HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  hlimi Structured version   Visualization version   Unicode version

Theorem hlimi 28045
Description: Express the predicate: The limit of vector sequence  F in a Hilbert space is  A, i.e.  F converges to  A. This means that for any real  x, no matter how small, there always exists an integer  y such that the norm of any later vector in the sequence minus the limit is less than  x. Definition of converge in [Beran] p. 96. (Contributed by NM, 16-Aug-1999.) (Revised by Mario Carneiro, 14-May-2014.) (New usage is discouraged.)
Hypothesis
Ref Expression
hlim.1  |-  A  e. 
_V
Assertion
Ref Expression
hlimi  |-  ( F 
~~>v  A  <->  ( ( F : NN --> ~H  /\  A  e.  ~H )  /\  A. x  e.  RR+  E. y  e.  NN  A. z  e.  ( ZZ>= `  y ) ( normh `  ( ( F `  z )  -h  A
) )  <  x
) )
Distinct variable groups:    x, y,
z, F    x, A, y, z

Proof of Theorem hlimi
Dummy variables  w  f are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-hlim 27829 . . . 4  |-  ~~>v  =  { <. f ,  w >.  |  ( ( f : NN --> ~H  /\  w  e.  ~H )  /\  A. x  e.  RR+  E. y  e.  NN  A. z  e.  ( ZZ>= `  y )
( normh `  ( (
f `  z )  -h  w ) )  < 
x ) }
21relopabi 5245 . . 3  |-  Rel  ~~>v
32brrelexi 5158 . 2  |-  ( F 
~~>v  A  ->  F  e.  _V )
4 nnex 11026 . . . 4  |-  NN  e.  _V
5 fex 6490 . . . 4  |-  ( ( F : NN --> ~H  /\  NN  e.  _V )  ->  F  e.  _V )
64, 5mpan2 707 . . 3  |-  ( F : NN --> ~H  ->  F  e.  _V )
76ad2antrr 762 . 2  |-  ( ( ( F : NN --> ~H  /\  A  e.  ~H )  /\  A. x  e.  RR+  E. y  e.  NN  A. z  e.  ( ZZ>= `  y ) ( normh `  ( ( F `  z )  -h  A
) )  <  x
)  ->  F  e.  _V )
8 hlim.1 . . 3  |-  A  e. 
_V
9 feq1 6026 . . . . . 6  |-  ( f  =  F  ->  (
f : NN --> ~H  <->  F : NN
--> ~H ) )
10 eleq1 2689 . . . . . 6  |-  ( w  =  A  ->  (
w  e.  ~H  <->  A  e.  ~H ) )
119, 10bi2anan9 917 . . . . 5  |-  ( ( f  =  F  /\  w  =  A )  ->  ( ( f : NN --> ~H  /\  w  e.  ~H )  <->  ( F : NN --> ~H  /\  A  e. 
~H ) ) )
12 fveq1 6190 . . . . . . . . . 10  |-  ( f  =  F  ->  (
f `  z )  =  ( F `  z ) )
13 oveq12 6659 . . . . . . . . . 10  |-  ( ( ( f `  z
)  =  ( F `
 z )  /\  w  =  A )  ->  ( ( f `  z )  -h  w
)  =  ( ( F `  z )  -h  A ) )
1412, 13sylan 488 . . . . . . . . 9  |-  ( ( f  =  F  /\  w  =  A )  ->  ( ( f `  z )  -h  w
)  =  ( ( F `  z )  -h  A ) )
1514fveq2d 6195 . . . . . . . 8  |-  ( ( f  =  F  /\  w  =  A )  ->  ( normh `  ( (
f `  z )  -h  w ) )  =  ( normh `  ( ( F `  z )  -h  A ) ) )
1615breq1d 4663 . . . . . . 7  |-  ( ( f  =  F  /\  w  =  A )  ->  ( ( normh `  (
( f `  z
)  -h  w ) )  <  x  <->  ( normh `  ( ( F `  z )  -h  A
) )  <  x
) )
1716rexralbidv 3058 . . . . . 6  |-  ( ( f  =  F  /\  w  =  A )  ->  ( E. y  e.  NN  A. z  e.  ( ZZ>= `  y )
( normh `  ( (
f `  z )  -h  w ) )  < 
x  <->  E. y  e.  NN  A. z  e.  ( ZZ>= `  y ) ( normh `  ( ( F `  z )  -h  A
) )  <  x
) )
1817ralbidv 2986 . . . . 5  |-  ( ( f  =  F  /\  w  =  A )  ->  ( A. x  e.  RR+  E. y  e.  NN  A. z  e.  ( ZZ>= `  y ) ( normh `  ( ( f `  z )  -h  w
) )  <  x  <->  A. x  e.  RR+  E. y  e.  NN  A. z  e.  ( ZZ>= `  y )
( normh `  ( ( F `  z )  -h  A ) )  < 
x ) )
1911, 18anbi12d 747 . . . 4  |-  ( ( f  =  F  /\  w  =  A )  ->  ( ( ( f : NN --> ~H  /\  w  e.  ~H )  /\  A. x  e.  RR+  E. y  e.  NN  A. z  e.  ( ZZ>= `  y ) ( normh `  ( ( f `  z )  -h  w
) )  <  x
)  <->  ( ( F : NN --> ~H  /\  A  e.  ~H )  /\  A. x  e.  RR+  E. y  e.  NN  A. z  e.  ( ZZ>= `  y ) ( normh `  ( ( F `  z )  -h  A
) )  <  x
) ) )
2019, 1brabga 4989 . . 3  |-  ( ( F  e.  _V  /\  A  e.  _V )  ->  ( F  ~~>v  A  <->  ( ( F : NN --> ~H  /\  A  e.  ~H )  /\  A. x  e.  RR+  E. y  e.  NN  A. z  e.  ( ZZ>= `  y ) ( normh `  ( ( F `  z )  -h  A
) )  <  x
) ) )
218, 20mpan2 707 . 2  |-  ( F  e.  _V  ->  ( F  ~~>v  A  <->  ( ( F : NN --> ~H  /\  A  e.  ~H )  /\  A. x  e.  RR+  E. y  e.  NN  A. z  e.  ( ZZ>= `  y ) ( normh `  ( ( F `  z )  -h  A
) )  <  x
) ) )
223, 7, 21pm5.21nii 368 1  |-  ( F 
~~>v  A  <->  ( ( F : NN --> ~H  /\  A  e.  ~H )  /\  A. x  e.  RR+  E. y  e.  NN  A. z  e.  ( ZZ>= `  y ) ( normh `  ( ( F `  z )  -h  A
) )  <  x
) )
Colors of variables: wff setvar class
Syntax hints:    <-> wb 196    /\ wa 384    = wceq 1483    e. wcel 1990   A.wral 2912   E.wrex 2913   _Vcvv 3200   class class class wbr 4653   -->wf 5884   ` cfv 5888  (class class class)co 6650    < clt 10074   NNcn 11020   ZZ>=cuz 11687   RR+crp 11832   ~Hchil 27776   normhcno 27780    -h cmv 27782    ~~>v chli 27784
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-i2m1 10004  ax-1ne0 10005  ax-rrecex 10008  ax-cnre 10009
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-ov 6653  df-om 7066  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-nn 11021  df-hlim 27829
This theorem is referenced by:  hlimseqi  28046  hlimveci  28047  hlimconvi  28048  hlim2  28049
  Copyright terms: Public domain W3C validator