HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  hvsub4 Structured version   Visualization version   Unicode version

Theorem hvsub4 27894
Description: Hilbert vector space addition/subtraction law. (Contributed by NM, 17-Oct-1999.) (New usage is discouraged.)
Assertion
Ref Expression
hvsub4  |-  ( ( ( A  e.  ~H  /\  B  e.  ~H )  /\  ( C  e.  ~H  /\  D  e.  ~H )
)  ->  ( ( A  +h  B )  -h  ( C  +h  D
) )  =  ( ( A  -h  C
)  +h  ( B  -h  D ) ) )

Proof of Theorem hvsub4
StepHypRef Expression
1 hvaddcl 27869 . . 3  |-  ( ( A  e.  ~H  /\  B  e.  ~H )  ->  ( A  +h  B
)  e.  ~H )
2 hvaddcl 27869 . . 3  |-  ( ( C  e.  ~H  /\  D  e.  ~H )  ->  ( C  +h  D
)  e.  ~H )
3 hvsubval 27873 . . 3  |-  ( ( ( A  +h  B
)  e.  ~H  /\  ( C  +h  D
)  e.  ~H )  ->  ( ( A  +h  B )  -h  ( C  +h  D ) )  =  ( ( A  +h  B )  +h  ( -u 1  .h  ( C  +h  D
) ) ) )
41, 2, 3syl2an 494 . 2  |-  ( ( ( A  e.  ~H  /\  B  e.  ~H )  /\  ( C  e.  ~H  /\  D  e.  ~H )
)  ->  ( ( A  +h  B )  -h  ( C  +h  D
) )  =  ( ( A  +h  B
)  +h  ( -u
1  .h  ( C  +h  D ) ) ) )
5 hvsubval 27873 . . . . 5  |-  ( ( A  e.  ~H  /\  C  e.  ~H )  ->  ( A  -h  C
)  =  ( A  +h  ( -u 1  .h  C ) ) )
65ad2ant2r 783 . . . 4  |-  ( ( ( A  e.  ~H  /\  B  e.  ~H )  /\  ( C  e.  ~H  /\  D  e.  ~H )
)  ->  ( A  -h  C )  =  ( A  +h  ( -u
1  .h  C ) ) )
7 hvsubval 27873 . . . . 5  |-  ( ( B  e.  ~H  /\  D  e.  ~H )  ->  ( B  -h  D
)  =  ( B  +h  ( -u 1  .h  D ) ) )
87ad2ant2l 782 . . . 4  |-  ( ( ( A  e.  ~H  /\  B  e.  ~H )  /\  ( C  e.  ~H  /\  D  e.  ~H )
)  ->  ( B  -h  D )  =  ( B  +h  ( -u
1  .h  D ) ) )
96, 8oveq12d 6668 . . 3  |-  ( ( ( A  e.  ~H  /\  B  e.  ~H )  /\  ( C  e.  ~H  /\  D  e.  ~H )
)  ->  ( ( A  -h  C )  +h  ( B  -h  D
) )  =  ( ( A  +h  ( -u 1  .h  C ) )  +h  ( B  +h  ( -u 1  .h  D ) ) ) )
10 neg1cn 11124 . . . . . . 7  |-  -u 1  e.  CC
11 ax-hvdistr1 27865 . . . . . . 7  |-  ( (
-u 1  e.  CC  /\  C  e.  ~H  /\  D  e.  ~H )  ->  ( -u 1  .h  ( C  +h  D
) )  =  ( ( -u 1  .h  C )  +h  ( -u 1  .h  D ) ) )
1210, 11mp3an1 1411 . . . . . 6  |-  ( ( C  e.  ~H  /\  D  e.  ~H )  ->  ( -u 1  .h  ( C  +h  D
) )  =  ( ( -u 1  .h  C )  +h  ( -u 1  .h  D ) ) )
1312adantl 482 . . . . 5  |-  ( ( ( A  e.  ~H  /\  B  e.  ~H )  /\  ( C  e.  ~H  /\  D  e.  ~H )
)  ->  ( -u 1  .h  ( C  +h  D
) )  =  ( ( -u 1  .h  C )  +h  ( -u 1  .h  D ) ) )
1413oveq2d 6666 . . . 4  |-  ( ( ( A  e.  ~H  /\  B  e.  ~H )  /\  ( C  e.  ~H  /\  D  e.  ~H )
)  ->  ( ( A  +h  B )  +h  ( -u 1  .h  ( C  +h  D
) ) )  =  ( ( A  +h  B )  +h  (
( -u 1  .h  C
)  +h  ( -u
1  .h  D ) ) ) )
15 hvmulcl 27870 . . . . . . . . 9  |-  ( (
-u 1  e.  CC  /\  C  e.  ~H )  ->  ( -u 1  .h  C )  e.  ~H )
1610, 15mpan 706 . . . . . . . 8  |-  ( C  e.  ~H  ->  ( -u 1  .h  C )  e.  ~H )
1716anim2i 593 . . . . . . 7  |-  ( ( A  e.  ~H  /\  C  e.  ~H )  ->  ( A  e.  ~H  /\  ( -u 1  .h  C )  e.  ~H ) )
18 hvmulcl 27870 . . . . . . . . 9  |-  ( (
-u 1  e.  CC  /\  D  e.  ~H )  ->  ( -u 1  .h  D )  e.  ~H )
1910, 18mpan 706 . . . . . . . 8  |-  ( D  e.  ~H  ->  ( -u 1  .h  D )  e.  ~H )
2019anim2i 593 . . . . . . 7  |-  ( ( B  e.  ~H  /\  D  e.  ~H )  ->  ( B  e.  ~H  /\  ( -u 1  .h  D )  e.  ~H ) )
2117, 20anim12i 590 . . . . . 6  |-  ( ( ( A  e.  ~H  /\  C  e.  ~H )  /\  ( B  e.  ~H  /\  D  e.  ~H )
)  ->  ( ( A  e.  ~H  /\  ( -u 1  .h  C )  e.  ~H )  /\  ( B  e.  ~H  /\  ( -u 1  .h  D )  e.  ~H ) ) )
2221an4s 869 . . . . 5  |-  ( ( ( A  e.  ~H  /\  B  e.  ~H )  /\  ( C  e.  ~H  /\  D  e.  ~H )
)  ->  ( ( A  e.  ~H  /\  ( -u 1  .h  C )  e.  ~H )  /\  ( B  e.  ~H  /\  ( -u 1  .h  D )  e.  ~H ) ) )
23 hvadd4 27893 . . . . 5  |-  ( ( ( A  e.  ~H  /\  ( -u 1  .h  C )  e.  ~H )  /\  ( B  e. 
~H  /\  ( -u 1  .h  D )  e.  ~H ) )  ->  (
( A  +h  ( -u 1  .h  C ) )  +h  ( B  +h  ( -u 1  .h  D ) ) )  =  ( ( A  +h  B )  +h  ( ( -u 1  .h  C )  +h  ( -u 1  .h  D ) ) ) )
2422, 23syl 17 . . . 4  |-  ( ( ( A  e.  ~H  /\  B  e.  ~H )  /\  ( C  e.  ~H  /\  D  e.  ~H )
)  ->  ( ( A  +h  ( -u 1  .h  C ) )  +h  ( B  +h  ( -u 1  .h  D ) ) )  =  ( ( A  +h  B
)  +h  ( (
-u 1  .h  C
)  +h  ( -u
1  .h  D ) ) ) )
2514, 24eqtr4d 2659 . . 3  |-  ( ( ( A  e.  ~H  /\  B  e.  ~H )  /\  ( C  e.  ~H  /\  D  e.  ~H )
)  ->  ( ( A  +h  B )  +h  ( -u 1  .h  ( C  +h  D
) ) )  =  ( ( A  +h  ( -u 1  .h  C
) )  +h  ( B  +h  ( -u 1  .h  D ) ) ) )
269, 25eqtr4d 2659 . 2  |-  ( ( ( A  e.  ~H  /\  B  e.  ~H )  /\  ( C  e.  ~H  /\  D  e.  ~H )
)  ->  ( ( A  -h  C )  +h  ( B  -h  D
) )  =  ( ( A  +h  B
)  +h  ( -u
1  .h  ( C  +h  D ) ) ) )
274, 26eqtr4d 2659 1  |-  ( ( ( A  e.  ~H  /\  B  e.  ~H )  /\  ( C  e.  ~H  /\  D  e.  ~H )
)  ->  ( ( A  +h  B )  -h  ( C  +h  D
) )  =  ( ( A  -h  C
)  +h  ( B  -h  D ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 384    = wceq 1483    e. wcel 1990  (class class class)co 6650   CCcc 9934   1c1 9937   -ucneg 10267   ~Hchil 27776    +h cva 27777    .h csm 27778    -h cmv 27782
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-hfvadd 27857  ax-hvcom 27858  ax-hvass 27859  ax-hfvmul 27862  ax-hvdistr1 27865
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-po 5035  df-so 5036  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-pnf 10076  df-mnf 10077  df-ltxr 10079  df-sub 10268  df-neg 10269  df-hvsub 27828
This theorem is referenced by:  hvaddsub4  27935  5oalem2  28514  3oalem2  28522
  Copyright terms: Public domain W3C validator