MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  icccmplem3 Structured version   Visualization version   Unicode version

Theorem icccmplem3 22627
Description: Lemma for icccmp 22628. (Contributed by Mario Carneiro, 13-Jun-2014.)
Hypotheses
Ref Expression
icccmp.1  |-  J  =  ( topGen `  ran  (,) )
icccmp.2  |-  T  =  ( Jt  ( A [,] B ) )
icccmp.3  |-  D  =  ( ( abs  o.  -  )  |`  ( RR 
X.  RR ) )
icccmp.4  |-  S  =  { x  e.  ( A [,] B )  |  E. z  e.  ( ~P U  i^i  Fin ) ( A [,] x )  C_  U. z }
icccmp.5  |-  ( ph  ->  A  e.  RR )
icccmp.6  |-  ( ph  ->  B  e.  RR )
icccmp.7  |-  ( ph  ->  A  <_  B )
icccmp.8  |-  ( ph  ->  U  C_  J )
icccmp.9  |-  ( ph  ->  ( A [,] B
)  C_  U. U )
Assertion
Ref Expression
icccmplem3  |-  ( ph  ->  B  e.  S )
Distinct variable groups:    x, z, B    x, A, z    x, D    x, T, z    z, J    x, U, z
Allowed substitution hints:    ph( x, z)    D( z)    S( x, z)    J( x)

Proof of Theorem icccmplem3
Dummy variables  u  v  w  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 icccmp.9 . . . 4  |-  ( ph  ->  ( A [,] B
)  C_  U. U )
2 icccmp.4 . . . . . . . 8  |-  S  =  { x  e.  ( A [,] B )  |  E. z  e.  ( ~P U  i^i  Fin ) ( A [,] x )  C_  U. z }
3 ssrab2 3687 . . . . . . . 8  |-  { x  e.  ( A [,] B
)  |  E. z  e.  ( ~P U  i^i  Fin ) ( A [,] x )  C_  U. z }  C_  ( A [,] B )
42, 3eqsstri 3635 . . . . . . 7  |-  S  C_  ( A [,] B )
5 icccmp.5 . . . . . . . 8  |-  ( ph  ->  A  e.  RR )
6 icccmp.6 . . . . . . . 8  |-  ( ph  ->  B  e.  RR )
7 iccssre 12255 . . . . . . . 8  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( A [,] B
)  C_  RR )
85, 6, 7syl2anc 693 . . . . . . 7  |-  ( ph  ->  ( A [,] B
)  C_  RR )
94, 8syl5ss 3614 . . . . . 6  |-  ( ph  ->  S  C_  RR )
10 icccmp.1 . . . . . . . . 9  |-  J  =  ( topGen `  ran  (,) )
11 icccmp.2 . . . . . . . . 9  |-  T  =  ( Jt  ( A [,] B ) )
12 icccmp.3 . . . . . . . . 9  |-  D  =  ( ( abs  o.  -  )  |`  ( RR 
X.  RR ) )
13 icccmp.7 . . . . . . . . 9  |-  ( ph  ->  A  <_  B )
14 icccmp.8 . . . . . . . . 9  |-  ( ph  ->  U  C_  J )
1510, 11, 12, 2, 5, 6, 13, 14, 1icccmplem1 22625 . . . . . . . 8  |-  ( ph  ->  ( A  e.  S  /\  A. y  e.  S  y  <_  B ) )
1615simpld 475 . . . . . . 7  |-  ( ph  ->  A  e.  S )
17 ne0i 3921 . . . . . . 7  |-  ( A  e.  S  ->  S  =/=  (/) )
1816, 17syl 17 . . . . . 6  |-  ( ph  ->  S  =/=  (/) )
1915simprd 479 . . . . . . 7  |-  ( ph  ->  A. y  e.  S  y  <_  B )
20 breq2 4657 . . . . . . . . 9  |-  ( v  =  B  ->  (
y  <_  v  <->  y  <_  B ) )
2120ralbidv 2986 . . . . . . . 8  |-  ( v  =  B  ->  ( A. y  e.  S  y  <_  v  <->  A. y  e.  S  y  <_  B ) )
2221rspcev 3309 . . . . . . 7  |-  ( ( B  e.  RR  /\  A. y  e.  S  y  <_  B )  ->  E. v  e.  RR  A. y  e.  S  y  <_  v )
236, 19, 22syl2anc 693 . . . . . 6  |-  ( ph  ->  E. v  e.  RR  A. y  e.  S  y  <_  v )
24 suprcl 10983 . . . . . 6  |-  ( ( S  C_  RR  /\  S  =/=  (/)  /\  E. v  e.  RR  A. y  e.  S  y  <_  v
)  ->  sup ( S ,  RR ,  <  )  e.  RR )
259, 18, 23, 24syl3anc 1326 . . . . 5  |-  ( ph  ->  sup ( S ,  RR ,  <  )  e.  RR )
26 suprub 10984 . . . . . 6  |-  ( ( ( S  C_  RR  /\  S  =/=  (/)  /\  E. v  e.  RR  A. y  e.  S  y  <_  v )  /\  A  e.  S )  ->  A  <_  sup ( S ,  RR ,  <  ) )
279, 18, 23, 16, 26syl31anc 1329 . . . . 5  |-  ( ph  ->  A  <_  sup ( S ,  RR ,  <  ) )
28 suprleub 10989 . . . . . . 7  |-  ( ( ( S  C_  RR  /\  S  =/=  (/)  /\  E. v  e.  RR  A. y  e.  S  y  <_  v )  /\  B  e.  RR )  ->  ( sup ( S ,  RR ,  <  )  <_  B  <->  A. y  e.  S  y  <_  B ) )
299, 18, 23, 6, 28syl31anc 1329 . . . . . 6  |-  ( ph  ->  ( sup ( S ,  RR ,  <  )  <_  B  <->  A. y  e.  S  y  <_  B ) )
3019, 29mpbird 247 . . . . 5  |-  ( ph  ->  sup ( S ,  RR ,  <  )  <_  B )
31 elicc2 12238 . . . . . 6  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( sup ( S ,  RR ,  <  )  e.  ( A [,] B )  <->  ( sup ( S ,  RR ,  <  )  e.  RR  /\  A  <_  sup ( S ,  RR ,  <  )  /\  sup ( S ,  RR ,  <  )  <_  B
) ) )
325, 6, 31syl2anc 693 . . . . 5  |-  ( ph  ->  ( sup ( S ,  RR ,  <  )  e.  ( A [,] B )  <->  ( sup ( S ,  RR ,  <  )  e.  RR  /\  A  <_  sup ( S ,  RR ,  <  )  /\  sup ( S ,  RR ,  <  )  <_  B
) ) )
3325, 27, 30, 32mpbir3and 1245 . . . 4  |-  ( ph  ->  sup ( S ,  RR ,  <  )  e.  ( A [,] B
) )
341, 33sseldd 3604 . . 3  |-  ( ph  ->  sup ( S ,  RR ,  <  )  e. 
U. U )
35 eluni2 4440 . . 3  |-  ( sup ( S ,  RR ,  <  )  e.  U. U 
<->  E. u  e.  U  sup ( S ,  RR ,  <  )  e.  u
)
3634, 35sylib 208 . 2  |-  ( ph  ->  E. u  e.  U  sup ( S ,  RR ,  <  )  e.  u
)
3714sselda 3603 . . . . 5  |-  ( (
ph  /\  u  e.  U )  ->  u  e.  J )
3812rexmet 22594 . . . . . . 7  |-  D  e.  ( *Met `  RR )
39 eqid 2622 . . . . . . . . . 10  |-  ( MetOpen `  D )  =  (
MetOpen `  D )
4012, 39tgioo 22599 . . . . . . . . 9  |-  ( topGen ` 
ran  (,) )  =  (
MetOpen `  D )
4110, 40eqtri 2644 . . . . . . . 8  |-  J  =  ( MetOpen `  D )
4241mopni2 22298 . . . . . . 7  |-  ( ( D  e.  ( *Met `  RR )  /\  u  e.  J  /\  sup ( S ,  RR ,  <  )  e.  u )  ->  E. w  e.  RR+  ( sup ( S ,  RR ,  <  ) ( ball `  D
) w )  C_  u )
4338, 42mp3an1 1411 . . . . . 6  |-  ( ( u  e.  J  /\  sup ( S ,  RR ,  <  )  e.  u
)  ->  E. w  e.  RR+  ( sup ( S ,  RR ,  <  ) ( ball `  D
) w )  C_  u )
4443ex 450 . . . . 5  |-  ( u  e.  J  ->  ( sup ( S ,  RR ,  <  )  e.  u  ->  E. w  e.  RR+  ( sup ( S ,  RR ,  <  ) (
ball `  D )
w )  C_  u
) )
4537, 44syl 17 . . . 4  |-  ( (
ph  /\  u  e.  U )  ->  ( sup ( S ,  RR ,  <  )  e.  u  ->  E. w  e.  RR+  ( sup ( S ,  RR ,  <  ) (
ball `  D )
w )  C_  u
) )
465ad2antrr 762 . . . . . 6  |-  ( ( ( ph  /\  u  e.  U )  /\  (
w  e.  RR+  /\  ( sup ( S ,  RR ,  <  ) ( ball `  D ) w ) 
C_  u ) )  ->  A  e.  RR )
476ad2antrr 762 . . . . . 6  |-  ( ( ( ph  /\  u  e.  U )  /\  (
w  e.  RR+  /\  ( sup ( S ,  RR ,  <  ) ( ball `  D ) w ) 
C_  u ) )  ->  B  e.  RR )
4813ad2antrr 762 . . . . . 6  |-  ( ( ( ph  /\  u  e.  U )  /\  (
w  e.  RR+  /\  ( sup ( S ,  RR ,  <  ) ( ball `  D ) w ) 
C_  u ) )  ->  A  <_  B
)
4914ad2antrr 762 . . . . . 6  |-  ( ( ( ph  /\  u  e.  U )  /\  (
w  e.  RR+  /\  ( sup ( S ,  RR ,  <  ) ( ball `  D ) w ) 
C_  u ) )  ->  U  C_  J
)
501ad2antrr 762 . . . . . 6  |-  ( ( ( ph  /\  u  e.  U )  /\  (
w  e.  RR+  /\  ( sup ( S ,  RR ,  <  ) ( ball `  D ) w ) 
C_  u ) )  ->  ( A [,] B )  C_  U. U
)
51 simplr 792 . . . . . 6  |-  ( ( ( ph  /\  u  e.  U )  /\  (
w  e.  RR+  /\  ( sup ( S ,  RR ,  <  ) ( ball `  D ) w ) 
C_  u ) )  ->  u  e.  U
)
52 simprl 794 . . . . . 6  |-  ( ( ( ph  /\  u  e.  U )  /\  (
w  e.  RR+  /\  ( sup ( S ,  RR ,  <  ) ( ball `  D ) w ) 
C_  u ) )  ->  w  e.  RR+ )
53 simprr 796 . . . . . 6  |-  ( ( ( ph  /\  u  e.  U )  /\  (
w  e.  RR+  /\  ( sup ( S ,  RR ,  <  ) ( ball `  D ) w ) 
C_  u ) )  ->  ( sup ( S ,  RR ,  <  ) ( ball `  D
) w )  C_  u )
54 eqid 2622 . . . . . 6  |-  sup ( S ,  RR ,  <  )  =  sup ( S ,  RR ,  <  )
55 eqid 2622 . . . . . 6  |-  if ( ( sup ( S ,  RR ,  <  )  +  ( w  / 
2 ) )  <_  B ,  ( sup ( S ,  RR ,  <  )  +  ( w  /  2 ) ) ,  B )  =  if ( ( sup ( S ,  RR ,  <  )  +  ( w  /  2 ) )  <_  B , 
( sup ( S ,  RR ,  <  )  +  ( w  / 
2 ) ) ,  B )
5610, 11, 12, 2, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55icccmplem2 22626 . . . . 5  |-  ( ( ( ph  /\  u  e.  U )  /\  (
w  e.  RR+  /\  ( sup ( S ,  RR ,  <  ) ( ball `  D ) w ) 
C_  u ) )  ->  B  e.  S
)
5756rexlimdvaa 3032 . . . 4  |-  ( (
ph  /\  u  e.  U )  ->  ( E. w  e.  RR+  ( sup ( S ,  RR ,  <  ) ( ball `  D ) w ) 
C_  u  ->  B  e.  S ) )
5845, 57syld 47 . . 3  |-  ( (
ph  /\  u  e.  U )  ->  ( sup ( S ,  RR ,  <  )  e.  u  ->  B  e.  S ) )
5958rexlimdva 3031 . 2  |-  ( ph  ->  ( E. u  e.  U  sup ( S ,  RR ,  <  )  e.  u  ->  B  e.  S ) )
6036, 59mpd 15 1  |-  ( ph  ->  B  e.  S )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    /\ wa 384    /\ w3a 1037    = wceq 1483    e. wcel 1990    =/= wne 2794   A.wral 2912   E.wrex 2913   {crab 2916    i^i cin 3573    C_ wss 3574   (/)c0 3915   ifcif 4086   ~Pcpw 4158   U.cuni 4436   class class class wbr 4653    X. cxp 5112   ran crn 5115    |` cres 5116    o. ccom 5118   ` cfv 5888  (class class class)co 6650   Fincfn 7955   supcsup 8346   RRcr 9935    + caddc 9939    < clt 10074    <_ cle 10075    - cmin 10266    / cdiv 10684   2c2 11070   RR+crp 11832   (,)cioo 12175   [,]cicc 12178   abscabs 13974   ↾t crest 16081   topGenctg 16098   *Metcxmt 19731   ballcbl 19733   MetOpencmopn 19736
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-oadd 7564  df-er 7742  df-map 7859  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-sup 8348  df-inf 8349  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-2 11079  df-3 11080  df-n0 11293  df-z 11378  df-uz 11688  df-q 11789  df-rp 11833  df-xneg 11946  df-xadd 11947  df-xmul 11948  df-ioo 12179  df-icc 12182  df-seq 12802  df-exp 12861  df-cj 13839  df-re 13840  df-im 13841  df-sqrt 13975  df-abs 13976  df-topgen 16104  df-psmet 19738  df-xmet 19739  df-met 19740  df-bl 19741  df-mopn 19742  df-top 20699  df-topon 20716  df-bases 20750
This theorem is referenced by:  icccmp  22628
  Copyright terms: Public domain W3C validator