Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  iccpartxr Structured version   Visualization version   Unicode version

Theorem iccpartxr 41355
Description: If there is a partition, then all intermediate points and bounds are extended real numbers. (Contributed by AV, 11-Jul-2020.)
Hypotheses
Ref Expression
iccpartgtprec.m  |-  ( ph  ->  M  e.  NN )
iccpartgtprec.p  |-  ( ph  ->  P  e.  (RePart `  M ) )
iccpartxr.i  |-  ( ph  ->  I  e.  ( 0 ... M ) )
Assertion
Ref Expression
iccpartxr  |-  ( ph  ->  ( P `  I
)  e.  RR* )

Proof of Theorem iccpartxr
Dummy variable  i is distinct from all other variables.
StepHypRef Expression
1 iccpartgtprec.p . . . . 5  |-  ( ph  ->  P  e.  (RePart `  M ) )
2 iccpartgtprec.m . . . . . 6  |-  ( ph  ->  M  e.  NN )
3 iccpart 41352 . . . . . 6  |-  ( M  e.  NN  ->  ( P  e.  (RePart `  M
)  <->  ( P  e.  ( RR*  ^m  (
0 ... M ) )  /\  A. i  e.  ( 0..^ M ) ( P `  i
)  <  ( P `  ( i  +  1 ) ) ) ) )
42, 3syl 17 . . . . 5  |-  ( ph  ->  ( P  e.  (RePart `  M )  <->  ( P  e.  ( RR*  ^m  (
0 ... M ) )  /\  A. i  e.  ( 0..^ M ) ( P `  i
)  <  ( P `  ( i  +  1 ) ) ) ) )
51, 4mpbid 222 . . . 4  |-  ( ph  ->  ( P  e.  (
RR*  ^m  ( 0 ... M ) )  /\  A. i  e.  ( 0..^ M ) ( P `  i
)  <  ( P `  ( i  +  1 ) ) ) )
65simpld 475 . . 3  |-  ( ph  ->  P  e.  ( RR*  ^m  ( 0 ... M
) ) )
7 elmapi 7879 . . 3  |-  ( P  e.  ( RR*  ^m  (
0 ... M ) )  ->  P : ( 0 ... M ) -->
RR* )
86, 7syl 17 . 2  |-  ( ph  ->  P : ( 0 ... M ) --> RR* )
9 iccpartxr.i . 2  |-  ( ph  ->  I  e.  ( 0 ... M ) )
108, 9ffvelrnd 6360 1  |-  ( ph  ->  ( P `  I
)  e.  RR* )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    /\ wa 384    e. wcel 1990   A.wral 2912   class class class wbr 4653   -->wf 5884   ` cfv 5888  (class class class)co 6650    ^m cmap 7857   0cc0 9936   1c1 9937    + caddc 9939   RR*cxr 10073    < clt 10074   NNcn 11020   ...cfz 12326  ..^cfzo 12465  RePartciccp 41349
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-fv 5896  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-1st 7168  df-2nd 7169  df-map 7859  df-iccp 41350
This theorem is referenced by:  iccpartipre  41357  iccpartiltu  41358  iccpartigtl  41359  iccpartlt  41360  iccpartleu  41364  iccpartgel  41365  iccpartrn  41366  iccelpart  41369  iccpartiun  41370  icceuelpartlem  41371  icceuelpart  41372  iccpartdisj  41373  iccpartnel  41374  bgoldbtbndlem2  41694
  Copyright terms: Public domain W3C validator