MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  icccmplem1 Structured version   Visualization version   Unicode version

Theorem icccmplem1 22625
Description: Lemma for icccmp 22628. (Contributed by Mario Carneiro, 18-Jun-2014.)
Hypotheses
Ref Expression
icccmp.1  |-  J  =  ( topGen `  ran  (,) )
icccmp.2  |-  T  =  ( Jt  ( A [,] B ) )
icccmp.3  |-  D  =  ( ( abs  o.  -  )  |`  ( RR 
X.  RR ) )
icccmp.4  |-  S  =  { x  e.  ( A [,] B )  |  E. z  e.  ( ~P U  i^i  Fin ) ( A [,] x )  C_  U. z }
icccmp.5  |-  ( ph  ->  A  e.  RR )
icccmp.6  |-  ( ph  ->  B  e.  RR )
icccmp.7  |-  ( ph  ->  A  <_  B )
icccmp.8  |-  ( ph  ->  U  C_  J )
icccmp.9  |-  ( ph  ->  ( A [,] B
)  C_  U. U )
Assertion
Ref Expression
icccmplem1  |-  ( ph  ->  ( A  e.  S  /\  A. y  e.  S  y  <_  B ) )
Distinct variable groups:    x, y,
z, B    ph, y    x, A, y, z    x, D   
x, T, z    z, J    y, S    x, U, y, z
Allowed substitution hints:    ph( x, z)    D( y, z)    S( x, z)    T( y)    J( x, y)

Proof of Theorem icccmplem1
Dummy variable  u is distinct from all other variables.
StepHypRef Expression
1 icccmp.5 . . . . 5  |-  ( ph  ->  A  e.  RR )
21rexrd 10089 . . . 4  |-  ( ph  ->  A  e.  RR* )
3 icccmp.6 . . . . 5  |-  ( ph  ->  B  e.  RR )
43rexrd 10089 . . . 4  |-  ( ph  ->  B  e.  RR* )
5 icccmp.7 . . . 4  |-  ( ph  ->  A  <_  B )
6 lbicc2 12288 . . . 4  |-  ( ( A  e.  RR*  /\  B  e.  RR*  /\  A  <_  B )  ->  A  e.  ( A [,] B
) )
72, 4, 5, 6syl3anc 1326 . . 3  |-  ( ph  ->  A  e.  ( A [,] B ) )
8 icccmp.9 . . . . . 6  |-  ( ph  ->  ( A [,] B
)  C_  U. U )
98, 7sseldd 3604 . . . . 5  |-  ( ph  ->  A  e.  U. U
)
10 eluni2 4440 . . . . 5  |-  ( A  e.  U. U  <->  E. u  e.  U  A  e.  u )
119, 10sylib 208 . . . 4  |-  ( ph  ->  E. u  e.  U  A  e.  u )
12 snssi 4339 . . . . . . . 8  |-  ( u  e.  U  ->  { u }  C_  U )
1312ad2antrl 764 . . . . . . 7  |-  ( (
ph  /\  ( u  e.  U  /\  A  e.  u ) )  ->  { u }  C_  U )
14 snex 4908 . . . . . . . 8  |-  { u }  e.  _V
1514elpw 4164 . . . . . . 7  |-  ( { u }  e.  ~P U 
<->  { u }  C_  U )
1613, 15sylibr 224 . . . . . 6  |-  ( (
ph  /\  ( u  e.  U  /\  A  e.  u ) )  ->  { u }  e.  ~P U )
17 snfi 8038 . . . . . . 7  |-  { u }  e.  Fin
1817a1i 11 . . . . . 6  |-  ( (
ph  /\  ( u  e.  U  /\  A  e.  u ) )  ->  { u }  e.  Fin )
1916, 18elind 3798 . . . . 5  |-  ( (
ph  /\  ( u  e.  U  /\  A  e.  u ) )  ->  { u }  e.  ( ~P U  i^i  Fin ) )
202adantr 481 . . . . . . 7  |-  ( (
ph  /\  ( u  e.  U  /\  A  e.  u ) )  ->  A  e.  RR* )
21 iccid 12220 . . . . . . 7  |-  ( A  e.  RR*  ->  ( A [,] A )  =  { A } )
2220, 21syl 17 . . . . . 6  |-  ( (
ph  /\  ( u  e.  U  /\  A  e.  u ) )  -> 
( A [,] A
)  =  { A } )
23 snssi 4339 . . . . . . 7  |-  ( A  e.  u  ->  { A }  C_  u )
2423ad2antll 765 . . . . . 6  |-  ( (
ph  /\  ( u  e.  U  /\  A  e.  u ) )  ->  { A }  C_  u
)
2522, 24eqsstrd 3639 . . . . 5  |-  ( (
ph  /\  ( u  e.  U  /\  A  e.  u ) )  -> 
( A [,] A
)  C_  u )
26 unieq 4444 . . . . . . . 8  |-  ( z  =  { u }  ->  U. z  =  U. { u } )
27 vex 3203 . . . . . . . . 9  |-  u  e. 
_V
2827unisn 4451 . . . . . . . 8  |-  U. {
u }  =  u
2926, 28syl6eq 2672 . . . . . . 7  |-  ( z  =  { u }  ->  U. z  =  u )
3029sseq2d 3633 . . . . . 6  |-  ( z  =  { u }  ->  ( ( A [,] A )  C_  U. z  <->  ( A [,] A ) 
C_  u ) )
3130rspcev 3309 . . . . 5  |-  ( ( { u }  e.  ( ~P U  i^i  Fin )  /\  ( A [,] A )  C_  u
)  ->  E. z  e.  ( ~P U  i^i  Fin ) ( A [,] A )  C_  U. z
)
3219, 25, 31syl2anc 693 . . . 4  |-  ( (
ph  /\  ( u  e.  U  /\  A  e.  u ) )  ->  E. z  e.  ( ~P U  i^i  Fin )
( A [,] A
)  C_  U. z
)
3311, 32rexlimddv 3035 . . 3  |-  ( ph  ->  E. z  e.  ( ~P U  i^i  Fin ) ( A [,] A )  C_  U. z
)
34 oveq2 6658 . . . . . 6  |-  ( x  =  A  ->  ( A [,] x )  =  ( A [,] A
) )
3534sseq1d 3632 . . . . 5  |-  ( x  =  A  ->  (
( A [,] x
)  C_  U. z  <->  ( A [,] A ) 
C_  U. z ) )
3635rexbidv 3052 . . . 4  |-  ( x  =  A  ->  ( E. z  e.  ( ~P U  i^i  Fin )
( A [,] x
)  C_  U. z  <->  E. z  e.  ( ~P U  i^i  Fin )
( A [,] A
)  C_  U. z
) )
37 icccmp.4 . . . 4  |-  S  =  { x  e.  ( A [,] B )  |  E. z  e.  ( ~P U  i^i  Fin ) ( A [,] x )  C_  U. z }
3836, 37elrab2 3366 . . 3  |-  ( A  e.  S  <->  ( A  e.  ( A [,] B
)  /\  E. z  e.  ( ~P U  i^i  Fin ) ( A [,] A )  C_  U. z
) )
397, 33, 38sylanbrc 698 . 2  |-  ( ph  ->  A  e.  S )
40 ssrab2 3687 . . . . . 6  |-  { x  e.  ( A [,] B
)  |  E. z  e.  ( ~P U  i^i  Fin ) ( A [,] x )  C_  U. z }  C_  ( A [,] B )
4137, 40eqsstri 3635 . . . . 5  |-  S  C_  ( A [,] B )
4241sseli 3599 . . . 4  |-  ( y  e.  S  ->  y  e.  ( A [,] B
) )
43 elicc2 12238 . . . . . . 7  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( y  e.  ( A [,] B )  <-> 
( y  e.  RR  /\  A  <_  y  /\  y  <_  B ) ) )
441, 3, 43syl2anc 693 . . . . . 6  |-  ( ph  ->  ( y  e.  ( A [,] B )  <-> 
( y  e.  RR  /\  A  <_  y  /\  y  <_  B ) ) )
4544biimpa 501 . . . . 5  |-  ( (
ph  /\  y  e.  ( A [,] B ) )  ->  ( y  e.  RR  /\  A  <_ 
y  /\  y  <_  B ) )
4645simp3d 1075 . . . 4  |-  ( (
ph  /\  y  e.  ( A [,] B ) )  ->  y  <_  B )
4742, 46sylan2 491 . . 3  |-  ( (
ph  /\  y  e.  S )  ->  y  <_  B )
4847ralrimiva 2966 . 2  |-  ( ph  ->  A. y  e.  S  y  <_  B )
4939, 48jca 554 1  |-  ( ph  ->  ( A  e.  S  /\  A. y  e.  S  y  <_  B ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    /\ wa 384    /\ w3a 1037    = wceq 1483    e. wcel 1990   A.wral 2912   E.wrex 2913   {crab 2916    i^i cin 3573    C_ wss 3574   ~Pcpw 4158   {csn 4177   U.cuni 4436   class class class wbr 4653    X. cxp 5112   ran crn 5115    |` cres 5116    o. ccom 5118   ` cfv 5888  (class class class)co 6650   Fincfn 7955   RRcr 9935   RR*cxr 10073    <_ cle 10075    - cmin 10266   (,)cioo 12175   [,]cicc 12178   abscabs 13974   ↾t crest 16081   topGenctg 16098
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-pre-lttri 10010  ax-pre-lttrn 10011
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1o 7560  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-icc 12182
This theorem is referenced by:  icccmplem2  22626  icccmplem3  22627
  Copyright terms: Public domain W3C validator