Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  itgperiod Structured version   Visualization version   Unicode version

Theorem itgperiod 40197
Description: The integral of a periodic function, with period  T stays the same if the domain of integration is shifted. (Contributed by Glauco Siliprandi, 11-Dec-2019.)
Hypotheses
Ref Expression
itgperiod.a  |-  ( ph  ->  A  e.  RR )
itgperiod.b  |-  ( ph  ->  B  e.  RR )
itgperiod.aleb  |-  ( ph  ->  A  <_  B )
itgperiod.t  |-  ( ph  ->  T  e.  RR+ )
itgperiod.f  |-  ( ph  ->  F : RR --> CC )
itgperiod.fper  |-  ( (
ph  /\  x  e.  ( A [,] B ) )  ->  ( F `  ( x  +  T
) )  =  ( F `  x ) )
itgperiod.fcn  |-  ( ph  ->  ( F  |`  ( A [,] B ) )  e.  ( ( A [,] B ) -cn-> CC ) )
Assertion
Ref Expression
itgperiod  |-  ( ph  ->  S. ( ( A  +  T ) [,] ( B  +  T
) ) ( F `
 x )  _d x  =  S. ( A [,] B ) ( F `  x
)  _d x )
Distinct variable groups:    x, A    x, B    x, F    x, T    ph, x

Proof of Theorem itgperiod
Dummy variables  w  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 itgperiod.a . . . . 5  |-  ( ph  ->  A  e.  RR )
2 itgperiod.b . . . . 5  |-  ( ph  ->  B  e.  RR )
3 itgperiod.t . . . . . 6  |-  ( ph  ->  T  e.  RR+ )
43rpred 11872 . . . . 5  |-  ( ph  ->  T  e.  RR )
5 itgperiod.aleb . . . . 5  |-  ( ph  ->  A  <_  B )
61, 2, 4, 5leadd1dd 10641 . . . 4  |-  ( ph  ->  ( A  +  T
)  <_  ( B  +  T ) )
76ditgpos 23620 . . 3  |-  ( ph  ->  S__ [ ( A  +  T )  -> 
( B  +  T
) ] ( F `
 x )  _d x  =  S. ( ( A  +  T
) (,) ( B  +  T ) ) ( F `  x
)  _d x )
81, 4readdcld 10069 . . . 4  |-  ( ph  ->  ( A  +  T
)  e.  RR )
92, 4readdcld 10069 . . . 4  |-  ( ph  ->  ( B  +  T
)  e.  RR )
10 itgperiod.f . . . . . 6  |-  ( ph  ->  F : RR --> CC )
1110adantr 481 . . . . 5  |-  ( (
ph  /\  x  e.  ( ( A  +  T ) [,] ( B  +  T )
) )  ->  F : RR --> CC )
128adantr 481 . . . . . 6  |-  ( (
ph  /\  x  e.  ( ( A  +  T ) [,] ( B  +  T )
) )  ->  ( A  +  T )  e.  RR )
139adantr 481 . . . . . 6  |-  ( (
ph  /\  x  e.  ( ( A  +  T ) [,] ( B  +  T )
) )  ->  ( B  +  T )  e.  RR )
14 simpr 477 . . . . . 6  |-  ( (
ph  /\  x  e.  ( ( A  +  T ) [,] ( B  +  T )
) )  ->  x  e.  ( ( A  +  T ) [,] ( B  +  T )
) )
15 eliccre 39728 . . . . . 6  |-  ( ( ( A  +  T
)  e.  RR  /\  ( B  +  T
)  e.  RR  /\  x  e.  ( ( A  +  T ) [,] ( B  +  T
) ) )  ->  x  e.  RR )
1612, 13, 14, 15syl3anc 1326 . . . . 5  |-  ( (
ph  /\  x  e.  ( ( A  +  T ) [,] ( B  +  T )
) )  ->  x  e.  RR )
1711, 16ffvelrnd 6360 . . . 4  |-  ( (
ph  /\  x  e.  ( ( A  +  T ) [,] ( B  +  T )
) )  ->  ( F `  x )  e.  CC )
188, 9, 17itgioo 23582 . . 3  |-  ( ph  ->  S. ( ( A  +  T ) (,) ( B  +  T
) ) ( F `
 x )  _d x  =  S. ( ( A  +  T
) [,] ( B  +  T ) ) ( F `  x
)  _d x )
197, 18eqtr2d 2657 . 2  |-  ( ph  ->  S. ( ( A  +  T ) [,] ( B  +  T
) ) ( F `
 x )  _d x  =  S__ [
( A  +  T
)  ->  ( B  +  T ) ] ( F `  x )  _d x )
20 eqid 2622 . . . 4  |-  ( y  e.  CC  |->  ( y  +  T ) )  =  ( y  e.  CC  |->  ( y  +  T ) )
214recnd 10068 . . . . 5  |-  ( ph  ->  T  e.  CC )
2220addccncf 22719 . . . . 5  |-  ( T  e.  CC  ->  (
y  e.  CC  |->  ( y  +  T ) )  e.  ( CC
-cn-> CC ) )
2321, 22syl 17 . . . 4  |-  ( ph  ->  ( y  e.  CC  |->  ( y  +  T
) )  e.  ( CC -cn-> CC ) )
241, 2iccssred 39727 . . . . 5  |-  ( ph  ->  ( A [,] B
)  C_  RR )
25 ax-resscn 9993 . . . . 5  |-  RR  C_  CC
2624, 25syl6ss 3615 . . . 4  |-  ( ph  ->  ( A [,] B
)  C_  CC )
278, 9iccssred 39727 . . . . 5  |-  ( ph  ->  ( ( A  +  T ) [,] ( B  +  T )
)  C_  RR )
2827, 25syl6ss 3615 . . . 4  |-  ( ph  ->  ( ( A  +  T ) [,] ( B  +  T )
)  C_  CC )
298adantr 481 . . . . 5  |-  ( (
ph  /\  y  e.  ( A [,] B ) )  ->  ( A  +  T )  e.  RR )
309adantr 481 . . . . 5  |-  ( (
ph  /\  y  e.  ( A [,] B ) )  ->  ( B  +  T )  e.  RR )
3124sselda 3603 . . . . . 6  |-  ( (
ph  /\  y  e.  ( A [,] B ) )  ->  y  e.  RR )
324adantr 481 . . . . . 6  |-  ( (
ph  /\  y  e.  ( A [,] B ) )  ->  T  e.  RR )
3331, 32readdcld 10069 . . . . 5  |-  ( (
ph  /\  y  e.  ( A [,] B ) )  ->  ( y  +  T )  e.  RR )
341adantr 481 . . . . . 6  |-  ( (
ph  /\  y  e.  ( A [,] B ) )  ->  A  e.  RR )
35 simpr 477 . . . . . . . 8  |-  ( (
ph  /\  y  e.  ( A [,] B ) )  ->  y  e.  ( A [,] B ) )
362adantr 481 . . . . . . . . 9  |-  ( (
ph  /\  y  e.  ( A [,] B ) )  ->  B  e.  RR )
37 elicc2 12238 . . . . . . . . 9  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( y  e.  ( A [,] B )  <-> 
( y  e.  RR  /\  A  <_  y  /\  y  <_  B ) ) )
3834, 36, 37syl2anc 693 . . . . . . . 8  |-  ( (
ph  /\  y  e.  ( A [,] B ) )  ->  ( y  e.  ( A [,] B
)  <->  ( y  e.  RR  /\  A  <_ 
y  /\  y  <_  B ) ) )
3935, 38mpbid 222 . . . . . . 7  |-  ( (
ph  /\  y  e.  ( A [,] B ) )  ->  ( y  e.  RR  /\  A  <_ 
y  /\  y  <_  B ) )
4039simp2d 1074 . . . . . 6  |-  ( (
ph  /\  y  e.  ( A [,] B ) )  ->  A  <_  y )
4134, 31, 32, 40leadd1dd 10641 . . . . 5  |-  ( (
ph  /\  y  e.  ( A [,] B ) )  ->  ( A  +  T )  <_  (
y  +  T ) )
4239simp3d 1075 . . . . . 6  |-  ( (
ph  /\  y  e.  ( A [,] B ) )  ->  y  <_  B )
4331, 36, 32, 42leadd1dd 10641 . . . . 5  |-  ( (
ph  /\  y  e.  ( A [,] B ) )  ->  ( y  +  T )  <_  ( B  +  T )
)
4429, 30, 33, 41, 43eliccd 39726 . . . 4  |-  ( (
ph  /\  y  e.  ( A [,] B ) )  ->  ( y  +  T )  e.  ( ( A  +  T
) [,] ( B  +  T ) ) )
4520, 23, 26, 28, 44cncfmptssg 40083 . . 3  |-  ( ph  ->  ( y  e.  ( A [,] B ) 
|->  ( y  +  T
) )  e.  ( ( A [,] B
) -cn-> ( ( A  +  T ) [,] ( B  +  T
) ) ) )
46 eqeq1 2626 . . . . . . . 8  |-  ( w  =  x  ->  (
w  =  ( z  +  T )  <->  x  =  ( z  +  T
) ) )
4746rexbidv 3052 . . . . . . 7  |-  ( w  =  x  ->  ( E. z  e.  ( A [,] B ) w  =  ( z  +  T )  <->  E. z  e.  ( A [,] B
) x  =  ( z  +  T ) ) )
48 oveq1 6657 . . . . . . . . 9  |-  ( z  =  y  ->  (
z  +  T )  =  ( y  +  T ) )
4948eqeq2d 2632 . . . . . . . 8  |-  ( z  =  y  ->  (
x  =  ( z  +  T )  <->  x  =  ( y  +  T
) ) )
5049cbvrexv 3172 . . . . . . 7  |-  ( E. z  e.  ( A [,] B ) x  =  ( z  +  T )  <->  E. y  e.  ( A [,] B
) x  =  ( y  +  T ) )
5147, 50syl6bb 276 . . . . . 6  |-  ( w  =  x  ->  ( E. z  e.  ( A [,] B ) w  =  ( z  +  T )  <->  E. y  e.  ( A [,] B
) x  =  ( y  +  T ) ) )
5251cbvrabv 3199 . . . . 5  |-  { w  e.  CC  |  E. z  e.  ( A [,] B
) w  =  ( z  +  T ) }  =  { x  e.  CC  |  E. y  e.  ( A [,] B
) x  =  ( y  +  T ) }
53 ffdm 6062 . . . . . . 7  |-  ( F : RR --> CC  ->  ( F : dom  F --> CC  /\  dom  F  C_  RR ) )
5410, 53syl 17 . . . . . 6  |-  ( ph  ->  ( F : dom  F --> CC  /\  dom  F  C_  RR ) )
5554simpld 475 . . . . 5  |-  ( ph  ->  F : dom  F --> CC )
56 simp3 1063 . . . . . . . . . 10  |-  ( (
ph  /\  z  e.  ( A [,] B )  /\  w  =  ( z  +  T ) )  ->  w  =  ( z  +  T
) )
5724sselda 3603 . . . . . . . . . . . 12  |-  ( (
ph  /\  z  e.  ( A [,] B ) )  ->  z  e.  RR )
584adantr 481 . . . . . . . . . . . 12  |-  ( (
ph  /\  z  e.  ( A [,] B ) )  ->  T  e.  RR )
5957, 58readdcld 10069 . . . . . . . . . . 11  |-  ( (
ph  /\  z  e.  ( A [,] B ) )  ->  ( z  +  T )  e.  RR )
60593adant3 1081 . . . . . . . . . 10  |-  ( (
ph  /\  z  e.  ( A [,] B )  /\  w  =  ( z  +  T ) )  ->  ( z  +  T )  e.  RR )
6156, 60eqeltrd 2701 . . . . . . . . 9  |-  ( (
ph  /\  z  e.  ( A [,] B )  /\  w  =  ( z  +  T ) )  ->  w  e.  RR )
6261rexlimdv3a 3033 . . . . . . . 8  |-  ( ph  ->  ( E. z  e.  ( A [,] B
) w  =  ( z  +  T )  ->  w  e.  RR ) )
6362ralrimivw 2967 . . . . . . 7  |-  ( ph  ->  A. w  e.  CC  ( E. z  e.  ( A [,] B ) w  =  ( z  +  T )  ->  w  e.  RR )
)
64 rabss 3679 . . . . . . 7  |-  ( { w  e.  CC  |  E. z  e.  ( A [,] B ) w  =  ( z  +  T ) }  C_  RR 
<-> 
A. w  e.  CC  ( E. z  e.  ( A [,] B ) w  =  ( z  +  T )  ->  w  e.  RR )
)
6563, 64sylibr 224 . . . . . 6  |-  ( ph  ->  { w  e.  CC  |  E. z  e.  ( A [,] B ) w  =  ( z  +  T ) } 
C_  RR )
66 fdm 6051 . . . . . . 7  |-  ( F : RR --> CC  ->  dom 
F  =  RR )
6710, 66syl 17 . . . . . 6  |-  ( ph  ->  dom  F  =  RR )
6865, 67sseqtr4d 3642 . . . . 5  |-  ( ph  ->  { w  e.  CC  |  E. z  e.  ( A [,] B ) w  =  ( z  +  T ) } 
C_  dom  F )
69 itgperiod.fper . . . . 5  |-  ( (
ph  /\  x  e.  ( A [,] B ) )  ->  ( F `  ( x  +  T
) )  =  ( F `  x ) )
70 itgperiod.fcn . . . . 5  |-  ( ph  ->  ( F  |`  ( A [,] B ) )  e.  ( ( A [,] B ) -cn-> CC ) )
7126, 4, 52, 55, 68, 69, 70cncfperiod 40092 . . . 4  |-  ( ph  ->  ( F  |`  { w  e.  CC  |  E. z  e.  ( A [,] B
) w  =  ( z  +  T ) } )  e.  ( { w  e.  CC  |  E. z  e.  ( A [,] B ) w  =  ( z  +  T ) }
-cn-> CC ) )
7247elrab 3363 . . . . . . . . 9  |-  ( x  e.  { w  e.  CC  |  E. z  e.  ( A [,] B
) w  =  ( z  +  T ) }  <->  ( x  e.  CC  /\  E. z  e.  ( A [,] B
) x  =  ( z  +  T ) ) )
73 simprr 796 . . . . . . . . . 10  |-  ( (
ph  /\  ( x  e.  CC  /\  E. z  e.  ( A [,] B
) x  =  ( z  +  T ) ) )  ->  E. z  e.  ( A [,] B
) x  =  ( z  +  T ) )
74 nfv 1843 . . . . . . . . . . . 12  |-  F/ z
ph
75 nfv 1843 . . . . . . . . . . . . 13  |-  F/ z  x  e.  CC
76 nfre1 3005 . . . . . . . . . . . . 13  |-  F/ z E. z  e.  ( A [,] B ) x  =  ( z  +  T )
7775, 76nfan 1828 . . . . . . . . . . . 12  |-  F/ z ( x  e.  CC  /\ 
E. z  e.  ( A [,] B ) x  =  ( z  +  T ) )
7874, 77nfan 1828 . . . . . . . . . . 11  |-  F/ z ( ph  /\  (
x  e.  CC  /\  E. z  e.  ( A [,] B ) x  =  ( z  +  T ) ) )
79 nfv 1843 . . . . . . . . . . 11  |-  F/ z  x  e.  ( ( A  +  T ) [,] ( B  +  T ) )
80 simp3 1063 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  z  e.  ( A [,] B )  /\  x  =  ( z  +  T ) )  ->  x  =  ( z  +  T
) )
811adantr 481 . . . . . . . . . . . . . . . . . 18  |-  ( (
ph  /\  z  e.  ( A [,] B ) )  ->  A  e.  RR )
82 simpr 477 . . . . . . . . . . . . . . . . . . . 20  |-  ( (
ph  /\  z  e.  ( A [,] B ) )  ->  z  e.  ( A [,] B ) )
832adantr 481 . . . . . . . . . . . . . . . . . . . . 21  |-  ( (
ph  /\  z  e.  ( A [,] B ) )  ->  B  e.  RR )
84 elicc2 12238 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( z  e.  ( A [,] B )  <-> 
( z  e.  RR  /\  A  <_  z  /\  z  <_  B ) ) )
8581, 83, 84syl2anc 693 . . . . . . . . . . . . . . . . . . . 20  |-  ( (
ph  /\  z  e.  ( A [,] B ) )  ->  ( z  e.  ( A [,] B
)  <->  ( z  e.  RR  /\  A  <_ 
z  /\  z  <_  B ) ) )
8682, 85mpbid 222 . . . . . . . . . . . . . . . . . . 19  |-  ( (
ph  /\  z  e.  ( A [,] B ) )  ->  ( z  e.  RR  /\  A  <_ 
z  /\  z  <_  B ) )
8786simp2d 1074 . . . . . . . . . . . . . . . . . 18  |-  ( (
ph  /\  z  e.  ( A [,] B ) )  ->  A  <_  z )
8881, 57, 58, 87leadd1dd 10641 . . . . . . . . . . . . . . . . 17  |-  ( (
ph  /\  z  e.  ( A [,] B ) )  ->  ( A  +  T )  <_  (
z  +  T ) )
8986simp3d 1075 . . . . . . . . . . . . . . . . . 18  |-  ( (
ph  /\  z  e.  ( A [,] B ) )  ->  z  <_  B )
9057, 83, 58, 89leadd1dd 10641 . . . . . . . . . . . . . . . . 17  |-  ( (
ph  /\  z  e.  ( A [,] B ) )  ->  ( z  +  T )  <_  ( B  +  T )
)
9159, 88, 903jca 1242 . . . . . . . . . . . . . . . 16  |-  ( (
ph  /\  z  e.  ( A [,] B ) )  ->  ( (
z  +  T )  e.  RR  /\  ( A  +  T )  <_  ( z  +  T
)  /\  ( z  +  T )  <_  ( B  +  T )
) )
92913adant3 1081 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  z  e.  ( A [,] B )  /\  x  =  ( z  +  T ) )  ->  ( (
z  +  T )  e.  RR  /\  ( A  +  T )  <_  ( z  +  T
)  /\  ( z  +  T )  <_  ( B  +  T )
) )
9383ad2ant1 1082 . . . . . . . . . . . . . . . 16  |-  ( (
ph  /\  z  e.  ( A [,] B )  /\  x  =  ( z  +  T ) )  ->  ( A  +  T )  e.  RR )
9493ad2ant1 1082 . . . . . . . . . . . . . . . 16  |-  ( (
ph  /\  z  e.  ( A [,] B )  /\  x  =  ( z  +  T ) )  ->  ( B  +  T )  e.  RR )
95 elicc2 12238 . . . . . . . . . . . . . . . 16  |-  ( ( ( A  +  T
)  e.  RR  /\  ( B  +  T
)  e.  RR )  ->  ( ( z  +  T )  e.  ( ( A  +  T ) [,] ( B  +  T )
)  <->  ( ( z  +  T )  e.  RR  /\  ( A  +  T )  <_ 
( z  +  T
)  /\  ( z  +  T )  <_  ( B  +  T )
) ) )
9693, 94, 95syl2anc 693 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  z  e.  ( A [,] B )  /\  x  =  ( z  +  T ) )  ->  ( (
z  +  T )  e.  ( ( A  +  T ) [,] ( B  +  T
) )  <->  ( (
z  +  T )  e.  RR  /\  ( A  +  T )  <_  ( z  +  T
)  /\  ( z  +  T )  <_  ( B  +  T )
) ) )
9792, 96mpbird 247 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  z  e.  ( A [,] B )  /\  x  =  ( z  +  T ) )  ->  ( z  +  T )  e.  ( ( A  +  T
) [,] ( B  +  T ) ) )
9880, 97eqeltrd 2701 . . . . . . . . . . . . 13  |-  ( (
ph  /\  z  e.  ( A [,] B )  /\  x  =  ( z  +  T ) )  ->  x  e.  ( ( A  +  T ) [,] ( B  +  T )
) )
99983exp 1264 . . . . . . . . . . . 12  |-  ( ph  ->  ( z  e.  ( A [,] B )  ->  ( x  =  ( z  +  T
)  ->  x  e.  ( ( A  +  T ) [,] ( B  +  T )
) ) ) )
10099adantr 481 . . . . . . . . . . 11  |-  ( (
ph  /\  ( x  e.  CC  /\  E. z  e.  ( A [,] B
) x  =  ( z  +  T ) ) )  ->  (
z  e.  ( A [,] B )  -> 
( x  =  ( z  +  T )  ->  x  e.  ( ( A  +  T
) [,] ( B  +  T ) ) ) ) )
10178, 79, 100rexlimd 3026 . . . . . . . . . 10  |-  ( (
ph  /\  ( x  e.  CC  /\  E. z  e.  ( A [,] B
) x  =  ( z  +  T ) ) )  ->  ( E. z  e.  ( A [,] B ) x  =  ( z  +  T )  ->  x  e.  ( ( A  +  T ) [,] ( B  +  T )
) ) )
10273, 101mpd 15 . . . . . . . . 9  |-  ( (
ph  /\  ( x  e.  CC  /\  E. z  e.  ( A [,] B
) x  =  ( z  +  T ) ) )  ->  x  e.  ( ( A  +  T ) [,] ( B  +  T )
) )
10372, 102sylan2b 492 . . . . . . . 8  |-  ( (
ph  /\  x  e.  { w  e.  CC  |  E. z  e.  ( A [,] B ) w  =  ( z  +  T ) } )  ->  x  e.  ( ( A  +  T
) [,] ( B  +  T ) ) )
10416recnd 10068 . . . . . . . . 9  |-  ( (
ph  /\  x  e.  ( ( A  +  T ) [,] ( B  +  T )
) )  ->  x  e.  CC )
1051adantr 481 . . . . . . . . . . 11  |-  ( (
ph  /\  x  e.  ( ( A  +  T ) [,] ( B  +  T )
) )  ->  A  e.  RR )
1062adantr 481 . . . . . . . . . . 11  |-  ( (
ph  /\  x  e.  ( ( A  +  T ) [,] ( B  +  T )
) )  ->  B  e.  RR )
1074adantr 481 . . . . . . . . . . . 12  |-  ( (
ph  /\  x  e.  ( ( A  +  T ) [,] ( B  +  T )
) )  ->  T  e.  RR )
10816, 107resubcld 10458 . . . . . . . . . . 11  |-  ( (
ph  /\  x  e.  ( ( A  +  T ) [,] ( B  +  T )
) )  ->  (
x  -  T )  e.  RR )
1091recnd 10068 . . . . . . . . . . . . . . 15  |-  ( ph  ->  A  e.  CC )
110109, 21pncand 10393 . . . . . . . . . . . . . 14  |-  ( ph  ->  ( ( A  +  T )  -  T
)  =  A )
111110eqcomd 2628 . . . . . . . . . . . . 13  |-  ( ph  ->  A  =  ( ( A  +  T )  -  T ) )
112111adantr 481 . . . . . . . . . . . 12  |-  ( (
ph  /\  x  e.  ( ( A  +  T ) [,] ( B  +  T )
) )  ->  A  =  ( ( A  +  T )  -  T ) )
113 elicc2 12238 . . . . . . . . . . . . . . . 16  |-  ( ( ( A  +  T
)  e.  RR  /\  ( B  +  T
)  e.  RR )  ->  ( x  e.  ( ( A  +  T ) [,] ( B  +  T )
)  <->  ( x  e.  RR  /\  ( A  +  T )  <_  x  /\  x  <_  ( B  +  T )
) ) )
11412, 13, 113syl2anc 693 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  x  e.  ( ( A  +  T ) [,] ( B  +  T )
) )  ->  (
x  e.  ( ( A  +  T ) [,] ( B  +  T ) )  <->  ( x  e.  RR  /\  ( A  +  T )  <_  x  /\  x  <_  ( B  +  T )
) ) )
11514, 114mpbid 222 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  x  e.  ( ( A  +  T ) [,] ( B  +  T )
) )  ->  (
x  e.  RR  /\  ( A  +  T
)  <_  x  /\  x  <_  ( B  +  T ) ) )
116115simp2d 1074 . . . . . . . . . . . . 13  |-  ( (
ph  /\  x  e.  ( ( A  +  T ) [,] ( B  +  T )
) )  ->  ( A  +  T )  <_  x )
11712, 16, 107, 116lesub1dd 10643 . . . . . . . . . . . 12  |-  ( (
ph  /\  x  e.  ( ( A  +  T ) [,] ( B  +  T )
) )  ->  (
( A  +  T
)  -  T )  <_  ( x  -  T ) )
118112, 117eqbrtrd 4675 . . . . . . . . . . 11  |-  ( (
ph  /\  x  e.  ( ( A  +  T ) [,] ( B  +  T )
) )  ->  A  <_  ( x  -  T
) )
119115simp3d 1075 . . . . . . . . . . . . 13  |-  ( (
ph  /\  x  e.  ( ( A  +  T ) [,] ( B  +  T )
) )  ->  x  <_  ( B  +  T
) )
12016, 13, 107, 119lesub1dd 10643 . . . . . . . . . . . 12  |-  ( (
ph  /\  x  e.  ( ( A  +  T ) [,] ( B  +  T )
) )  ->  (
x  -  T )  <_  ( ( B  +  T )  -  T ) )
1212recnd 10068 . . . . . . . . . . . . . 14  |-  ( ph  ->  B  e.  CC )
122121, 21pncand 10393 . . . . . . . . . . . . 13  |-  ( ph  ->  ( ( B  +  T )  -  T
)  =  B )
123122adantr 481 . . . . . . . . . . . 12  |-  ( (
ph  /\  x  e.  ( ( A  +  T ) [,] ( B  +  T )
) )  ->  (
( B  +  T
)  -  T )  =  B )
124120, 123breqtrd 4679 . . . . . . . . . . 11  |-  ( (
ph  /\  x  e.  ( ( A  +  T ) [,] ( B  +  T )
) )  ->  (
x  -  T )  <_  B )
125105, 106, 108, 118, 124eliccd 39726 . . . . . . . . . 10  |-  ( (
ph  /\  x  e.  ( ( A  +  T ) [,] ( B  +  T )
) )  ->  (
x  -  T )  e.  ( A [,] B ) )
12621adantr 481 . . . . . . . . . . . 12  |-  ( (
ph  /\  x  e.  ( ( A  +  T ) [,] ( B  +  T )
) )  ->  T  e.  CC )
127104, 126npcand 10396 . . . . . . . . . . 11  |-  ( (
ph  /\  x  e.  ( ( A  +  T ) [,] ( B  +  T )
) )  ->  (
( x  -  T
)  +  T )  =  x )
128127eqcomd 2628 . . . . . . . . . 10  |-  ( (
ph  /\  x  e.  ( ( A  +  T ) [,] ( B  +  T )
) )  ->  x  =  ( ( x  -  T )  +  T ) )
129 oveq1 6657 . . . . . . . . . . . 12  |-  ( z  =  ( x  -  T )  ->  (
z  +  T )  =  ( ( x  -  T )  +  T ) )
130129eqeq2d 2632 . . . . . . . . . . 11  |-  ( z  =  ( x  -  T )  ->  (
x  =  ( z  +  T )  <->  x  =  ( ( x  -  T )  +  T
) ) )
131130rspcev 3309 . . . . . . . . . 10  |-  ( ( ( x  -  T
)  e.  ( A [,] B )  /\  x  =  ( (
x  -  T )  +  T ) )  ->  E. z  e.  ( A [,] B ) x  =  ( z  +  T ) )
132125, 128, 131syl2anc 693 . . . . . . . . 9  |-  ( (
ph  /\  x  e.  ( ( A  +  T ) [,] ( B  +  T )
) )  ->  E. z  e.  ( A [,] B
) x  =  ( z  +  T ) )
133104, 132, 72sylanbrc 698 . . . . . . . 8  |-  ( (
ph  /\  x  e.  ( ( A  +  T ) [,] ( B  +  T )
) )  ->  x  e.  { w  e.  CC  |  E. z  e.  ( A [,] B ) w  =  ( z  +  T ) } )
134103, 133impbida 877 . . . . . . 7  |-  ( ph  ->  ( x  e.  {
w  e.  CC  |  E. z  e.  ( A [,] B ) w  =  ( z  +  T ) }  <->  x  e.  ( ( A  +  T ) [,] ( B  +  T )
) ) )
135134eqrdv 2620 . . . . . 6  |-  ( ph  ->  { w  e.  CC  |  E. z  e.  ( A [,] B ) w  =  ( z  +  T ) }  =  ( ( A  +  T ) [,] ( B  +  T
) ) )
136135reseq2d 5396 . . . . 5  |-  ( ph  ->  ( F  |`  { w  e.  CC  |  E. z  e.  ( A [,] B
) w  =  ( z  +  T ) } )  =  ( F  |`  ( ( A  +  T ) [,] ( B  +  T
) ) ) )
137135, 68eqsstr3d 3640 . . . . . 6  |-  ( ph  ->  ( ( A  +  T ) [,] ( B  +  T )
)  C_  dom  F )
13855, 137feqresmpt 6250 . . . . 5  |-  ( ph  ->  ( F  |`  (
( A  +  T
) [,] ( B  +  T ) ) )  =  ( x  e.  ( ( A  +  T ) [,] ( B  +  T
) )  |->  ( F `
 x ) ) )
139136, 138eqtr2d 2657 . . . 4  |-  ( ph  ->  ( x  e.  ( ( A  +  T
) [,] ( B  +  T ) ) 
|->  ( F `  x
) )  =  ( F  |`  { w  e.  CC  |  E. z  e.  ( A [,] B
) w  =  ( z  +  T ) } ) )
1401, 2, 4iccshift 39744 . . . . 5  |-  ( ph  ->  ( ( A  +  T ) [,] ( B  +  T )
)  =  { w  e.  CC  |  E. z  e.  ( A [,] B
) w  =  ( z  +  T ) } )
141140oveq1d 6665 . . . 4  |-  ( ph  ->  ( ( ( A  +  T ) [,] ( B  +  T
) ) -cn-> CC )  =  ( { w  e.  CC  |  E. z  e.  ( A [,] B
) w  =  ( z  +  T ) } -cn-> CC ) )
14271, 139, 1413eltr4d 2716 . . 3  |-  ( ph  ->  ( x  e.  ( ( A  +  T
) [,] ( B  +  T ) ) 
|->  ( F `  x
) )  e.  ( ( ( A  +  T ) [,] ( B  +  T )
) -cn-> CC ) )
143 ioosscn 39716 . . . . . 6  |-  ( A (,) B )  C_  CC
144143a1i 11 . . . . 5  |-  ( ph  ->  ( A (,) B
)  C_  CC )
145 1cnd 10056 . . . . 5  |-  ( ph  ->  1  e.  CC )
146 ssid 3624 . . . . . 6  |-  CC  C_  CC
147146a1i 11 . . . . 5  |-  ( ph  ->  CC  C_  CC )
148144, 145, 147constcncfg 40084 . . . 4  |-  ( ph  ->  ( y  e.  ( A (,) B ) 
|->  1 )  e.  ( ( A (,) B
) -cn-> CC ) )
149 fconstmpt 5163 . . . . 5  |-  ( ( A (,) B )  X.  { 1 } )  =  ( y  e.  ( A (,) B )  |->  1 )
150 ioombl 23333 . . . . . . 7  |-  ( A (,) B )  e. 
dom  vol
151150a1i 11 . . . . . 6  |-  ( ph  ->  ( A (,) B
)  e.  dom  vol )
152 ioovolcl 23338 . . . . . . 7  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( vol `  ( A (,) B ) )  e.  RR )
1531, 2, 152syl2anc 693 . . . . . 6  |-  ( ph  ->  ( vol `  ( A (,) B ) )  e.  RR )
154 iblconst 23584 . . . . . 6  |-  ( ( ( A (,) B
)  e.  dom  vol  /\  ( vol `  ( A (,) B ) )  e.  RR  /\  1  e.  CC )  ->  (
( A (,) B
)  X.  { 1 } )  e.  L^1 )
155151, 153, 145, 154syl3anc 1326 . . . . 5  |-  ( ph  ->  ( ( A (,) B )  X.  {
1 } )  e.  L^1 )
156149, 155syl5eqelr 2706 . . . 4  |-  ( ph  ->  ( y  e.  ( A (,) B ) 
|->  1 )  e.  L^1 )
157148, 156elind 3798 . . 3  |-  ( ph  ->  ( y  e.  ( A (,) B ) 
|->  1 )  e.  ( ( ( A (,) B ) -cn-> CC )  i^i  L^1 ) )
15824resmptd 5452 . . . . . . 7  |-  ( ph  ->  ( ( y  e.  RR  |->  ( y  +  T ) )  |`  ( A [,] B ) )  =  ( y  e.  ( A [,] B )  |->  ( y  +  T ) ) )
159158eqcomd 2628 . . . . . 6  |-  ( ph  ->  ( y  e.  ( A [,] B ) 
|->  ( y  +  T
) )  =  ( ( y  e.  RR  |->  ( y  +  T
) )  |`  ( A [,] B ) ) )
160159oveq2d 6666 . . . . 5  |-  ( ph  ->  ( RR  _D  (
y  e.  ( A [,] B )  |->  ( y  +  T ) ) )  =  ( RR  _D  ( ( y  e.  RR  |->  ( y  +  T ) )  |`  ( A [,] B ) ) ) )
16125a1i 11 . . . . . 6  |-  ( ph  ->  RR  C_  CC )
162161sselda 3603 . . . . . . . 8  |-  ( (
ph  /\  y  e.  RR )  ->  y  e.  CC )
16321adantr 481 . . . . . . . 8  |-  ( (
ph  /\  y  e.  RR )  ->  T  e.  CC )
164162, 163addcld 10059 . . . . . . 7  |-  ( (
ph  /\  y  e.  RR )  ->  ( y  +  T )  e.  CC )
165 eqid 2622 . . . . . . 7  |-  ( y  e.  RR  |->  ( y  +  T ) )  =  ( y  e.  RR  |->  ( y  +  T ) )
166164, 165fmptd 6385 . . . . . 6  |-  ( ph  ->  ( y  e.  RR  |->  ( y  +  T
) ) : RR --> CC )
167 ssid 3624 . . . . . . 7  |-  RR  C_  RR
168167a1i 11 . . . . . 6  |-  ( ph  ->  RR  C_  RR )
169 eqid 2622 . . . . . . 7  |-  ( TopOpen ` fld )  =  ( TopOpen ` fld )
170169tgioo2 22606 . . . . . . 7  |-  ( topGen ` 
ran  (,) )  =  ( ( TopOpen ` fld )t  RR )
171169, 170dvres 23675 . . . . . 6  |-  ( ( ( RR  C_  CC  /\  ( y  e.  RR  |->  ( y  +  T
) ) : RR --> CC )  /\  ( RR  C_  RR  /\  ( A [,] B )  C_  RR ) )  ->  ( RR  _D  ( ( y  e.  RR  |->  ( y  +  T ) )  |`  ( A [,] B
) ) )  =  ( ( RR  _D  ( y  e.  RR  |->  ( y  +  T
) ) )  |`  ( ( int `  ( topGen `
 ran  (,) )
) `  ( A [,] B ) ) ) )
172161, 166, 168, 24, 171syl22anc 1327 . . . . 5  |-  ( ph  ->  ( RR  _D  (
( y  e.  RR  |->  ( y  +  T
) )  |`  ( A [,] B ) ) )  =  ( ( RR  _D  ( y  e.  RR  |->  ( y  +  T ) ) )  |`  ( ( int `  ( topGen `  ran  (,) ) ) `  ( A [,] B ) ) ) )
173160, 172eqtrd 2656 . . . 4  |-  ( ph  ->  ( RR  _D  (
y  e.  ( A [,] B )  |->  ( y  +  T ) ) )  =  ( ( RR  _D  (
y  e.  RR  |->  ( y  +  T ) ) )  |`  (
( int `  ( topGen `
 ran  (,) )
) `  ( A [,] B ) ) ) )
174 iccntr 22624 . . . . . 6  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( ( int `  ( topGen `
 ran  (,) )
) `  ( A [,] B ) )  =  ( A (,) B
) )
1751, 2, 174syl2anc 693 . . . . 5  |-  ( ph  ->  ( ( int `  ( topGen `
 ran  (,) )
) `  ( A [,] B ) )  =  ( A (,) B
) )
176175reseq2d 5396 . . . 4  |-  ( ph  ->  ( ( RR  _D  ( y  e.  RR  |->  ( y  +  T
) ) )  |`  ( ( int `  ( topGen `
 ran  (,) )
) `  ( A [,] B ) ) )  =  ( ( RR 
_D  ( y  e.  RR  |->  ( y  +  T ) ) )  |`  ( A (,) B
) ) )
177 reelprrecn 10028 . . . . . . . 8  |-  RR  e.  { RR ,  CC }
178177a1i 11 . . . . . . 7  |-  ( ph  ->  RR  e.  { RR ,  CC } )
179 1cnd 10056 . . . . . . 7  |-  ( (
ph  /\  y  e.  RR )  ->  1  e.  CC )
180178dvmptid 23720 . . . . . . 7  |-  ( ph  ->  ( RR  _D  (
y  e.  RR  |->  y ) )  =  ( y  e.  RR  |->  1 ) )
181 0cnd 10033 . . . . . . 7  |-  ( (
ph  /\  y  e.  RR )  ->  0  e.  CC )
182178, 21dvmptc 23721 . . . . . . 7  |-  ( ph  ->  ( RR  _D  (
y  e.  RR  |->  T ) )  =  ( y  e.  RR  |->  0 ) )
183178, 162, 179, 180, 163, 181, 182dvmptadd 23723 . . . . . 6  |-  ( ph  ->  ( RR  _D  (
y  e.  RR  |->  ( y  +  T ) ) )  =  ( y  e.  RR  |->  ( 1  +  0 ) ) )
184183reseq1d 5395 . . . . 5  |-  ( ph  ->  ( ( RR  _D  ( y  e.  RR  |->  ( y  +  T
) ) )  |`  ( A (,) B ) )  =  ( ( y  e.  RR  |->  ( 1  +  0 ) )  |`  ( A (,) B ) ) )
185 ioossre 12235 . . . . . . 7  |-  ( A (,) B )  C_  RR
186185a1i 11 . . . . . 6  |-  ( ph  ->  ( A (,) B
)  C_  RR )
187186resmptd 5452 . . . . 5  |-  ( ph  ->  ( ( y  e.  RR  |->  ( 1  +  0 ) )  |`  ( A (,) B ) )  =  ( y  e.  ( A (,) B )  |->  ( 1  +  0 ) ) )
188 1p0e1 11133 . . . . . . 7  |-  ( 1  +  0 )  =  1
189188mpteq2i 4741 . . . . . 6  |-  ( y  e.  ( A (,) B )  |->  ( 1  +  0 ) )  =  ( y  e.  ( A (,) B
)  |->  1 )
190189a1i 11 . . . . 5  |-  ( ph  ->  ( y  e.  ( A (,) B ) 
|->  ( 1  +  0 ) )  =  ( y  e.  ( A (,) B )  |->  1 ) )
191184, 187, 1903eqtrd 2660 . . . 4  |-  ( ph  ->  ( ( RR  _D  ( y  e.  RR  |->  ( y  +  T
) ) )  |`  ( A (,) B ) )  =  ( y  e.  ( A (,) B )  |->  1 ) )
192173, 176, 1913eqtrd 2660 . . 3  |-  ( ph  ->  ( RR  _D  (
y  e.  ( A [,] B )  |->  ( y  +  T ) ) )  =  ( y  e.  ( A (,) B )  |->  1 ) )
193 fveq2 6191 . . 3  |-  ( x  =  ( y  +  T )  ->  ( F `  x )  =  ( F `  ( y  +  T
) ) )
194 oveq1 6657 . . 3  |-  ( y  =  A  ->  (
y  +  T )  =  ( A  +  T ) )
195 oveq1 6657 . . 3  |-  ( y  =  B  ->  (
y  +  T )  =  ( B  +  T ) )
1961, 2, 5, 45, 142, 157, 192, 193, 194, 195, 8, 9itgsubsticc 40192 . 2  |-  ( ph  ->  S__ [ ( A  +  T )  -> 
( B  +  T
) ] ( F `
 x )  _d x  =  S__ [ A  ->  B ] ( ( F `  (
y  +  T ) )  x.  1 )  _d y )
1975ditgpos 23620 . . 3  |-  ( ph  ->  S__ [ A  ->  B ] ( ( F `
 ( y  +  T ) )  x.  1 )  _d y  =  S. ( A (,) B ) ( ( F `  (
y  +  T ) )  x.  1 )  _d y )
19810adantr 481 . . . . . 6  |-  ( (
ph  /\  y  e.  ( A [,] B ) )  ->  F : RR
--> CC )
199198, 33ffvelrnd 6360 . . . . 5  |-  ( (
ph  /\  y  e.  ( A [,] B ) )  ->  ( F `  ( y  +  T
) )  e.  CC )
200 1cnd 10056 . . . . 5  |-  ( (
ph  /\  y  e.  ( A [,] B ) )  ->  1  e.  CC )
201199, 200mulcld 10060 . . . 4  |-  ( (
ph  /\  y  e.  ( A [,] B ) )  ->  ( ( F `  ( y  +  T ) )  x.  1 )  e.  CC )
2021, 2, 201itgioo 23582 . . 3  |-  ( ph  ->  S. ( A (,) B ) ( ( F `  ( y  +  T ) )  x.  1 )  _d y  =  S. ( A [,] B ) ( ( F `  ( y  +  T
) )  x.  1 )  _d y )
203 oveq1 6657 . . . . . . 7  |-  ( y  =  x  ->  (
y  +  T )  =  ( x  +  T ) )
204203fveq2d 6195 . . . . . 6  |-  ( y  =  x  ->  ( F `  ( y  +  T ) )  =  ( F `  (
x  +  T ) ) )
205204oveq1d 6665 . . . . 5  |-  ( y  =  x  ->  (
( F `  (
y  +  T ) )  x.  1 )  =  ( ( F `
 ( x  +  T ) )  x.  1 ) )
206205cbvitgv 23543 . . . 4  |-  S. ( A [,] B ) ( ( F `  ( y  +  T
) )  x.  1 )  _d y  =  S. ( A [,] B ) ( ( F `  ( x  +  T ) )  x.  1 )  _d x
20710adantr 481 . . . . . . . 8  |-  ( (
ph  /\  x  e.  ( A [,] B ) )  ->  F : RR
--> CC )
20824sselda 3603 . . . . . . . . 9  |-  ( (
ph  /\  x  e.  ( A [,] B ) )  ->  x  e.  RR )
2094adantr 481 . . . . . . . . 9  |-  ( (
ph  /\  x  e.  ( A [,] B ) )  ->  T  e.  RR )
210208, 209readdcld 10069 . . . . . . . 8  |-  ( (
ph  /\  x  e.  ( A [,] B ) )  ->  ( x  +  T )  e.  RR )
211207, 210ffvelrnd 6360 . . . . . . 7  |-  ( (
ph  /\  x  e.  ( A [,] B ) )  ->  ( F `  ( x  +  T
) )  e.  CC )
212211mulid1d 10057 . . . . . 6  |-  ( (
ph  /\  x  e.  ( A [,] B ) )  ->  ( ( F `  ( x  +  T ) )  x.  1 )  =  ( F `  ( x  +  T ) ) )
213212, 69eqtrd 2656 . . . . 5  |-  ( (
ph  /\  x  e.  ( A [,] B ) )  ->  ( ( F `  ( x  +  T ) )  x.  1 )  =  ( F `  x ) )
214213itgeq2dv 23548 . . . 4  |-  ( ph  ->  S. ( A [,] B ) ( ( F `  ( x  +  T ) )  x.  1 )  _d x  =  S. ( A [,] B ) ( F `  x
)  _d x )
215206, 214syl5eq 2668 . . 3  |-  ( ph  ->  S. ( A [,] B ) ( ( F `  ( y  +  T ) )  x.  1 )  _d y  =  S. ( A [,] B ) ( F `  x
)  _d x )
216197, 202, 2153eqtrd 2660 . 2  |-  ( ph  ->  S__ [ A  ->  B ] ( ( F `
 ( y  +  T ) )  x.  1 )  _d y  =  S. ( A [,] B ) ( F `  x )  _d x )
21719, 196, 2163eqtrd 2660 1  |-  ( ph  ->  S. ( ( A  +  T ) [,] ( B  +  T
) ) ( F `
 x )  _d x  =  S. ( A [,] B ) ( F `  x
)  _d x )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    /\ wa 384    /\ w3a 1037    = wceq 1483    e. wcel 1990   A.wral 2912   E.wrex 2913   {crab 2916    C_ wss 3574   {csn 4177   {cpr 4179   class class class wbr 4653    |-> cmpt 4729    X. cxp 5112   dom cdm 5114   ran crn 5115    |` cres 5116   -->wf 5884   ` cfv 5888  (class class class)co 6650   CCcc 9934   RRcr 9935   0cc0 9936   1c1 9937    + caddc 9939    x. cmul 9941    <_ cle 10075    - cmin 10266   RR+crp 11832   (,)cioo 12175   [,]cicc 12178   TopOpenctopn 16082   topGenctg 16098  ℂfldccnfld 19746   intcnt 20821   -cn->ccncf 22679   volcvol 23232   L^1cibl 23386   S.citg 23387   S__cdit 23610    _D cdv 23627
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-inf2 8538  ax-cc 9257  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014  ax-addf 10015  ax-mulf 10016
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-fal 1489  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-iin 4523  df-disj 4621  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-se 5074  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-isom 5897  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-of 6897  df-ofr 6898  df-om 7066  df-1st 7168  df-2nd 7169  df-supp 7296  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-2o 7561  df-oadd 7564  df-omul 7565  df-er 7742  df-map 7859  df-pm 7860  df-ixp 7909  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-fsupp 8276  df-fi 8317  df-sup 8348  df-inf 8349  df-oi 8415  df-card 8765  df-acn 8768  df-cda 8990  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-2 11079  df-3 11080  df-4 11081  df-5 11082  df-6 11083  df-7 11084  df-8 11085  df-9 11086  df-n0 11293  df-z 11378  df-dec 11494  df-uz 11688  df-q 11789  df-rp 11833  df-xneg 11946  df-xadd 11947  df-xmul 11948  df-ioo 12179  df-ioc 12180  df-ico 12181  df-icc 12182  df-fz 12327  df-fzo 12466  df-fl 12593  df-mod 12669  df-seq 12802  df-exp 12861  df-hash 13118  df-cj 13839  df-re 13840  df-im 13841  df-sqrt 13975  df-abs 13976  df-limsup 14202  df-clim 14219  df-rlim 14220  df-sum 14417  df-struct 15859  df-ndx 15860  df-slot 15861  df-base 15863  df-sets 15864  df-ress 15865  df-plusg 15954  df-mulr 15955  df-starv 15956  df-sca 15957  df-vsca 15958  df-ip 15959  df-tset 15960  df-ple 15961  df-ds 15964  df-unif 15965  df-hom 15966  df-cco 15967  df-rest 16083  df-topn 16084  df-0g 16102  df-gsum 16103  df-topgen 16104  df-pt 16105  df-prds 16108  df-xrs 16162  df-qtop 16167  df-imas 16168  df-xps 16170  df-mre 16246  df-mrc 16247  df-acs 16249  df-mgm 17242  df-sgrp 17284  df-mnd 17295  df-submnd 17336  df-mulg 17541  df-cntz 17750  df-cmn 18195  df-psmet 19738  df-xmet 19739  df-met 19740  df-bl 19741  df-mopn 19742  df-fbas 19743  df-fg 19744  df-cnfld 19747  df-top 20699  df-topon 20716  df-topsp 20737  df-bases 20750  df-cld 20823  df-ntr 20824  df-cls 20825  df-nei 20902  df-lp 20940  df-perf 20941  df-cn 21031  df-cnp 21032  df-haus 21119  df-cmp 21190  df-tx 21365  df-hmeo 21558  df-fil 21650  df-fm 21742  df-flim 21743  df-flf 21744  df-xms 22125  df-ms 22126  df-tms 22127  df-cncf 22681  df-ovol 23233  df-vol 23234  df-mbf 23388  df-itg1 23389  df-itg2 23390  df-ibl 23391  df-itg 23392  df-0p 23437  df-ditg 23611  df-limc 23630  df-dv 23631
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator