| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > icccmplem3 | Structured version Visualization version Unicode version | ||
| Description: Lemma for icccmp 22628. (Contributed by Mario Carneiro, 13-Jun-2014.) |
| Ref | Expression |
|---|---|
| icccmp.1 |
|
| icccmp.2 |
|
| icccmp.3 |
|
| icccmp.4 |
|
| icccmp.5 |
|
| icccmp.6 |
|
| icccmp.7 |
|
| icccmp.8 |
|
| icccmp.9 |
|
| Ref | Expression |
|---|---|
| icccmplem3 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | icccmp.9 |
. . . 4
| |
| 2 | icccmp.4 |
. . . . . . . 8
| |
| 3 | ssrab2 3687 |
. . . . . . . 8
| |
| 4 | 2, 3 | eqsstri 3635 |
. . . . . . 7
|
| 5 | icccmp.5 |
. . . . . . . 8
| |
| 6 | icccmp.6 |
. . . . . . . 8
| |
| 7 | iccssre 12255 |
. . . . . . . 8
| |
| 8 | 5, 6, 7 | syl2anc 693 |
. . . . . . 7
|
| 9 | 4, 8 | syl5ss 3614 |
. . . . . 6
|
| 10 | icccmp.1 |
. . . . . . . . 9
| |
| 11 | icccmp.2 |
. . . . . . . . 9
| |
| 12 | icccmp.3 |
. . . . . . . . 9
| |
| 13 | icccmp.7 |
. . . . . . . . 9
| |
| 14 | icccmp.8 |
. . . . . . . . 9
| |
| 15 | 10, 11, 12, 2, 5, 6, 13, 14, 1 | icccmplem1 22625 |
. . . . . . . 8
|
| 16 | 15 | simpld 475 |
. . . . . . 7
|
| 17 | ne0i 3921 |
. . . . . . 7
| |
| 18 | 16, 17 | syl 17 |
. . . . . 6
|
| 19 | 15 | simprd 479 |
. . . . . . 7
|
| 20 | breq2 4657 |
. . . . . . . . 9
| |
| 21 | 20 | ralbidv 2986 |
. . . . . . . 8
|
| 22 | 21 | rspcev 3309 |
. . . . . . 7
|
| 23 | 6, 19, 22 | syl2anc 693 |
. . . . . 6
|
| 24 | suprcl 10983 |
. . . . . 6
| |
| 25 | 9, 18, 23, 24 | syl3anc 1326 |
. . . . 5
|
| 26 | suprub 10984 |
. . . . . 6
| |
| 27 | 9, 18, 23, 16, 26 | syl31anc 1329 |
. . . . 5
|
| 28 | suprleub 10989 |
. . . . . . 7
| |
| 29 | 9, 18, 23, 6, 28 | syl31anc 1329 |
. . . . . 6
|
| 30 | 19, 29 | mpbird 247 |
. . . . 5
|
| 31 | elicc2 12238 |
. . . . . 6
| |
| 32 | 5, 6, 31 | syl2anc 693 |
. . . . 5
|
| 33 | 25, 27, 30, 32 | mpbir3and 1245 |
. . . 4
|
| 34 | 1, 33 | sseldd 3604 |
. . 3
|
| 35 | eluni2 4440 |
. . 3
| |
| 36 | 34, 35 | sylib 208 |
. 2
|
| 37 | 14 | sselda 3603 |
. . . . 5
|
| 38 | 12 | rexmet 22594 |
. . . . . . 7
|
| 39 | eqid 2622 |
. . . . . . . . . 10
| |
| 40 | 12, 39 | tgioo 22599 |
. . . . . . . . 9
|
| 41 | 10, 40 | eqtri 2644 |
. . . . . . . 8
|
| 42 | 41 | mopni2 22298 |
. . . . . . 7
|
| 43 | 38, 42 | mp3an1 1411 |
. . . . . 6
|
| 44 | 43 | ex 450 |
. . . . 5
|
| 45 | 37, 44 | syl 17 |
. . . 4
|
| 46 | 5 | ad2antrr 762 |
. . . . . 6
|
| 47 | 6 | ad2antrr 762 |
. . . . . 6
|
| 48 | 13 | ad2antrr 762 |
. . . . . 6
|
| 49 | 14 | ad2antrr 762 |
. . . . . 6
|
| 50 | 1 | ad2antrr 762 |
. . . . . 6
|
| 51 | simplr 792 |
. . . . . 6
| |
| 52 | simprl 794 |
. . . . . 6
| |
| 53 | simprr 796 |
. . . . . 6
| |
| 54 | eqid 2622 |
. . . . . 6
| |
| 55 | eqid 2622 |
. . . . . 6
| |
| 56 | 10, 11, 12, 2, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55 | icccmplem2 22626 |
. . . . 5
|
| 57 | 56 | rexlimdvaa 3032 |
. . . 4
|
| 58 | 45, 57 | syld 47 |
. . 3
|
| 59 | 58 | rexlimdva 3031 |
. 2
|
| 60 | 36, 59 | mpd 15 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-sep 4781 ax-nul 4789 ax-pow 4843 ax-pr 4906 ax-un 6949 ax-cnex 9992 ax-resscn 9993 ax-1cn 9994 ax-icn 9995 ax-addcl 9996 ax-addrcl 9997 ax-mulcl 9998 ax-mulrcl 9999 ax-mulcom 10000 ax-addass 10001 ax-mulass 10002 ax-distr 10003 ax-i2m1 10004 ax-1ne0 10005 ax-1rid 10006 ax-rnegex 10007 ax-rrecex 10008 ax-cnre 10009 ax-pre-lttri 10010 ax-pre-lttrn 10011 ax-pre-ltadd 10012 ax-pre-mulgt0 10013 ax-pre-sup 10014 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3or 1038 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-nel 2898 df-ral 2917 df-rex 2918 df-reu 2919 df-rmo 2920 df-rab 2921 df-v 3202 df-sbc 3436 df-csb 3534 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-pss 3590 df-nul 3916 df-if 4087 df-pw 4160 df-sn 4178 df-pr 4180 df-tp 4182 df-op 4184 df-uni 4437 df-int 4476 df-iun 4522 df-br 4654 df-opab 4713 df-mpt 4730 df-tr 4753 df-id 5024 df-eprel 5029 df-po 5035 df-so 5036 df-fr 5073 df-we 5075 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-rn 5125 df-res 5126 df-ima 5127 df-pred 5680 df-ord 5726 df-on 5727 df-lim 5728 df-suc 5729 df-iota 5851 df-fun 5890 df-fn 5891 df-f 5892 df-f1 5893 df-fo 5894 df-f1o 5895 df-fv 5896 df-riota 6611 df-ov 6653 df-oprab 6654 df-mpt2 6655 df-om 7066 df-1st 7168 df-2nd 7169 df-wrecs 7407 df-recs 7468 df-rdg 7506 df-1o 7560 df-oadd 7564 df-er 7742 df-map 7859 df-en 7956 df-dom 7957 df-sdom 7958 df-fin 7959 df-sup 8348 df-inf 8349 df-pnf 10076 df-mnf 10077 df-xr 10078 df-ltxr 10079 df-le 10080 df-sub 10268 df-neg 10269 df-div 10685 df-nn 11021 df-2 11079 df-3 11080 df-n0 11293 df-z 11378 df-uz 11688 df-q 11789 df-rp 11833 df-xneg 11946 df-xadd 11947 df-xmul 11948 df-ioo 12179 df-icc 12182 df-seq 12802 df-exp 12861 df-cj 13839 df-re 13840 df-im 13841 df-sqrt 13975 df-abs 13976 df-topgen 16104 df-psmet 19738 df-xmet 19739 df-met 19740 df-bl 19741 df-mopn 19742 df-top 20699 df-topon 20716 df-bases 20750 |
| This theorem is referenced by: icccmp 22628 |
| Copyright terms: Public domain | W3C validator |