\  (
f : ( 1 ... ( # `  W
) ) -1-1-onto-> W  /\  g : ( 1 ... ( # `
 W ) ) -1-1-onto-> W ) )  /\  x  e.  ( 1 ... ( # `
 W ) ) )  ->  ( ( F  o.  g ) `  x )  e.  ran  F )
65 f1of 6137 . . . . . . . . . . . . . . 15  |-  ( f : ( 1 ... ( # `  W
) ) -1-1-onto-> W  ->  f :
( 1 ... ( # `
 W ) ) --> W )
6648, 65syl 17 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  ( f : ( 1 ... ( # `  W
) ) -1-1-onto-> W  /\  g : ( 1 ... ( # `
 W ) ) -1-1-onto-> W ) )  ->  f : ( 1 ... ( # `  W
) ) --> W )
67 fvco3 6275 . . . . . . . . . . . . . 14  |-  ( ( f : ( 1 ... ( # `  W
) ) --> W  /\  k  e.  ( 1 ... ( # `  W
) ) )  -> 
( ( `' g  o.  f ) `  k )  =  ( `' g `  (
f `  k )
) )
6866, 67sylan 488 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  (
f : ( 1 ... ( # `  W
) ) -1-1-onto-> W  /\  g : ( 1 ... ( # `
 W ) ) -1-1-onto-> W ) )  /\  k  e.  ( 1 ... ( # `
 W ) ) )  ->  ( ( `' g  o.  f
) `  k )  =  ( `' g `
 ( f `  k ) ) )
6968fveq2d 6195 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  (
f : ( 1 ... ( # `  W
) ) -1-1-onto-> W  /\  g : ( 1 ... ( # `
 W ) ) -1-1-onto-> W ) )  /\  k  e.  ( 1 ... ( # `
 W ) ) )  ->  ( g `  ( ( `' g  o.  f ) `  k ) )  =  ( g `  ( `' g `  (
f `  k )
) ) )
7045adantr 481 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  (
f : ( 1 ... ( # `  W
) ) -1-1-onto-> W  /\  g : ( 1 ... ( # `
 W ) ) -1-1-onto-> W ) )  /\  k  e.  ( 1 ... ( # `
 W ) ) )  ->  g :
( 1 ... ( # `
 W ) ) -1-1-onto-> W )
7166ffvelrnda 6359 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  (
f : ( 1 ... ( # `  W
) ) -1-1-onto-> W  /\  g : ( 1 ... ( # `
 W ) ) -1-1-onto-> W ) )  /\  k  e.  ( 1 ... ( # `
 W ) ) )  ->  ( f `  k )  e.  W
)
72 f1ocnvfv2 6533 . . . . . . . . . . . . 13  |-  ( ( g : ( 1 ... ( # `  W
) ) -1-1-onto-> W  /\  ( f `
 k )  e.  W )  ->  (
g `  ( `' g `  ( f `  k ) ) )  =  ( f `  k ) )
7370, 71, 72syl2anc 693 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  (
f : ( 1 ... ( # `  W
) ) -1-1-onto-> W  /\  g : ( 1 ... ( # `
 W ) ) -1-1-onto-> W ) )  /\  k  e.  ( 1 ... ( # `
 W ) ) )  ->  ( g `  ( `' g `  ( f `  k
) ) )  =  ( f `  k
) )
7469, 73eqtr2d 2657 . . . . . . . . . . 11  |-  ( ( ( ph  /\  (
f : ( 1 ... ( # `  W
) ) -1-1-onto-> W  /\  g : ( 1 ... ( # `
 W ) ) -1-1-onto-> W ) )  /\  k  e.  ( 1 ... ( # `
 W ) ) )  ->  ( f `  k )  =  ( g `  ( ( `' g  o.  f
) `  k )
) )
7574fveq2d 6195 . . . . . . . . . 10  |-  ( ( ( ph  /\  (
f : ( 1 ... ( # `  W
) ) -1-1-onto-> W  /\  g : ( 1 ... ( # `
 W ) ) -1-1-onto-> W ) )  /\  k  e.  ( 1 ... ( # `
 W ) ) )  ->  ( F `  ( f `  k
) )  =  ( F `  ( g `
 ( ( `' g  o.  f ) `
 k ) ) ) )
76 fvco3 6275 . . . . . . . . . . 11  |-  ( ( f : ( 1 ... ( # `  W
) ) --> W  /\  k  e.  ( 1 ... ( # `  W
) ) )  -> 
( ( F  o.  f ) `  k
)  =  ( F `
 ( f `  k ) ) )
7766, 76sylan 488 . . . . . . . . . 10  |-  ( ( ( ph  /\  (
f : ( 1 ... ( # `  W
) ) -1-1-onto-> W  /\  g : ( 1 ... ( # `
 W ) ) -1-1-onto-> W ) )  /\  k  e.  ( 1 ... ( # `
 W ) ) )  ->  ( ( F  o.  f ) `  k )  =  ( F `  ( f `
 k ) ) )
78 f1of 6137 . . . . . . . . . . . . 13  |-  ( ( `' g  o.  f
) : ( 1 ... ( # `  W
) ) -1-1-onto-> ( 1 ... ( # `
 W ) )  ->  ( `' g  o.  f ) : ( 1 ... ( # `
 W ) ) --> ( 1 ... ( # `
 W ) ) )
7950, 78syl 17 . . . . . . . . . . . 12  |-  ( (
ph  /\  ( f : ( 1 ... ( # `  W
) ) -1-1-onto-> W  /\  g : ( 1 ... ( # `
 W ) ) -1-1-onto-> W ) )  ->  ( `' g  o.  f
) : ( 1 ... ( # `  W
) ) --> ( 1 ... ( # `  W
) ) )
8079ffvelrnda 6359 . . . . . . . . . . 11  |-  ( ( ( ph  /\  (
f : ( 1 ... ( # `  W
) ) -1-1-onto-> W  /\  g : ( 1 ... ( # `
 W ) ) -1-1-onto-> W ) )  /\  k  e.  ( 1 ... ( # `
 W ) ) )  ->  ( ( `' g  o.  f
) `  k )  e.  ( 1 ... ( # `
 W ) ) )
81 fvco3 6275 . . . . . . . . . . . 12  |-  ( ( g : ( 1 ... ( # `  W
) ) --> A  /\  ( ( `' g  o.  f ) `  k )  e.  ( 1 ... ( # `  W ) ) )  ->  ( ( F  o.  g ) `  ( ( `' g  o.  f ) `  k ) )  =  ( F `  (
g `  ( ( `' g  o.  f
) `  k )
) ) )
8260, 81sylan 488 . . . . . . . . . . 11  |-  ( ( ( ph  /\  (
f : ( 1 ... ( # `  W
) ) -1-1-onto-> W  /\  g : ( 1 ... ( # `
 W ) ) -1-1-onto-> W ) )  /\  (
( `' g  o.  f ) `  k
)  e.  ( 1 ... ( # `  W
) ) )  -> 
( ( F  o.  g ) `  (
( `' g  o.  f ) `  k
) )  =  ( F `  ( g `
 ( ( `' g  o.  f ) `
 k ) ) ) )
8380, 82syldan 487 . . . . . . . . . 10  |-  ( ( ( ph  /\  (
f : ( 1 ... ( # `  W
) ) -1-1-onto-> W  /\  g : ( 1 ... ( # `
 W ) ) -1-1-onto-> W ) )  /\  k  e.  ( 1 ... ( # `
 W ) ) )  ->  ( ( F  o.  g ) `  ( ( `' g  o.  f ) `  k ) )  =  ( F `  (
g `  ( ( `' g  o.  f
) `  k )
) ) )
8475, 77, 833eqtr4d 2666 . . . . . . . . 9  |-  ( ( ( ph  /\  (
f : ( 1 ... ( # `  W
) ) -1-1-onto-> W  /\  g : ( 1 ... ( # `
 W ) ) -1-1-onto-> W ) )  /\  k  e.  ( 1 ... ( # `
 W ) ) )  ->  ( ( F  o.  f ) `  k )  =  ( ( F  o.  g
) `  ( ( `' g  o.  f
) `  k )
) )
8526, 34, 36, 40, 44, 50, 64, 84seqf1o 12842 . . . . . . . 8  |-  ( (
ph  /\  ( f : ( 1 ... ( # `  W
) ) -1-1-onto-> W  /\  g : ( 1 ... ( # `
 W ) ) -1-1-onto-> W ) )  ->  (  seq 1 (  .+  , 
( F  o.  f
) ) `  ( # `
 W ) )  =  (  seq 1
(  .+  ,  ( F  o.  g )
) `  ( # `  W
) ) )
86 eqeq12 2635 . . . . . . . 8  |-  ( ( x  =  (  seq 1 (  .+  , 
( F  o.  f
) ) `  ( # `
 W ) )  /\  y  =  (  seq 1 (  .+  ,  ( F  o.  g ) ) `  ( # `  W ) ) )  ->  (
x  =  y  <->  (  seq 1 (  .+  , 
( F  o.  f
) ) `  ( # `
 W ) )  =  (  seq 1
(  .+  ,  ( F  o.  g )
) `  ( # `  W
) ) ) )
8785, 86syl5ibrcom 237 . . . . . . 7  |-  ( (
ph  /\  ( f : ( 1 ... ( # `  W
) ) -1-1-onto-> W  /\  g : ( 1 ... ( # `
 W ) ) -1-1-onto-> W ) )  ->  (
( x  =  (  seq 1 (  .+  ,  ( F  o.  f ) ) `  ( # `  W ) )  /\  y  =  (  seq 1 ( 
.+  ,  ( F  o.  g ) ) `
 ( # `  W
) ) )  ->  x  =  y )
)
8887expimpd 629 . . . . . 6  |-  ( ph  ->  ( ( ( f : ( 1 ... ( # `  W
) ) -1-1-onto-> W  /\  g : ( 1 ... ( # `
 W ) ) -1-1-onto-> W )  /\  ( x  =  (  seq 1
(  .+  ,  ( F  o.  f )
) `  ( # `  W
) )  /\  y  =  (  seq 1
(  .+  ,  ( F  o.  g )
) `  ( # `  W
) ) ) )  ->  x  =  y ) )
8919, 88syl5bir 233 . . . . 5  |-  ( ph  ->  ( ( ( f : ( 1 ... ( # `  W
) ) -1-1-onto-> W  /\  x  =  (  seq 1 ( 
.+  ,  ( F  o.  f ) ) `
 ( # `  W
) ) )  /\  ( g : ( 1 ... ( # `  W ) ) -1-1-onto-> W  /\  y  =  (  seq 1 (  .+  , 
( F  o.  g
) ) `  ( # `
 W ) ) ) )  ->  x  =  y ) )
9089exlimdvv 1862 . . . 4  |-  ( ph  ->  ( E. f E. g ( ( f : ( 1 ... ( # `  W
) ) -1-1-onto-> W  /\  x  =  (  seq 1 ( 
.+  ,  ( F  o.  f ) ) `
 ( # `  W
) ) )  /\  ( g : ( 1 ... ( # `  W ) ) -1-1-onto-> W  /\  y  =  (  seq 1 (  .+  , 
( F  o.  g
) ) `  ( # `
 W ) ) ) )  ->  x  =  y ) )
9118, 90syl5bir 233 . . 3  |-  ( ph  ->  ( ( E. f
( f : ( 1 ... ( # `  W ) ) -1-1-onto-> W  /\  x  =  (  seq 1 (  .+  , 
( F  o.  f
) ) `  ( # `
 W ) ) )  /\  E. g
( g : ( 1 ... ( # `  W ) ) -1-1-onto-> W  /\  y  =  (  seq 1 (  .+  , 
( F  o.  g
) ) `  ( # `
 W ) ) ) )  ->  x  =  y ) )
9291alrimivv 1856 . 2  |-  ( ph  ->  A. x A. y
( ( E. f
( f : ( 1 ... ( # `  W ) ) -1-1-onto-> W  /\  x  =  (  seq 1 (  .+  , 
( F  o.  f
) ) `  ( # `
 W ) ) )  /\  E. g
( g : ( 1 ... ( # `  W ) ) -1-1-onto-> W  /\  y  =  (  seq 1 (  .+  , 
( F  o.  g
) ) `  ( # `
 W ) ) ) )  ->  x  =  y ) )
93 eqeq1 2626 . . . . . 6  |-  ( x  =  y  ->  (
x  =  (  seq 1 (  .+  , 
( F  o.  f
) ) `  ( # `
 W ) )  <-> 
y  =  (  seq 1 (  .+  , 
( F  o.  f
) ) `  ( # `
 W ) ) ) )
9493anbi2d 740 . . . . 5  |-  ( x  =  y  ->  (
( f : ( 1 ... ( # `  W ) ) -1-1-onto-> W  /\  x  =  (  seq 1 (  .+  , 
( F  o.  f
) ) `  ( # `
 W ) ) )  <->  ( f : ( 1 ... ( # `
 W ) ) -1-1-onto-> W  /\  y  =  (  seq 1 (  .+  ,  ( F  o.  f ) ) `  ( # `  W ) ) ) ) )
9594exbidv 1850 . . . 4  |-  ( x  =  y  ->  ( E. f ( f : ( 1 ... ( # `
 W ) ) -1-1-onto-> W  /\  x  =  (  seq 1 (  .+  ,  ( F  o.  f ) ) `  ( # `  W ) ) )  <->  E. f
( f : ( 1 ... ( # `  W ) ) -1-1-onto-> W  /\  y  =  (  seq 1 (  .+  , 
( F  o.  f
) ) `  ( # `
 W ) ) ) ) )
96 f1oeq1 6127 . . . . . 6  |-  ( f  =  g  ->  (
f : ( 1 ... ( # `  W
) ) -1-1-onto-> W  <->  g : ( 1 ... ( # `  W ) ) -1-1-onto-> W ) )
97 coeq2 5280 . . . . . . . . 9  |-  ( f  =  g  ->  ( F  o.  f )  =  ( F  o.  g ) )
9897seqeq3d 12809 . . . . . . . 8  |-  ( f  =  g  ->  seq 1 (  .+  , 
( F  o.  f
) )  =  seq 1 (  .+  , 
( F  o.  g
) ) )
9998fveq1d 6193 . . . . . . 7  |-  ( f  =  g  ->  (  seq 1 (  .+  , 
( F  o.  f
) ) `  ( # `
 W ) )  =  (  seq 1
(  .+  ,  ( F  o.  g )
) `  ( # `  W
) ) )
10099eqeq2d 2632 . . . . . 6  |-  ( f  =  g  ->  (
y  =  (  seq 1 (  .+  , 
( F  o.  f
) ) `  ( # `
 W ) )  <-> 
y  =  (  seq 1 (  .+  , 
( F  o.  g
) ) `  ( # `
 W ) ) ) )
10196, 100anbi12d 747 . . . . 5  |-  ( f  =  g  ->  (
( f : ( 1 ... ( # `  W ) ) -1-1-onto-> W  /\  y  =  (  seq 1 (  .+  , 
( F  o.  f
) ) `  ( # `
 W ) ) )  <->  ( g : ( 1 ... ( # `
 W ) ) -1-1-onto-> W  /\  y  =  (  seq 1 (  .+  ,  ( F  o.  g ) ) `  ( # `  W ) ) ) ) )
102101cbvexv 2275 . . . 4  |-  ( E. f ( f : ( 1 ... ( # `
 W ) ) -1-1-onto-> W  /\  y  =  (  seq 1 (  .+  ,  ( F  o.  f ) ) `  ( # `  W ) ) )  <->  E. g
( g : ( 1 ... ( # `  W ) ) -1-1-onto-> W  /\  y  =  (  seq 1 (  .+  , 
( F  o.  g
) ) `  ( # `
 W ) ) ) )
10395, 102syl6bb 276 . . 3  |-  ( x  =  y  ->  ( E. f ( f : ( 1 ... ( # `
 W ) ) -1-1-onto-> W  /\  x  =  (  seq 1 (  .+  ,  ( F  o.  f ) ) `  ( # `  W ) ) )  <->  E. g
( g : ( 1 ... ( # `  W ) ) -1-1-onto-> W  /\  y  =  (  seq 1 (  .+  , 
( F  o.  g
) ) `  ( # `
 W ) ) ) ) )
104103eu4 2518 . 2  |-  ( E! x E. f ( f : ( 1 ... ( # `  W
) ) -1-1-onto-> W  /\  x  =  (  seq 1 ( 
.+  ,  ( F  o.  f ) ) `
 ( # `  W
) ) )  <->  ( E. x E. f ( f : ( 1 ... ( # `  W
) ) -1-1-onto-> W  /\  x  =  (  seq 1 ( 
.+  ,  ( F  o.  f ) ) `
 ( # `  W
) ) )  /\  A. x A. y ( ( E. f ( f : ( 1 ... ( # `  W
) ) -1-1-onto-> W  /\  x  =  (  seq 1 ( 
.+  ,  ( F  o.  f ) ) `
 ( # `  W
) ) )  /\  E. g ( g : ( 1 ... ( # `
 W ) ) -1-1-onto-> W  /\  y  =  (  seq 1 (  .+  ,  ( F  o.  g ) ) `  ( # `  W ) ) ) )  ->  x  =  y )
) )
10517, 92, 104sylanbrc 698 1  |-  ( ph  ->  E! x E. f
( f : ( 1 ... ( # `  W ) ) -1-1-onto-> W  /\  x  =  (  seq 1 (  .+  , 
( F  o.  f
) ) `  ( # `
 W ) ) ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    \/ wo 383    /\ wa 384    /\ w3a 1037   A.wal 1481    = wceq 1483   E.wex 1704    e. wcel 1990   E!weu 2470    =/= wne 2794    C_ wss 3574   (/)c0 3915   `'ccnv 5113   ran crn 5115    o. ccom 5118    Fn wfn 5883   -->wf 5884   -1-1-onto->wf1o 5887   ` cfv 5888  (class class class)co 6650   Fincfn 7955   1c1 9937   NNcn 11020   ZZ>=cuz 11687   ...cfz 12326    seqcseq 12801   #chash 13117   Basecbs 15857   +g cplusg 15941   0gc0g 16100   Mndcmnd 17294  Cntzccntz 17748
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-oadd 7564  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-card 8765  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-nn 11021  df-n0 11293  df-z 11378  df-uz 11688  df-fz 12327  df-fzo 12466  df-seq 12802  df-hash 13118  df-mgm 17242  df-sgrp 17284  df-mnd 17295  df-cntz 17750
This theorem is referenced by:  gsumval3lem2  18307
  Copyright terms: Public domain W3C validator