| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > hausllycmp | Structured version Visualization version Unicode version | ||
| Description: A compact Hausdorff space is locally compact. (Contributed by Mario Carneiro, 2-Mar-2015.) |
| Ref | Expression |
|---|---|
| hausllycmp |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | haustop 21135 |
. . 3
| |
| 2 | 1 | adantr 481 |
. 2
|
| 3 | eqid 2622 |
. . . . . 6
| |
| 4 | eqid 2622 |
. . . . . 6
| |
| 5 | simpll 790 |
. . . . . 6
| |
| 6 | difssd 3738 |
. . . . . 6
| |
| 7 | simplr 792 |
. . . . . . 7
| |
| 8 | 1 | ad2antrr 762 |
. . . . . . . 8
|
| 9 | simprl 794 |
. . . . . . . 8
| |
| 10 | 3 | opncld 20837 |
. . . . . . . 8
|
| 11 | 8, 9, 10 | syl2anc 693 |
. . . . . . 7
|
| 12 | cmpcld 21205 |
. . . . . . 7
| |
| 13 | 7, 11, 12 | syl2anc 693 |
. . . . . 6
|
| 14 | simprr 796 |
. . . . . . 7
| |
| 15 | elssuni 4467 |
. . . . . . . . 9
| |
| 16 | 15 | ad2antrl 764 |
. . . . . . . 8
|
| 17 | dfss4 3858 |
. . . . . . . 8
| |
| 18 | 16, 17 | sylib 208 |
. . . . . . 7
|
| 19 | 14, 18 | eleqtrrd 2704 |
. . . . . 6
|
| 20 | 3, 4, 5, 6, 13, 19 | hauscmplem 21209 |
. . . . 5
|
| 21 | 18 | sseq2d 3633 |
. . . . . . 7
|
| 22 | 21 | anbi2d 740 |
. . . . . 6
|
| 23 | 22 | rexbidv 3052 |
. . . . 5
|
| 24 | 20, 23 | mpbid 222 |
. . . 4
|
| 25 | 8 | adantr 481 |
. . . . . . 7
|
| 26 | simprl 794 |
. . . . . . . 8
| |
| 27 | simprrl 804 |
. . . . . . . 8
| |
| 28 | opnneip 20923 |
. . . . . . . 8
| |
| 29 | 25, 26, 27, 28 | syl3anc 1326 |
. . . . . . 7
|
| 30 | elssuni 4467 |
. . . . . . . . 9
| |
| 31 | 30 | ad2antrl 764 |
. . . . . . . 8
|
| 32 | 3 | sscls 20860 |
. . . . . . . 8
|
| 33 | 25, 31, 32 | syl2anc 693 |
. . . . . . 7
|
| 34 | 3 | clsss3 20863 |
. . . . . . . 8
|
| 35 | 25, 31, 34 | syl2anc 693 |
. . . . . . 7
|
| 36 | 3 | ssnei2 20920 |
. . . . . . 7
|
| 37 | 25, 29, 33, 35, 36 | syl22anc 1327 |
. . . . . 6
|
| 38 | simprrr 805 |
. . . . . . 7
| |
| 39 | vex 3203 |
. . . . . . . 8
| |
| 40 | 39 | elpw2 4828 |
. . . . . . 7
|
| 41 | 38, 40 | sylibr 224 |
. . . . . 6
|
| 42 | 37, 41 | elind 3798 |
. . . . 5
|
| 43 | 7 | adantr 481 |
. . . . . 6
|
| 44 | 3 | clscld 20851 |
. . . . . . 7
|
| 45 | 25, 31, 44 | syl2anc 693 |
. . . . . 6
|
| 46 | cmpcld 21205 |
. . . . . 6
| |
| 47 | 43, 45, 46 | syl2anc 693 |
. . . . 5
|
| 48 | oveq2 6658 |
. . . . . . 7
| |
| 49 | 48 | eleq1d 2686 |
. . . . . 6
|
| 50 | 49 | rspcev 3309 |
. . . . 5
|
| 51 | 42, 47, 50 | syl2anc 693 |
. . . 4
|
| 52 | 24, 51 | rexlimddv 3035 |
. . 3
|
| 53 | 52 | ralrimivva 2971 |
. 2
|
| 54 | isnlly 21272 |
. 2
| |
| 55 | 2, 53, 54 | sylanbrc 698 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-rep 4771 ax-sep 4781 ax-nul 4789 ax-pow 4843 ax-pr 4906 ax-un 6949 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3or 1038 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-ral 2917 df-rex 2918 df-reu 2919 df-rab 2921 df-v 3202 df-sbc 3436 df-csb 3534 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-pss 3590 df-nul 3916 df-if 4087 df-pw 4160 df-sn 4178 df-pr 4180 df-tp 4182 df-op 4184 df-uni 4437 df-int 4476 df-iun 4522 df-iin 4523 df-br 4654 df-opab 4713 df-mpt 4730 df-tr 4753 df-id 5024 df-eprel 5029 df-po 5035 df-so 5036 df-fr 5073 df-we 5075 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-rn 5125 df-res 5126 df-ima 5127 df-pred 5680 df-ord 5726 df-on 5727 df-lim 5728 df-suc 5729 df-iota 5851 df-fun 5890 df-fn 5891 df-f 5892 df-f1 5893 df-fo 5894 df-f1o 5895 df-fv 5896 df-ov 6653 df-oprab 6654 df-mpt2 6655 df-om 7066 df-1st 7168 df-2nd 7169 df-wrecs 7407 df-recs 7468 df-rdg 7506 df-1o 7560 df-oadd 7564 df-er 7742 df-en 7956 df-dom 7957 df-fin 7959 df-fi 8317 df-rest 16083 df-topgen 16104 df-top 20699 df-topon 20716 df-bases 20750 df-cld 20823 df-cls 20825 df-nei 20902 df-haus 21119 df-cmp 21190 df-nlly 21270 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |