Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  icceuelpartlem Structured version   Visualization version   Unicode version

Theorem icceuelpartlem 41371
Description: Lemma for icceuelpart 41372. (Contributed by AV, 19-Jul-2020.)
Hypotheses
Ref Expression
iccpartiun.m  |-  ( ph  ->  M  e.  NN )
iccpartiun.p  |-  ( ph  ->  P  e.  (RePart `  M ) )
Assertion
Ref Expression
icceuelpartlem  |-  ( ph  ->  ( ( I  e.  ( 0..^ M )  /\  J  e.  ( 0..^ M ) )  ->  ( I  < 
J  ->  ( P `  ( I  +  1 ) )  <_  ( P `  J )
) ) )

Proof of Theorem icceuelpartlem
Dummy variables  i 
j are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fveq2 6191 . . . . . 6  |-  ( ( I  +  1 )  =  J  ->  ( P `  ( I  +  1 ) )  =  ( P `  J ) )
21olcd 408 . . . . 5  |-  ( ( I  +  1 )  =  J  ->  (
( P `  (
I  +  1 ) )  <  ( P `
 J )  \/  ( P `  (
I  +  1 ) )  =  ( P `
 J ) ) )
32a1d 25 . . . 4  |-  ( ( I  +  1 )  =  J  ->  (
( ( ph  /\  ( I  e.  (
0..^ M )  /\  J  e.  ( 0..^ M ) ) )  /\  I  <  J
)  ->  ( ( P `  ( I  +  1 ) )  <  ( P `  J )  \/  ( P `  ( I  +  1 ) )  =  ( P `  J ) ) ) )
4 elfzoelz 12470 . . . . . . . . . . 11  |-  ( I  e.  ( 0..^ M )  ->  I  e.  ZZ )
5 elfzoelz 12470 . . . . . . . . . . 11  |-  ( J  e.  ( 0..^ M )  ->  J  e.  ZZ )
6 zltp1le 11427 . . . . . . . . . . . . . . . . 17  |-  ( ( I  e.  ZZ  /\  J  e.  ZZ )  ->  ( I  <  J  <->  ( I  +  1 )  <_  J ) )
76biimpcd 239 . . . . . . . . . . . . . . . 16  |-  ( I  <  J  ->  (
( I  e.  ZZ  /\  J  e.  ZZ )  ->  ( I  + 
1 )  <_  J
) )
87adantr 481 . . . . . . . . . . . . . . 15  |-  ( ( I  <  J  /\  -.  ( I  +  1 )  =  J )  ->  ( ( I  e.  ZZ  /\  J  e.  ZZ )  ->  (
I  +  1 )  <_  J ) )
98impcom 446 . . . . . . . . . . . . . 14  |-  ( ( ( I  e.  ZZ  /\  J  e.  ZZ )  /\  ( I  < 
J  /\  -.  (
I  +  1 )  =  J ) )  ->  ( I  + 
1 )  <_  J
)
10 df-ne 2795 . . . . . . . . . . . . . . . . 17  |-  ( ( I  +  1 )  =/=  J  <->  -.  (
I  +  1 )  =  J )
11 necom 2847 . . . . . . . . . . . . . . . . 17  |-  ( ( I  +  1 )  =/=  J  <->  J  =/=  ( I  +  1
) )
1210, 11sylbb1 227 . . . . . . . . . . . . . . . 16  |-  ( -.  ( I  +  1 )  =  J  ->  J  =/=  ( I  + 
1 ) )
1312adantl 482 . . . . . . . . . . . . . . 15  |-  ( ( I  <  J  /\  -.  ( I  +  1 )  =  J )  ->  J  =/=  (
I  +  1 ) )
1413adantl 482 . . . . . . . . . . . . . 14  |-  ( ( ( I  e.  ZZ  /\  J  e.  ZZ )  /\  ( I  < 
J  /\  -.  (
I  +  1 )  =  J ) )  ->  J  =/=  (
I  +  1 ) )
159, 14jca 554 . . . . . . . . . . . . 13  |-  ( ( ( I  e.  ZZ  /\  J  e.  ZZ )  /\  ( I  < 
J  /\  -.  (
I  +  1 )  =  J ) )  ->  ( ( I  +  1 )  <_  J  /\  J  =/=  (
I  +  1 ) ) )
16 peano2z 11418 . . . . . . . . . . . . . . . . 17  |-  ( I  e.  ZZ  ->  (
I  +  1 )  e.  ZZ )
1716zred 11482 . . . . . . . . . . . . . . . 16  |-  ( I  e.  ZZ  ->  (
I  +  1 )  e.  RR )
18 zre 11381 . . . . . . . . . . . . . . . 16  |-  ( J  e.  ZZ  ->  J  e.  RR )
1917, 18anim12i 590 . . . . . . . . . . . . . . 15  |-  ( ( I  e.  ZZ  /\  J  e.  ZZ )  ->  ( ( I  + 
1 )  e.  RR  /\  J  e.  RR ) )
2019adantr 481 . . . . . . . . . . . . . 14  |-  ( ( ( I  e.  ZZ  /\  J  e.  ZZ )  /\  ( I  < 
J  /\  -.  (
I  +  1 )  =  J ) )  ->  ( ( I  +  1 )  e.  RR  /\  J  e.  RR ) )
21 ltlen 10138 . . . . . . . . . . . . . 14  |-  ( ( ( I  +  1 )  e.  RR  /\  J  e.  RR )  ->  ( ( I  + 
1 )  <  J  <->  ( ( I  +  1 )  <_  J  /\  J  =/=  ( I  + 
1 ) ) ) )
2220, 21syl 17 . . . . . . . . . . . . 13  |-  ( ( ( I  e.  ZZ  /\  J  e.  ZZ )  /\  ( I  < 
J  /\  -.  (
I  +  1 )  =  J ) )  ->  ( ( I  +  1 )  < 
J  <->  ( ( I  +  1 )  <_  J  /\  J  =/=  (
I  +  1 ) ) ) )
2315, 22mpbird 247 . . . . . . . . . . . 12  |-  ( ( ( I  e.  ZZ  /\  J  e.  ZZ )  /\  ( I  < 
J  /\  -.  (
I  +  1 )  =  J ) )  ->  ( I  + 
1 )  <  J
)
2423ex 450 . . . . . . . . . . 11  |-  ( ( I  e.  ZZ  /\  J  e.  ZZ )  ->  ( ( I  < 
J  /\  -.  (
I  +  1 )  =  J )  -> 
( I  +  1 )  <  J ) )
254, 5, 24syl2an 494 . . . . . . . . . 10  |-  ( ( I  e.  ( 0..^ M )  /\  J  e.  ( 0..^ M ) )  ->  ( (
I  <  J  /\  -.  ( I  +  1 )  =  J )  ->  ( I  + 
1 )  <  J
) )
2625adantl 482 . . . . . . . . 9  |-  ( (
ph  /\  ( I  e.  ( 0..^ M )  /\  J  e.  ( 0..^ M ) ) )  ->  ( (
I  <  J  /\  -.  ( I  +  1 )  =  J )  ->  ( I  + 
1 )  <  J
) )
27 iccpartiun.m . . . . . . . . . . 11  |-  ( ph  ->  M  e.  NN )
28 iccpartiun.p . . . . . . . . . . 11  |-  ( ph  ->  P  e.  (RePart `  M ) )
2927, 28iccpartgt 41363 . . . . . . . . . 10  |-  ( ph  ->  A. i  e.  ( 0 ... M ) A. j  e.  ( 0 ... M ) ( i  <  j  ->  ( P `  i
)  <  ( P `  j ) ) )
30 fzofzp1 12565 . . . . . . . . . . 11  |-  ( I  e.  ( 0..^ M )  ->  ( I  +  1 )  e.  ( 0 ... M
) )
31 elfzofz 12485 . . . . . . . . . . 11  |-  ( J  e.  ( 0..^ M )  ->  J  e.  ( 0 ... M
) )
32 breq1 4656 . . . . . . . . . . . . 13  |-  ( i  =  ( I  + 
1 )  ->  (
i  <  j  <->  ( I  +  1 )  < 
j ) )
33 fveq2 6191 . . . . . . . . . . . . . 14  |-  ( i  =  ( I  + 
1 )  ->  ( P `  i )  =  ( P `  ( I  +  1
) ) )
3433breq1d 4663 . . . . . . . . . . . . 13  |-  ( i  =  ( I  + 
1 )  ->  (
( P `  i
)  <  ( P `  j )  <->  ( P `  ( I  +  1 ) )  <  ( P `  j )
) )
3532, 34imbi12d 334 . . . . . . . . . . . 12  |-  ( i  =  ( I  + 
1 )  ->  (
( i  <  j  ->  ( P `  i
)  <  ( P `  j ) )  <->  ( (
I  +  1 )  <  j  ->  ( P `  ( I  +  1 ) )  <  ( P `  j ) ) ) )
36 breq2 4657 . . . . . . . . . . . . 13  |-  ( j  =  J  ->  (
( I  +  1 )  <  j  <->  ( I  +  1 )  < 
J ) )
37 fveq2 6191 . . . . . . . . . . . . . 14  |-  ( j  =  J  ->  ( P `  j )  =  ( P `  J ) )
3837breq2d 4665 . . . . . . . . . . . . 13  |-  ( j  =  J  ->  (
( P `  (
I  +  1 ) )  <  ( P `
 j )  <->  ( P `  ( I  +  1 ) )  <  ( P `  J )
) )
3936, 38imbi12d 334 . . . . . . . . . . . 12  |-  ( j  =  J  ->  (
( ( I  + 
1 )  <  j  ->  ( P `  (
I  +  1 ) )  <  ( P `
 j ) )  <-> 
( ( I  + 
1 )  <  J  ->  ( P `  (
I  +  1 ) )  <  ( P `
 J ) ) ) )
4035, 39rspc2v 3322 . . . . . . . . . . 11  |-  ( ( ( I  +  1 )  e.  ( 0 ... M )  /\  J  e.  ( 0 ... M ) )  ->  ( A. i  e.  ( 0 ... M
) A. j  e.  ( 0 ... M
) ( i  < 
j  ->  ( P `  i )  <  ( P `  j )
)  ->  ( (
I  +  1 )  <  J  ->  ( P `  ( I  +  1 ) )  <  ( P `  J ) ) ) )
4130, 31, 40syl2an 494 . . . . . . . . . 10  |-  ( ( I  e.  ( 0..^ M )  /\  J  e.  ( 0..^ M ) )  ->  ( A. i  e.  ( 0 ... M ) A. j  e.  ( 0 ... M ) ( i  <  j  -> 
( P `  i
)  <  ( P `  j ) )  -> 
( ( I  + 
1 )  <  J  ->  ( P `  (
I  +  1 ) )  <  ( P `
 J ) ) ) )
4229, 41mpan9 486 . . . . . . . . 9  |-  ( (
ph  /\  ( I  e.  ( 0..^ M )  /\  J  e.  ( 0..^ M ) ) )  ->  ( (
I  +  1 )  <  J  ->  ( P `  ( I  +  1 ) )  <  ( P `  J ) ) )
4326, 42syld 47 . . . . . . . 8  |-  ( (
ph  /\  ( I  e.  ( 0..^ M )  /\  J  e.  ( 0..^ M ) ) )  ->  ( (
I  <  J  /\  -.  ( I  +  1 )  =  J )  ->  ( P `  ( I  +  1
) )  <  ( P `  J )
) )
4443expdimp 453 . . . . . . 7  |-  ( ( ( ph  /\  (
I  e.  ( 0..^ M )  /\  J  e.  ( 0..^ M ) ) )  /\  I  <  J )  ->  ( -.  ( I  +  1 )  =  J  -> 
( P `  (
I  +  1 ) )  <  ( P `
 J ) ) )
4544impcom 446 . . . . . 6  |-  ( ( -.  ( I  + 
1 )  =  J  /\  ( ( ph  /\  ( I  e.  ( 0..^ M )  /\  J  e.  ( 0..^ M ) ) )  /\  I  <  J
) )  ->  ( P `  ( I  +  1 ) )  <  ( P `  J ) )
4645orcd 407 . . . . 5  |-  ( ( -.  ( I  + 
1 )  =  J  /\  ( ( ph  /\  ( I  e.  ( 0..^ M )  /\  J  e.  ( 0..^ M ) ) )  /\  I  <  J
) )  ->  (
( P `  (
I  +  1 ) )  <  ( P `
 J )  \/  ( P `  (
I  +  1 ) )  =  ( P `
 J ) ) )
4746ex 450 . . . 4  |-  ( -.  ( I  +  1 )  =  J  -> 
( ( ( ph  /\  ( I  e.  ( 0..^ M )  /\  J  e.  ( 0..^ M ) ) )  /\  I  <  J
)  ->  ( ( P `  ( I  +  1 ) )  <  ( P `  J )  \/  ( P `  ( I  +  1 ) )  =  ( P `  J ) ) ) )
483, 47pm2.61i 176 . . 3  |-  ( ( ( ph  /\  (
I  e.  ( 0..^ M )  /\  J  e.  ( 0..^ M ) ) )  /\  I  <  J )  ->  (
( P `  (
I  +  1 ) )  <  ( P `
 J )  \/  ( P `  (
I  +  1 ) )  =  ( P `
 J ) ) )
4927adantr 481 . . . . . . 7  |-  ( (
ph  /\  ( I  e.  ( 0..^ M )  /\  J  e.  ( 0..^ M ) ) )  ->  M  e.  NN )
5028adantr 481 . . . . . . 7  |-  ( (
ph  /\  ( I  e.  ( 0..^ M )  /\  J  e.  ( 0..^ M ) ) )  ->  P  e.  (RePart `  M ) )
5130adantr 481 . . . . . . . 8  |-  ( ( I  e.  ( 0..^ M )  /\  J  e.  ( 0..^ M ) )  ->  ( I  +  1 )  e.  ( 0 ... M
) )
5251adantl 482 . . . . . . 7  |-  ( (
ph  /\  ( I  e.  ( 0..^ M )  /\  J  e.  ( 0..^ M ) ) )  ->  ( I  +  1 )  e.  ( 0 ... M
) )
5349, 50, 52iccpartxr 41355 . . . . . 6  |-  ( (
ph  /\  ( I  e.  ( 0..^ M )  /\  J  e.  ( 0..^ M ) ) )  ->  ( P `  ( I  +  1 ) )  e.  RR* )
5431adantl 482 . . . . . . . 8  |-  ( ( I  e.  ( 0..^ M )  /\  J  e.  ( 0..^ M ) )  ->  J  e.  ( 0 ... M
) )
5554adantl 482 . . . . . . 7  |-  ( (
ph  /\  ( I  e.  ( 0..^ M )  /\  J  e.  ( 0..^ M ) ) )  ->  J  e.  ( 0 ... M
) )
5649, 50, 55iccpartxr 41355 . . . . . 6  |-  ( (
ph  /\  ( I  e.  ( 0..^ M )  /\  J  e.  ( 0..^ M ) ) )  ->  ( P `  J )  e.  RR* )
5753, 56jca 554 . . . . 5  |-  ( (
ph  /\  ( I  e.  ( 0..^ M )  /\  J  e.  ( 0..^ M ) ) )  ->  ( ( P `  ( I  +  1 ) )  e.  RR*  /\  ( P `  J )  e.  RR* ) )
5857adantr 481 . . . 4  |-  ( ( ( ph  /\  (
I  e.  ( 0..^ M )  /\  J  e.  ( 0..^ M ) ) )  /\  I  <  J )  ->  (
( P `  (
I  +  1 ) )  e.  RR*  /\  ( P `  J )  e.  RR* ) )
59 xrleloe 11977 . . . 4  |-  ( ( ( P `  (
I  +  1 ) )  e.  RR*  /\  ( P `  J )  e.  RR* )  ->  (
( P `  (
I  +  1 ) )  <_  ( P `  J )  <->  ( ( P `  ( I  +  1 ) )  <  ( P `  J )  \/  ( P `  ( I  +  1 ) )  =  ( P `  J ) ) ) )
6058, 59syl 17 . . 3  |-  ( ( ( ph  /\  (
I  e.  ( 0..^ M )  /\  J  e.  ( 0..^ M ) ) )  /\  I  <  J )  ->  (
( P `  (
I  +  1 ) )  <_  ( P `  J )  <->  ( ( P `  ( I  +  1 ) )  <  ( P `  J )  \/  ( P `  ( I  +  1 ) )  =  ( P `  J ) ) ) )
6148, 60mpbird 247 . 2  |-  ( ( ( ph  /\  (
I  e.  ( 0..^ M )  /\  J  e.  ( 0..^ M ) ) )  /\  I  <  J )  ->  ( P `  ( I  +  1 ) )  <_  ( P `  J ) )
6261exp31 630 1  |-  ( ph  ->  ( ( I  e.  ( 0..^ M )  /\  J  e.  ( 0..^ M ) )  ->  ( I  < 
J  ->  ( P `  ( I  +  1 ) )  <_  ( P `  J )
) ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 196    \/ wo 383    /\ wa 384    = wceq 1483    e. wcel 1990    =/= wne 2794   A.wral 2912   class class class wbr 4653   ` cfv 5888  (class class class)co 6650   RRcr 9935   0cc0 9936   1c1 9937    + caddc 9939   RR*cxr 10073    < clt 10074    <_ cle 10075   NNcn 11020   ZZcz 11377   ...cfz 12326  ..^cfzo 12465  RePartciccp 41349
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-er 7742  df-map 7859  df-en 7956  df-dom 7957  df-sdom 7958  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-nn 11021  df-2 11079  df-n0 11293  df-z 11378  df-uz 11688  df-fz 12327  df-fzo 12466  df-iccp 41350
This theorem is referenced by:  icceuelpart  41372
  Copyright terms: Public domain W3C validator