Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  iccpartlt Structured version   Visualization version   Unicode version

Theorem iccpartlt 41360
Description: If there is a partition, then the lower bound is strictly less than the upper bound. Corresponds to fourierdlem11 40335 in GS's mathbox. (Contributed by AV, 12-Jul-2020.)
Hypotheses
Ref Expression
iccpartgtprec.m  |-  ( ph  ->  M  e.  NN )
iccpartgtprec.p  |-  ( ph  ->  P  e.  (RePart `  M ) )
Assertion
Ref Expression
iccpartlt  |-  ( ph  ->  ( P `  0
)  <  ( P `  M ) )

Proof of Theorem iccpartlt
Dummy variable  i is distinct from all other variables.
StepHypRef Expression
1 iccpartgtprec.m . . . . . . 7  |-  ( ph  ->  M  e.  NN )
2 iccpartgtprec.p . . . . . . 7  |-  ( ph  ->  P  e.  (RePart `  M ) )
3 lbfzo0 12507 . . . . . . . 8  |-  ( 0  e.  ( 0..^ M )  <->  M  e.  NN )
41, 3sylibr 224 . . . . . . 7  |-  ( ph  ->  0  e.  ( 0..^ M ) )
5 iccpartimp 41353 . . . . . . 7  |-  ( ( M  e.  NN  /\  P  e.  (RePart `  M
)  /\  0  e.  ( 0..^ M ) )  ->  ( P  e.  ( RR*  ^m  (
0 ... M ) )  /\  ( P ` 
0 )  <  ( P `  ( 0  +  1 ) ) ) )
61, 2, 4, 5syl3anc 1326 . . . . . 6  |-  ( ph  ->  ( P  e.  (
RR*  ^m  ( 0 ... M ) )  /\  ( P ` 
0 )  <  ( P `  ( 0  +  1 ) ) ) )
76simprd 479 . . . . 5  |-  ( ph  ->  ( P `  0
)  <  ( P `  ( 0  +  1 ) ) )
87adantl 482 . . . 4  |-  ( ( M  =  1  /\ 
ph )  ->  ( P `  0 )  <  ( P `  (
0  +  1 ) ) )
9 fveq2 6191 . . . . . 6  |-  ( M  =  1  ->  ( P `  M )  =  ( P ` 
1 ) )
10 1e0p1 11552 . . . . . . 7  |-  1  =  ( 0  +  1 )
1110fveq2i 6194 . . . . . 6  |-  ( P `
 1 )  =  ( P `  (
0  +  1 ) )
129, 11syl6eq 2672 . . . . 5  |-  ( M  =  1  ->  ( P `  M )  =  ( P `  ( 0  +  1 ) ) )
1312adantr 481 . . . 4  |-  ( ( M  =  1  /\ 
ph )  ->  ( P `  M )  =  ( P `  ( 0  +  1 ) ) )
148, 13breqtrrd 4681 . . 3  |-  ( ( M  =  1  /\ 
ph )  ->  ( P `  0 )  <  ( P `  M
) )
1514ex 450 . 2  |-  ( M  =  1  ->  ( ph  ->  ( P ` 
0 )  <  ( P `  M )
) )
161, 2iccpartiltu 41358 . . . 4  |-  ( ph  ->  A. i  e.  ( 1..^ M ) ( P `  i )  <  ( P `  M ) )
171, 2iccpartigtl 41359 . . . 4  |-  ( ph  ->  A. i  e.  ( 1..^ M ) ( P `  0 )  <  ( P `  i ) )
18 1nn 11031 . . . . . . . . . 10  |-  1  e.  NN
1918a1i 11 . . . . . . . . 9  |-  ( (
ph  /\  -.  M  =  1 )  -> 
1  e.  NN )
201adantr 481 . . . . . . . . 9  |-  ( (
ph  /\  -.  M  =  1 )  ->  M  e.  NN )
21 df-ne 2795 . . . . . . . . . . 11  |-  ( M  =/=  1  <->  -.  M  =  1 )
221nnge1d 11063 . . . . . . . . . . . 12  |-  ( ph  ->  1  <_  M )
23 1red 10055 . . . . . . . . . . . . . 14  |-  ( ph  ->  1  e.  RR )
241nnred 11035 . . . . . . . . . . . . . 14  |-  ( ph  ->  M  e.  RR )
2523, 24ltlend 10182 . . . . . . . . . . . . 13  |-  ( ph  ->  ( 1  <  M  <->  ( 1  <_  M  /\  M  =/=  1 ) ) )
2625biimprd 238 . . . . . . . . . . . 12  |-  ( ph  ->  ( ( 1  <_  M  /\  M  =/=  1
)  ->  1  <  M ) )
2722, 26mpand 711 . . . . . . . . . . 11  |-  ( ph  ->  ( M  =/=  1  ->  1  <  M ) )
2821, 27syl5bir 233 . . . . . . . . . 10  |-  ( ph  ->  ( -.  M  =  1  ->  1  <  M ) )
2928imp 445 . . . . . . . . 9  |-  ( (
ph  /\  -.  M  =  1 )  -> 
1  <  M )
30 elfzo1 12517 . . . . . . . . 9  |-  ( 1  e.  ( 1..^ M )  <->  ( 1  e.  NN  /\  M  e.  NN  /\  1  < 
M ) )
3119, 20, 29, 30syl3anbrc 1246 . . . . . . . 8  |-  ( (
ph  /\  -.  M  =  1 )  -> 
1  e.  ( 1..^ M ) )
32 fveq2 6191 . . . . . . . . . 10  |-  ( i  =  1  ->  ( P `  i )  =  ( P ` 
1 ) )
3332breq2d 4665 . . . . . . . . 9  |-  ( i  =  1  ->  (
( P `  0
)  <  ( P `  i )  <->  ( P `  0 )  < 
( P `  1
) ) )
3433rspcv 3305 . . . . . . . 8  |-  ( 1  e.  ( 1..^ M )  ->  ( A. i  e.  ( 1..^ M ) ( P `
 0 )  < 
( P `  i
)  ->  ( P `  0 )  < 
( P `  1
) ) )
3531, 34syl 17 . . . . . . 7  |-  ( (
ph  /\  -.  M  =  1 )  -> 
( A. i  e.  ( 1..^ M ) ( P `  0
)  <  ( P `  i )  ->  ( P `  0 )  <  ( P `  1
) ) )
3632breq1d 4663 . . . . . . . . . . 11  |-  ( i  =  1  ->  (
( P `  i
)  <  ( P `  M )  <->  ( P `  1 )  < 
( P `  M
) ) )
3736rspcv 3305 . . . . . . . . . 10  |-  ( 1  e.  ( 1..^ M )  ->  ( A. i  e.  ( 1..^ M ) ( P `
 i )  < 
( P `  M
)  ->  ( P `  1 )  < 
( P `  M
) ) )
3831, 37syl 17 . . . . . . . . 9  |-  ( (
ph  /\  -.  M  =  1 )  -> 
( A. i  e.  ( 1..^ M ) ( P `  i
)  <  ( P `  M )  ->  ( P `  1 )  <  ( P `  M
) ) )
39 nnnn0 11299 . . . . . . . . . . . . . 14  |-  ( M  e.  NN  ->  M  e.  NN0 )
40 0elfz 12436 . . . . . . . . . . . . . 14  |-  ( M  e.  NN0  ->  0  e.  ( 0 ... M
) )
411, 39, 403syl 18 . . . . . . . . . . . . 13  |-  ( ph  ->  0  e.  ( 0 ... M ) )
421, 2, 41iccpartxr 41355 . . . . . . . . . . . 12  |-  ( ph  ->  ( P `  0
)  e.  RR* )
4342adantr 481 . . . . . . . . . . 11  |-  ( (
ph  /\  -.  M  =  1 )  -> 
( P `  0
)  e.  RR* )
442adantr 481 . . . . . . . . . . . 12  |-  ( (
ph  /\  -.  M  =  1 )  ->  P  e.  (RePart `  M
) )
45 1nn0 11308 . . . . . . . . . . . . . 14  |-  1  e.  NN0
4645a1i 11 . . . . . . . . . . . . 13  |-  ( (
ph  /\  -.  M  =  1 )  -> 
1  e.  NN0 )
471, 39syl 17 . . . . . . . . . . . . . 14  |-  ( ph  ->  M  e.  NN0 )
4847adantr 481 . . . . . . . . . . . . 13  |-  ( (
ph  /\  -.  M  =  1 )  ->  M  e.  NN0 )
4922adantr 481 . . . . . . . . . . . . 13  |-  ( (
ph  /\  -.  M  =  1 )  -> 
1  <_  M )
50 elfz2nn0 12431 . . . . . . . . . . . . 13  |-  ( 1  e.  ( 0 ... M )  <->  ( 1  e.  NN0  /\  M  e. 
NN0  /\  1  <_  M ) )
5146, 48, 49, 50syl3anbrc 1246 . . . . . . . . . . . 12  |-  ( (
ph  /\  -.  M  =  1 )  -> 
1  e.  ( 0 ... M ) )
5220, 44, 51iccpartxr 41355 . . . . . . . . . . 11  |-  ( (
ph  /\  -.  M  =  1 )  -> 
( P `  1
)  e.  RR* )
53 nn0fz0 12437 . . . . . . . . . . . . . . 15  |-  ( M  e.  NN0  <->  M  e.  (
0 ... M ) )
5439, 53sylib 208 . . . . . . . . . . . . . 14  |-  ( M  e.  NN  ->  M  e.  ( 0 ... M
) )
551, 54syl 17 . . . . . . . . . . . . 13  |-  ( ph  ->  M  e.  ( 0 ... M ) )
561, 2, 55iccpartxr 41355 . . . . . . . . . . . 12  |-  ( ph  ->  ( P `  M
)  e.  RR* )
5756adantr 481 . . . . . . . . . . 11  |-  ( (
ph  /\  -.  M  =  1 )  -> 
( P `  M
)  e.  RR* )
58 xrlttr 11973 . . . . . . . . . . 11  |-  ( ( ( P `  0
)  e.  RR*  /\  ( P `  1 )  e.  RR*  /\  ( P `
 M )  e. 
RR* )  ->  (
( ( P ` 
0 )  <  ( P `  1 )  /\  ( P `  1
)  <  ( P `  M ) )  -> 
( P `  0
)  <  ( P `  M ) ) )
5943, 52, 57, 58syl3anc 1326 . . . . . . . . . 10  |-  ( (
ph  /\  -.  M  =  1 )  -> 
( ( ( P `
 0 )  < 
( P `  1
)  /\  ( P `  1 )  < 
( P `  M
) )  ->  ( P `  0 )  <  ( P `  M
) ) )
6059expcomd 454 . . . . . . . . 9  |-  ( (
ph  /\  -.  M  =  1 )  -> 
( ( P ` 
1 )  <  ( P `  M )  ->  ( ( P ` 
0 )  <  ( P `  1 )  ->  ( P `  0
)  <  ( P `  M ) ) ) )
6138, 60syld 47 . . . . . . . 8  |-  ( (
ph  /\  -.  M  =  1 )  -> 
( A. i  e.  ( 1..^ M ) ( P `  i
)  <  ( P `  M )  ->  (
( P `  0
)  <  ( P `  1 )  -> 
( P `  0
)  <  ( P `  M ) ) ) )
6261com23 86 . . . . . . 7  |-  ( (
ph  /\  -.  M  =  1 )  -> 
( ( P ` 
0 )  <  ( P `  1 )  ->  ( A. i  e.  ( 1..^ M ) ( P `  i
)  <  ( P `  M )  ->  ( P `  0 )  <  ( P `  M
) ) ) )
6335, 62syld 47 . . . . . 6  |-  ( (
ph  /\  -.  M  =  1 )  -> 
( A. i  e.  ( 1..^ M ) ( P `  0
)  <  ( P `  i )  ->  ( A. i  e.  (
1..^ M ) ( P `  i )  <  ( P `  M )  ->  ( P `  0 )  <  ( P `  M
) ) ) )
6463ex 450 . . . . 5  |-  ( ph  ->  ( -.  M  =  1  ->  ( A. i  e.  ( 1..^ M ) ( P `
 0 )  < 
( P `  i
)  ->  ( A. i  e.  ( 1..^ M ) ( P `
 i )  < 
( P `  M
)  ->  ( P `  0 )  < 
( P `  M
) ) ) ) )
6564com24 95 . . . 4  |-  ( ph  ->  ( A. i  e.  ( 1..^ M ) ( P `  i
)  <  ( P `  M )  ->  ( A. i  e.  (
1..^ M ) ( P `  0 )  <  ( P `  i )  ->  ( -.  M  =  1  ->  ( P `  0
)  <  ( P `  M ) ) ) ) )
6616, 17, 65mp2d 49 . . 3  |-  ( ph  ->  ( -.  M  =  1  ->  ( P `  0 )  < 
( P `  M
) ) )
6766com12 32 . 2  |-  ( -.  M  =  1  -> 
( ph  ->  ( P `
 0 )  < 
( P `  M
) ) )
6815, 67pm2.61i 176 1  |-  ( ph  ->  ( P `  0
)  <  ( P `  M ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 384    = wceq 1483    e. wcel 1990    =/= wne 2794   A.wral 2912   class class class wbr 4653   ` cfv 5888  (class class class)co 6650    ^m cmap 7857   0cc0 9936   1c1 9937    + caddc 9939   RR*cxr 10073    < clt 10074    <_ cle 10075   NNcn 11020   NN0cn0 11292   ...cfz 12326  ..^cfzo 12465  RePartciccp 41349
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-er 7742  df-map 7859  df-en 7956  df-dom 7957  df-sdom 7958  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-nn 11021  df-2 11079  df-n0 11293  df-z 11378  df-uz 11688  df-fz 12327  df-fzo 12466  df-iccp 41350
This theorem is referenced by:  iccpartltu  41361  iccpartgtl  41362  iccpartgt  41363
  Copyright terms: Public domain W3C validator