Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  iccshift Structured version   Visualization version   Unicode version

Theorem iccshift 39744
Description: A closed interval shifted by a real number. (Contributed by Glauco Siliprandi, 11-Dec-2019.)
Hypotheses
Ref Expression
iccshift.1  |-  ( ph  ->  A  e.  RR )
iccshift.2  |-  ( ph  ->  B  e.  RR )
iccshift.3  |-  ( ph  ->  T  e.  RR )
Assertion
Ref Expression
iccshift  |-  ( ph  ->  ( ( A  +  T ) [,] ( B  +  T )
)  =  { w  e.  CC  |  E. z  e.  ( A [,] B
) w  =  ( z  +  T ) } )
Distinct variable groups:    w, A, z    w, B, z    w, T, z    ph, z
Allowed substitution hint:    ph( w)

Proof of Theorem iccshift
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 eqeq1 2626 . . . . . . 7  |-  ( w  =  x  ->  (
w  =  ( z  +  T )  <->  x  =  ( z  +  T
) ) )
21rexbidv 3052 . . . . . 6  |-  ( w  =  x  ->  ( E. z  e.  ( A [,] B ) w  =  ( z  +  T )  <->  E. z  e.  ( A [,] B
) x  =  ( z  +  T ) ) )
32elrab 3363 . . . . 5  |-  ( x  e.  { w  e.  CC  |  E. z  e.  ( A [,] B
) w  =  ( z  +  T ) }  <->  ( x  e.  CC  /\  E. z  e.  ( A [,] B
) x  =  ( z  +  T ) ) )
4 simprr 796 . . . . . 6  |-  ( (
ph  /\  ( x  e.  CC  /\  E. z  e.  ( A [,] B
) x  =  ( z  +  T ) ) )  ->  E. z  e.  ( A [,] B
) x  =  ( z  +  T ) )
5 nfv 1843 . . . . . . . 8  |-  F/ z
ph
6 nfv 1843 . . . . . . . . 9  |-  F/ z  x  e.  CC
7 nfre1 3005 . . . . . . . . 9  |-  F/ z E. z  e.  ( A [,] B ) x  =  ( z  +  T )
86, 7nfan 1828 . . . . . . . 8  |-  F/ z ( x  e.  CC  /\ 
E. z  e.  ( A [,] B ) x  =  ( z  +  T ) )
95, 8nfan 1828 . . . . . . 7  |-  F/ z ( ph  /\  (
x  e.  CC  /\  E. z  e.  ( A [,] B ) x  =  ( z  +  T ) ) )
10 nfv 1843 . . . . . . 7  |-  F/ z  x  e.  ( ( A  +  T ) [,] ( B  +  T ) )
11 simp3 1063 . . . . . . . . . 10  |-  ( (
ph  /\  z  e.  ( A [,] B )  /\  x  =  ( z  +  T ) )  ->  x  =  ( z  +  T
) )
12 iccshift.1 . . . . . . . . . . . . . . . 16  |-  ( ph  ->  A  e.  RR )
13 iccshift.2 . . . . . . . . . . . . . . . 16  |-  ( ph  ->  B  e.  RR )
1412, 13iccssred 39727 . . . . . . . . . . . . . . 15  |-  ( ph  ->  ( A [,] B
)  C_  RR )
1514sselda 3603 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  z  e.  ( A [,] B ) )  ->  z  e.  RR )
16 iccshift.3 . . . . . . . . . . . . . . 15  |-  ( ph  ->  T  e.  RR )
1716adantr 481 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  z  e.  ( A [,] B ) )  ->  T  e.  RR )
1815, 17readdcld 10069 . . . . . . . . . . . . 13  |-  ( (
ph  /\  z  e.  ( A [,] B ) )  ->  ( z  +  T )  e.  RR )
1912adantr 481 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  z  e.  ( A [,] B ) )  ->  A  e.  RR )
20 simpr 477 . . . . . . . . . . . . . . . 16  |-  ( (
ph  /\  z  e.  ( A [,] B ) )  ->  z  e.  ( A [,] B ) )
2113adantr 481 . . . . . . . . . . . . . . . . 17  |-  ( (
ph  /\  z  e.  ( A [,] B ) )  ->  B  e.  RR )
22 elicc2 12238 . . . . . . . . . . . . . . . . 17  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( z  e.  ( A [,] B )  <-> 
( z  e.  RR  /\  A  <_  z  /\  z  <_  B ) ) )
2319, 21, 22syl2anc 693 . . . . . . . . . . . . . . . 16  |-  ( (
ph  /\  z  e.  ( A [,] B ) )  ->  ( z  e.  ( A [,] B
)  <->  ( z  e.  RR  /\  A  <_ 
z  /\  z  <_  B ) ) )
2420, 23mpbid 222 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  z  e.  ( A [,] B ) )  ->  ( z  e.  RR  /\  A  <_ 
z  /\  z  <_  B ) )
2524simp2d 1074 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  z  e.  ( A [,] B ) )  ->  A  <_  z )
2619, 15, 17, 25leadd1dd 10641 . . . . . . . . . . . . 13  |-  ( (
ph  /\  z  e.  ( A [,] B ) )  ->  ( A  +  T )  <_  (
z  +  T ) )
2724simp3d 1075 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  z  e.  ( A [,] B ) )  ->  z  <_  B )
2815, 21, 17, 27leadd1dd 10641 . . . . . . . . . . . . 13  |-  ( (
ph  /\  z  e.  ( A [,] B ) )  ->  ( z  +  T )  <_  ( B  +  T )
)
2918, 26, 283jca 1242 . . . . . . . . . . . 12  |-  ( (
ph  /\  z  e.  ( A [,] B ) )  ->  ( (
z  +  T )  e.  RR  /\  ( A  +  T )  <_  ( z  +  T
)  /\  ( z  +  T )  <_  ( B  +  T )
) )
30293adant3 1081 . . . . . . . . . . 11  |-  ( (
ph  /\  z  e.  ( A [,] B )  /\  x  =  ( z  +  T ) )  ->  ( (
z  +  T )  e.  RR  /\  ( A  +  T )  <_  ( z  +  T
)  /\  ( z  +  T )  <_  ( B  +  T )
) )
3112, 16readdcld 10069 . . . . . . . . . . . . 13  |-  ( ph  ->  ( A  +  T
)  e.  RR )
32313ad2ant1 1082 . . . . . . . . . . . 12  |-  ( (
ph  /\  z  e.  ( A [,] B )  /\  x  =  ( z  +  T ) )  ->  ( A  +  T )  e.  RR )
3313, 16readdcld 10069 . . . . . . . . . . . . 13  |-  ( ph  ->  ( B  +  T
)  e.  RR )
34333ad2ant1 1082 . . . . . . . . . . . 12  |-  ( (
ph  /\  z  e.  ( A [,] B )  /\  x  =  ( z  +  T ) )  ->  ( B  +  T )  e.  RR )
35 elicc2 12238 . . . . . . . . . . . 12  |-  ( ( ( A  +  T
)  e.  RR  /\  ( B  +  T
)  e.  RR )  ->  ( ( z  +  T )  e.  ( ( A  +  T ) [,] ( B  +  T )
)  <->  ( ( z  +  T )  e.  RR  /\  ( A  +  T )  <_ 
( z  +  T
)  /\  ( z  +  T )  <_  ( B  +  T )
) ) )
3632, 34, 35syl2anc 693 . . . . . . . . . . 11  |-  ( (
ph  /\  z  e.  ( A [,] B )  /\  x  =  ( z  +  T ) )  ->  ( (
z  +  T )  e.  ( ( A  +  T ) [,] ( B  +  T
) )  <->  ( (
z  +  T )  e.  RR  /\  ( A  +  T )  <_  ( z  +  T
)  /\  ( z  +  T )  <_  ( B  +  T )
) ) )
3730, 36mpbird 247 . . . . . . . . . 10  |-  ( (
ph  /\  z  e.  ( A [,] B )  /\  x  =  ( z  +  T ) )  ->  ( z  +  T )  e.  ( ( A  +  T
) [,] ( B  +  T ) ) )
3811, 37eqeltrd 2701 . . . . . . . . 9  |-  ( (
ph  /\  z  e.  ( A [,] B )  /\  x  =  ( z  +  T ) )  ->  x  e.  ( ( A  +  T ) [,] ( B  +  T )
) )
39383exp 1264 . . . . . . . 8  |-  ( ph  ->  ( z  e.  ( A [,] B )  ->  ( x  =  ( z  +  T
)  ->  x  e.  ( ( A  +  T ) [,] ( B  +  T )
) ) ) )
4039adantr 481 . . . . . . 7  |-  ( (
ph  /\  ( x  e.  CC  /\  E. z  e.  ( A [,] B
) x  =  ( z  +  T ) ) )  ->  (
z  e.  ( A [,] B )  -> 
( x  =  ( z  +  T )  ->  x  e.  ( ( A  +  T
) [,] ( B  +  T ) ) ) ) )
419, 10, 40rexlimd 3026 . . . . . 6  |-  ( (
ph  /\  ( x  e.  CC  /\  E. z  e.  ( A [,] B
) x  =  ( z  +  T ) ) )  ->  ( E. z  e.  ( A [,] B ) x  =  ( z  +  T )  ->  x  e.  ( ( A  +  T ) [,] ( B  +  T )
) ) )
424, 41mpd 15 . . . . 5  |-  ( (
ph  /\  ( x  e.  CC  /\  E. z  e.  ( A [,] B
) x  =  ( z  +  T ) ) )  ->  x  e.  ( ( A  +  T ) [,] ( B  +  T )
) )
433, 42sylan2b 492 . . . 4  |-  ( (
ph  /\  x  e.  { w  e.  CC  |  E. z  e.  ( A [,] B ) w  =  ( z  +  T ) } )  ->  x  e.  ( ( A  +  T
) [,] ( B  +  T ) ) )
4431adantr 481 . . . . . . 7  |-  ( (
ph  /\  x  e.  ( ( A  +  T ) [,] ( B  +  T )
) )  ->  ( A  +  T )  e.  RR )
4533adantr 481 . . . . . . 7  |-  ( (
ph  /\  x  e.  ( ( A  +  T ) [,] ( B  +  T )
) )  ->  ( B  +  T )  e.  RR )
46 simpr 477 . . . . . . 7  |-  ( (
ph  /\  x  e.  ( ( A  +  T ) [,] ( B  +  T )
) )  ->  x  e.  ( ( A  +  T ) [,] ( B  +  T )
) )
47 eliccre 39728 . . . . . . 7  |-  ( ( ( A  +  T
)  e.  RR  /\  ( B  +  T
)  e.  RR  /\  x  e.  ( ( A  +  T ) [,] ( B  +  T
) ) )  ->  x  e.  RR )
4844, 45, 46, 47syl3anc 1326 . . . . . 6  |-  ( (
ph  /\  x  e.  ( ( A  +  T ) [,] ( B  +  T )
) )  ->  x  e.  RR )
4948recnd 10068 . . . . 5  |-  ( (
ph  /\  x  e.  ( ( A  +  T ) [,] ( B  +  T )
) )  ->  x  e.  CC )
5012adantr 481 . . . . . . 7  |-  ( (
ph  /\  x  e.  ( ( A  +  T ) [,] ( B  +  T )
) )  ->  A  e.  RR )
5113adantr 481 . . . . . . 7  |-  ( (
ph  /\  x  e.  ( ( A  +  T ) [,] ( B  +  T )
) )  ->  B  e.  RR )
5216adantr 481 . . . . . . . 8  |-  ( (
ph  /\  x  e.  ( ( A  +  T ) [,] ( B  +  T )
) )  ->  T  e.  RR )
5348, 52resubcld 10458 . . . . . . 7  |-  ( (
ph  /\  x  e.  ( ( A  +  T ) [,] ( B  +  T )
) )  ->  (
x  -  T )  e.  RR )
5412recnd 10068 . . . . . . . . . . 11  |-  ( ph  ->  A  e.  CC )
5516recnd 10068 . . . . . . . . . . 11  |-  ( ph  ->  T  e.  CC )
5654, 55pncand 10393 . . . . . . . . . 10  |-  ( ph  ->  ( ( A  +  T )  -  T
)  =  A )
5756eqcomd 2628 . . . . . . . . 9  |-  ( ph  ->  A  =  ( ( A  +  T )  -  T ) )
5857adantr 481 . . . . . . . 8  |-  ( (
ph  /\  x  e.  ( ( A  +  T ) [,] ( B  +  T )
) )  ->  A  =  ( ( A  +  T )  -  T ) )
59 elicc2 12238 . . . . . . . . . . . 12  |-  ( ( ( A  +  T
)  e.  RR  /\  ( B  +  T
)  e.  RR )  ->  ( x  e.  ( ( A  +  T ) [,] ( B  +  T )
)  <->  ( x  e.  RR  /\  ( A  +  T )  <_  x  /\  x  <_  ( B  +  T )
) ) )
6044, 45, 59syl2anc 693 . . . . . . . . . . 11  |-  ( (
ph  /\  x  e.  ( ( A  +  T ) [,] ( B  +  T )
) )  ->  (
x  e.  ( ( A  +  T ) [,] ( B  +  T ) )  <->  ( x  e.  RR  /\  ( A  +  T )  <_  x  /\  x  <_  ( B  +  T )
) ) )
6146, 60mpbid 222 . . . . . . . . . 10  |-  ( (
ph  /\  x  e.  ( ( A  +  T ) [,] ( B  +  T )
) )  ->  (
x  e.  RR  /\  ( A  +  T
)  <_  x  /\  x  <_  ( B  +  T ) ) )
6261simp2d 1074 . . . . . . . . 9  |-  ( (
ph  /\  x  e.  ( ( A  +  T ) [,] ( B  +  T )
) )  ->  ( A  +  T )  <_  x )
6344, 48, 52, 62lesub1dd 10643 . . . . . . . 8  |-  ( (
ph  /\  x  e.  ( ( A  +  T ) [,] ( B  +  T )
) )  ->  (
( A  +  T
)  -  T )  <_  ( x  -  T ) )
6458, 63eqbrtrd 4675 . . . . . . 7  |-  ( (
ph  /\  x  e.  ( ( A  +  T ) [,] ( B  +  T )
) )  ->  A  <_  ( x  -  T
) )
6561simp3d 1075 . . . . . . . . 9  |-  ( (
ph  /\  x  e.  ( ( A  +  T ) [,] ( B  +  T )
) )  ->  x  <_  ( B  +  T
) )
6648, 45, 52, 65lesub1dd 10643 . . . . . . . 8  |-  ( (
ph  /\  x  e.  ( ( A  +  T ) [,] ( B  +  T )
) )  ->  (
x  -  T )  <_  ( ( B  +  T )  -  T ) )
6713recnd 10068 . . . . . . . . . 10  |-  ( ph  ->  B  e.  CC )
6867, 55pncand 10393 . . . . . . . . 9  |-  ( ph  ->  ( ( B  +  T )  -  T
)  =  B )
6968adantr 481 . . . . . . . 8  |-  ( (
ph  /\  x  e.  ( ( A  +  T ) [,] ( B  +  T )
) )  ->  (
( B  +  T
)  -  T )  =  B )
7066, 69breqtrd 4679 . . . . . . 7  |-  ( (
ph  /\  x  e.  ( ( A  +  T ) [,] ( B  +  T )
) )  ->  (
x  -  T )  <_  B )
7150, 51, 53, 64, 70eliccd 39726 . . . . . 6  |-  ( (
ph  /\  x  e.  ( ( A  +  T ) [,] ( B  +  T )
) )  ->  (
x  -  T )  e.  ( A [,] B ) )
7255adantr 481 . . . . . . . 8  |-  ( (
ph  /\  x  e.  ( ( A  +  T ) [,] ( B  +  T )
) )  ->  T  e.  CC )
7349, 72npcand 10396 . . . . . . 7  |-  ( (
ph  /\  x  e.  ( ( A  +  T ) [,] ( B  +  T )
) )  ->  (
( x  -  T
)  +  T )  =  x )
7473eqcomd 2628 . . . . . 6  |-  ( (
ph  /\  x  e.  ( ( A  +  T ) [,] ( B  +  T )
) )  ->  x  =  ( ( x  -  T )  +  T ) )
75 oveq1 6657 . . . . . . . 8  |-  ( z  =  ( x  -  T )  ->  (
z  +  T )  =  ( ( x  -  T )  +  T ) )
7675eqeq2d 2632 . . . . . . 7  |-  ( z  =  ( x  -  T )  ->  (
x  =  ( z  +  T )  <->  x  =  ( ( x  -  T )  +  T
) ) )
7776rspcev 3309 . . . . . 6  |-  ( ( ( x  -  T
)  e.  ( A [,] B )  /\  x  =  ( (
x  -  T )  +  T ) )  ->  E. z  e.  ( A [,] B ) x  =  ( z  +  T ) )
7871, 74, 77syl2anc 693 . . . . 5  |-  ( (
ph  /\  x  e.  ( ( A  +  T ) [,] ( B  +  T )
) )  ->  E. z  e.  ( A [,] B
) x  =  ( z  +  T ) )
7949, 78, 3sylanbrc 698 . . . 4  |-  ( (
ph  /\  x  e.  ( ( A  +  T ) [,] ( B  +  T )
) )  ->  x  e.  { w  e.  CC  |  E. z  e.  ( A [,] B ) w  =  ( z  +  T ) } )
8043, 79impbida 877 . . 3  |-  ( ph  ->  ( x  e.  {
w  e.  CC  |  E. z  e.  ( A [,] B ) w  =  ( z  +  T ) }  <->  x  e.  ( ( A  +  T ) [,] ( B  +  T )
) ) )
8180eqrdv 2620 . 2  |-  ( ph  ->  { w  e.  CC  |  E. z  e.  ( A [,] B ) w  =  ( z  +  T ) }  =  ( ( A  +  T ) [,] ( B  +  T
) ) )
8281eqcomd 2628 1  |-  ( ph  ->  ( ( A  +  T ) [,] ( B  +  T )
)  =  { w  e.  CC  |  E. z  e.  ( A [,] B
) w  =  ( z  +  T ) } )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    /\ wa 384    /\ w3a 1037    = wceq 1483    e. wcel 1990   E.wrex 2913   {crab 2916   class class class wbr 4653  (class class class)co 6650   CCcc 9934   RRcr 9935    + caddc 9939    <_ cle 10075    - cmin 10266   [,]cicc 12178
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-po 5035  df-so 5036  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-icc 12182
This theorem is referenced by:  itgiccshift  40196  itgperiod  40197
  Copyright terms: Public domain W3C validator