Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  itgiccshift Structured version   Visualization version   Unicode version

Theorem itgiccshift 40196
Description: The integral of a function,  F stays the same if its closed interval domain is shifted by  T. (Contributed by Glauco Siliprandi, 11-Dec-2019.)
Hypotheses
Ref Expression
itgiccshift.a  |-  ( ph  ->  A  e.  RR )
itgiccshift.b  |-  ( ph  ->  B  e.  RR )
itgiccshift.aleb  |-  ( ph  ->  A  <_  B )
itgiccshift.f  |-  ( ph  ->  F  e.  ( ( A [,] B )
-cn-> CC ) )
itgiccshift.t  |-  ( ph  ->  T  e.  RR+ )
itgiccshift.g  |-  G  =  ( x  e.  ( ( A  +  T
) [,] ( B  +  T ) ) 
|->  ( F `  (
x  -  T ) ) )
Assertion
Ref Expression
itgiccshift  |-  ( ph  ->  S. ( ( A  +  T ) [,] ( B  +  T
) ) ( G `
 x )  _d x  =  S. ( A [,] B ) ( F `  x
)  _d x )
Distinct variable groups:    x, A    x, B    x, F    x, G    x, T    ph, x

Proof of Theorem itgiccshift
Dummy variables  w  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 itgiccshift.a . . . . 5  |-  ( ph  ->  A  e.  RR )
2 itgiccshift.b . . . . 5  |-  ( ph  ->  B  e.  RR )
3 itgiccshift.t . . . . . 6  |-  ( ph  ->  T  e.  RR+ )
43rpred 11872 . . . . 5  |-  ( ph  ->  T  e.  RR )
5 itgiccshift.aleb . . . . 5  |-  ( ph  ->  A  <_  B )
61, 2, 4, 5leadd1dd 10641 . . . 4  |-  ( ph  ->  ( A  +  T
)  <_  ( B  +  T ) )
76ditgpos 23620 . . 3  |-  ( ph  ->  S__ [ ( A  +  T )  -> 
( B  +  T
) ] ( G `
 x )  _d x  =  S. ( ( A  +  T
) (,) ( B  +  T ) ) ( G `  x
)  _d x )
81, 4readdcld 10069 . . . 4  |-  ( ph  ->  ( A  +  T
)  e.  RR )
92, 4readdcld 10069 . . . 4  |-  ( ph  ->  ( B  +  T
)  e.  RR )
10 itgiccshift.f . . . . . . . . 9  |-  ( ph  ->  F  e.  ( ( A [,] B )
-cn-> CC ) )
11 cncff 22696 . . . . . . . . 9  |-  ( F  e.  ( ( A [,] B ) -cn-> CC )  ->  F :
( A [,] B
) --> CC )
1210, 11syl 17 . . . . . . . 8  |-  ( ph  ->  F : ( A [,] B ) --> CC )
1312adantr 481 . . . . . . 7  |-  ( (
ph  /\  x  e.  ( ( A  +  T ) [,] ( B  +  T )
) )  ->  F : ( A [,] B ) --> CC )
141adantr 481 . . . . . . . 8  |-  ( (
ph  /\  x  e.  ( ( A  +  T ) [,] ( B  +  T )
) )  ->  A  e.  RR )
152adantr 481 . . . . . . . 8  |-  ( (
ph  /\  x  e.  ( ( A  +  T ) [,] ( B  +  T )
) )  ->  B  e.  RR )
168adantr 481 . . . . . . . . . 10  |-  ( (
ph  /\  x  e.  ( ( A  +  T ) [,] ( B  +  T )
) )  ->  ( A  +  T )  e.  RR )
179adantr 481 . . . . . . . . . 10  |-  ( (
ph  /\  x  e.  ( ( A  +  T ) [,] ( B  +  T )
) )  ->  ( B  +  T )  e.  RR )
18 simpr 477 . . . . . . . . . 10  |-  ( (
ph  /\  x  e.  ( ( A  +  T ) [,] ( B  +  T )
) )  ->  x  e.  ( ( A  +  T ) [,] ( B  +  T )
) )
19 eliccre 39728 . . . . . . . . . 10  |-  ( ( ( A  +  T
)  e.  RR  /\  ( B  +  T
)  e.  RR  /\  x  e.  ( ( A  +  T ) [,] ( B  +  T
) ) )  ->  x  e.  RR )
2016, 17, 18, 19syl3anc 1326 . . . . . . . . 9  |-  ( (
ph  /\  x  e.  ( ( A  +  T ) [,] ( B  +  T )
) )  ->  x  e.  RR )
214adantr 481 . . . . . . . . 9  |-  ( (
ph  /\  x  e.  ( ( A  +  T ) [,] ( B  +  T )
) )  ->  T  e.  RR )
2220, 21resubcld 10458 . . . . . . . 8  |-  ( (
ph  /\  x  e.  ( ( A  +  T ) [,] ( B  +  T )
) )  ->  (
x  -  T )  e.  RR )
231recnd 10068 . . . . . . . . . . . 12  |-  ( ph  ->  A  e.  CC )
244recnd 10068 . . . . . . . . . . . 12  |-  ( ph  ->  T  e.  CC )
2523, 24pncand 10393 . . . . . . . . . . 11  |-  ( ph  ->  ( ( A  +  T )  -  T
)  =  A )
2625eqcomd 2628 . . . . . . . . . 10  |-  ( ph  ->  A  =  ( ( A  +  T )  -  T ) )
2726adantr 481 . . . . . . . . 9  |-  ( (
ph  /\  x  e.  ( ( A  +  T ) [,] ( B  +  T )
) )  ->  A  =  ( ( A  +  T )  -  T ) )
28 elicc2 12238 . . . . . . . . . . . . 13  |-  ( ( ( A  +  T
)  e.  RR  /\  ( B  +  T
)  e.  RR )  ->  ( x  e.  ( ( A  +  T ) [,] ( B  +  T )
)  <->  ( x  e.  RR  /\  ( A  +  T )  <_  x  /\  x  <_  ( B  +  T )
) ) )
2916, 17, 28syl2anc 693 . . . . . . . . . . . 12  |-  ( (
ph  /\  x  e.  ( ( A  +  T ) [,] ( B  +  T )
) )  ->  (
x  e.  ( ( A  +  T ) [,] ( B  +  T ) )  <->  ( x  e.  RR  /\  ( A  +  T )  <_  x  /\  x  <_  ( B  +  T )
) ) )
3018, 29mpbid 222 . . . . . . . . . . 11  |-  ( (
ph  /\  x  e.  ( ( A  +  T ) [,] ( B  +  T )
) )  ->  (
x  e.  RR  /\  ( A  +  T
)  <_  x  /\  x  <_  ( B  +  T ) ) )
3130simp2d 1074 . . . . . . . . . 10  |-  ( (
ph  /\  x  e.  ( ( A  +  T ) [,] ( B  +  T )
) )  ->  ( A  +  T )  <_  x )
3216, 20, 21, 31lesub1dd 10643 . . . . . . . . 9  |-  ( (
ph  /\  x  e.  ( ( A  +  T ) [,] ( B  +  T )
) )  ->  (
( A  +  T
)  -  T )  <_  ( x  -  T ) )
3327, 32eqbrtrd 4675 . . . . . . . 8  |-  ( (
ph  /\  x  e.  ( ( A  +  T ) [,] ( B  +  T )
) )  ->  A  <_  ( x  -  T
) )
3430simp3d 1075 . . . . . . . . . 10  |-  ( (
ph  /\  x  e.  ( ( A  +  T ) [,] ( B  +  T )
) )  ->  x  <_  ( B  +  T
) )
3520, 17, 21, 34lesub1dd 10643 . . . . . . . . 9  |-  ( (
ph  /\  x  e.  ( ( A  +  T ) [,] ( B  +  T )
) )  ->  (
x  -  T )  <_  ( ( B  +  T )  -  T ) )
362recnd 10068 . . . . . . . . . . 11  |-  ( ph  ->  B  e.  CC )
3736, 24pncand 10393 . . . . . . . . . 10  |-  ( ph  ->  ( ( B  +  T )  -  T
)  =  B )
3837adantr 481 . . . . . . . . 9  |-  ( (
ph  /\  x  e.  ( ( A  +  T ) [,] ( B  +  T )
) )  ->  (
( B  +  T
)  -  T )  =  B )
3935, 38breqtrd 4679 . . . . . . . 8  |-  ( (
ph  /\  x  e.  ( ( A  +  T ) [,] ( B  +  T )
) )  ->  (
x  -  T )  <_  B )
4014, 15, 22, 33, 39eliccd 39726 . . . . . . 7  |-  ( (
ph  /\  x  e.  ( ( A  +  T ) [,] ( B  +  T )
) )  ->  (
x  -  T )  e.  ( A [,] B ) )
4113, 40ffvelrnd 6360 . . . . . 6  |-  ( (
ph  /\  x  e.  ( ( A  +  T ) [,] ( B  +  T )
) )  ->  ( F `  ( x  -  T ) )  e.  CC )
42 itgiccshift.g . . . . . 6  |-  G  =  ( x  e.  ( ( A  +  T
) [,] ( B  +  T ) ) 
|->  ( F `  (
x  -  T ) ) )
4341, 42fmptd 6385 . . . . 5  |-  ( ph  ->  G : ( ( A  +  T ) [,] ( B  +  T ) ) --> CC )
4443ffvelrnda 6359 . . . 4  |-  ( (
ph  /\  x  e.  ( ( A  +  T ) [,] ( B  +  T )
) )  ->  ( G `  x )  e.  CC )
458, 9, 44itgioo 23582 . . 3  |-  ( ph  ->  S. ( ( A  +  T ) (,) ( B  +  T
) ) ( G `
 x )  _d x  =  S. ( ( A  +  T
) [,] ( B  +  T ) ) ( G `  x
)  _d x )
467, 45eqtr2d 2657 . 2  |-  ( ph  ->  S. ( ( A  +  T ) [,] ( B  +  T
) ) ( G `
 x )  _d x  =  S__ [
( A  +  T
)  ->  ( B  +  T ) ] ( G `  x )  _d x )
47 eqid 2622 . . . 4  |-  ( y  e.  CC  |->  ( y  +  T ) )  =  ( y  e.  CC  |->  ( y  +  T ) )
4847addccncf 22719 . . . . 5  |-  ( T  e.  CC  ->  (
y  e.  CC  |->  ( y  +  T ) )  e.  ( CC
-cn-> CC ) )
4924, 48syl 17 . . . 4  |-  ( ph  ->  ( y  e.  CC  |->  ( y  +  T
) )  e.  ( CC -cn-> CC ) )
501, 2iccssred 39727 . . . . 5  |-  ( ph  ->  ( A [,] B
)  C_  RR )
51 ax-resscn 9993 . . . . 5  |-  RR  C_  CC
5250, 51syl6ss 3615 . . . 4  |-  ( ph  ->  ( A [,] B
)  C_  CC )
538, 9iccssred 39727 . . . . 5  |-  ( ph  ->  ( ( A  +  T ) [,] ( B  +  T )
)  C_  RR )
5453, 51syl6ss 3615 . . . 4  |-  ( ph  ->  ( ( A  +  T ) [,] ( B  +  T )
)  C_  CC )
558adantr 481 . . . . 5  |-  ( (
ph  /\  y  e.  ( A [,] B ) )  ->  ( A  +  T )  e.  RR )
569adantr 481 . . . . 5  |-  ( (
ph  /\  y  e.  ( A [,] B ) )  ->  ( B  +  T )  e.  RR )
5750sselda 3603 . . . . . 6  |-  ( (
ph  /\  y  e.  ( A [,] B ) )  ->  y  e.  RR )
584adantr 481 . . . . . 6  |-  ( (
ph  /\  y  e.  ( A [,] B ) )  ->  T  e.  RR )
5957, 58readdcld 10069 . . . . 5  |-  ( (
ph  /\  y  e.  ( A [,] B ) )  ->  ( y  +  T )  e.  RR )
601adantr 481 . . . . . 6  |-  ( (
ph  /\  y  e.  ( A [,] B ) )  ->  A  e.  RR )
61 simpr 477 . . . . . . . 8  |-  ( (
ph  /\  y  e.  ( A [,] B ) )  ->  y  e.  ( A [,] B ) )
622adantr 481 . . . . . . . . 9  |-  ( (
ph  /\  y  e.  ( A [,] B ) )  ->  B  e.  RR )
63 elicc2 12238 . . . . . . . . 9  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( y  e.  ( A [,] B )  <-> 
( y  e.  RR  /\  A  <_  y  /\  y  <_  B ) ) )
6460, 62, 63syl2anc 693 . . . . . . . 8  |-  ( (
ph  /\  y  e.  ( A [,] B ) )  ->  ( y  e.  ( A [,] B
)  <->  ( y  e.  RR  /\  A  <_ 
y  /\  y  <_  B ) ) )
6561, 64mpbid 222 . . . . . . 7  |-  ( (
ph  /\  y  e.  ( A [,] B ) )  ->  ( y  e.  RR  /\  A  <_ 
y  /\  y  <_  B ) )
6665simp2d 1074 . . . . . 6  |-  ( (
ph  /\  y  e.  ( A [,] B ) )  ->  A  <_  y )
6760, 57, 58, 66leadd1dd 10641 . . . . 5  |-  ( (
ph  /\  y  e.  ( A [,] B ) )  ->  ( A  +  T )  <_  (
y  +  T ) )
6865simp3d 1075 . . . . . 6  |-  ( (
ph  /\  y  e.  ( A [,] B ) )  ->  y  <_  B )
6957, 62, 58, 68leadd1dd 10641 . . . . 5  |-  ( (
ph  /\  y  e.  ( A [,] B ) )  ->  ( y  +  T )  <_  ( B  +  T )
)
7055, 56, 59, 67, 69eliccd 39726 . . . 4  |-  ( (
ph  /\  y  e.  ( A [,] B ) )  ->  ( y  +  T )  e.  ( ( A  +  T
) [,] ( B  +  T ) ) )
7147, 49, 52, 54, 70cncfmptssg 40083 . . 3  |-  ( ph  ->  ( y  e.  ( A [,] B ) 
|->  ( y  +  T
) )  e.  ( ( A [,] B
) -cn-> ( ( A  +  T ) [,] ( B  +  T
) ) ) )
72 oveq1 6657 . . . . . . . . 9  |-  ( x  =  w  ->  (
x  -  T )  =  ( w  -  T ) )
7372fveq2d 6195 . . . . . . . 8  |-  ( x  =  w  ->  ( F `  ( x  -  T ) )  =  ( F `  (
w  -  T ) ) )
7473cbvmptv 4750 . . . . . . 7  |-  ( x  e.  ( ( A  +  T ) [,] ( B  +  T
) )  |->  ( F `
 ( x  -  T ) ) )  =  ( w  e.  ( ( A  +  T ) [,] ( B  +  T )
)  |->  ( F `  ( w  -  T
) ) )
751, 2, 4iccshift 39744 . . . . . . . 8  |-  ( ph  ->  ( ( A  +  T ) [,] ( B  +  T )
)  =  { x  e.  CC  |  E. y  e.  ( A [,] B
) x  =  ( y  +  T ) } )
7675mpteq1d 4738 . . . . . . 7  |-  ( ph  ->  ( w  e.  ( ( A  +  T
) [,] ( B  +  T ) ) 
|->  ( F `  (
w  -  T ) ) )  =  ( w  e.  { x  e.  CC  |  E. y  e.  ( A [,] B
) x  =  ( y  +  T ) }  |->  ( F `  ( w  -  T
) ) ) )
7774, 76syl5eq 2668 . . . . . 6  |-  ( ph  ->  ( x  e.  ( ( A  +  T
) [,] ( B  +  T ) ) 
|->  ( F `  (
x  -  T ) ) )  =  ( w  e.  { x  e.  CC  |  E. y  e.  ( A [,] B
) x  =  ( y  +  T ) }  |->  ( F `  ( w  -  T
) ) ) )
7842, 77syl5eq 2668 . . . . 5  |-  ( ph  ->  G  =  ( w  e.  { x  e.  CC  |  E. y  e.  ( A [,] B
) x  =  ( y  +  T ) }  |->  ( F `  ( w  -  T
) ) ) )
79 eqeq1 2626 . . . . . . . . . 10  |-  ( w  =  x  ->  (
w  =  ( z  +  T )  <->  x  =  ( z  +  T
) ) )
8079rexbidv 3052 . . . . . . . . 9  |-  ( w  =  x  ->  ( E. z  e.  ( A [,] B ) w  =  ( z  +  T )  <->  E. z  e.  ( A [,] B
) x  =  ( z  +  T ) ) )
81 oveq1 6657 . . . . . . . . . . 11  |-  ( z  =  y  ->  (
z  +  T )  =  ( y  +  T ) )
8281eqeq2d 2632 . . . . . . . . . 10  |-  ( z  =  y  ->  (
x  =  ( z  +  T )  <->  x  =  ( y  +  T
) ) )
8382cbvrexv 3172 . . . . . . . . 9  |-  ( E. z  e.  ( A [,] B ) x  =  ( z  +  T )  <->  E. y  e.  ( A [,] B
) x  =  ( y  +  T ) )
8480, 83syl6bb 276 . . . . . . . 8  |-  ( w  =  x  ->  ( E. z  e.  ( A [,] B ) w  =  ( z  +  T )  <->  E. y  e.  ( A [,] B
) x  =  ( y  +  T ) ) )
8584cbvrabv 3199 . . . . . . 7  |-  { w  e.  CC  |  E. z  e.  ( A [,] B
) w  =  ( z  +  T ) }  =  { x  e.  CC  |  E. y  e.  ( A [,] B
) x  =  ( y  +  T ) }
8685eqcomi 2631 . . . . . 6  |-  { x  e.  CC  |  E. y  e.  ( A [,] B
) x  =  ( y  +  T ) }  =  { w  e.  CC  |  E. z  e.  ( A [,] B
) w  =  ( z  +  T ) }
87 eqid 2622 . . . . . 6  |-  ( w  e.  { x  e.  CC  |  E. y  e.  ( A [,] B
) x  =  ( y  +  T ) }  |->  ( F `  ( w  -  T
) ) )  =  ( w  e.  {
x  e.  CC  |  E. y  e.  ( A [,] B ) x  =  ( y  +  T ) }  |->  ( F `  ( w  -  T ) ) )
8852, 24, 86, 10, 87cncfshift 40087 . . . . 5  |-  ( ph  ->  ( w  e.  {
x  e.  CC  |  E. y  e.  ( A [,] B ) x  =  ( y  +  T ) }  |->  ( F `  ( w  -  T ) ) )  e.  ( { x  e.  CC  |  E. y  e.  ( A [,] B ) x  =  ( y  +  T ) } -cn-> CC ) )
8978, 88eqeltrd 2701 . . . 4  |-  ( ph  ->  G  e.  ( { x  e.  CC  |  E. y  e.  ( A [,] B ) x  =  ( y  +  T ) } -cn-> CC ) )
9043feqmptd 6249 . . . 4  |-  ( ph  ->  G  =  ( x  e.  ( ( A  +  T ) [,] ( B  +  T
) )  |->  ( G `
 x ) ) )
9175eqcomd 2628 . . . . 5  |-  ( ph  ->  { x  e.  CC  |  E. y  e.  ( A [,] B ) x  =  ( y  +  T ) }  =  ( ( A  +  T ) [,] ( B  +  T
) ) )
9291oveq1d 6665 . . . 4  |-  ( ph  ->  ( { x  e.  CC  |  E. y  e.  ( A [,] B
) x  =  ( y  +  T ) } -cn-> CC )  =  ( ( ( A  +  T ) [,] ( B  +  T )
) -cn-> CC ) )
9389, 90, 923eltr3d 2715 . . 3  |-  ( ph  ->  ( x  e.  ( ( A  +  T
) [,] ( B  +  T ) ) 
|->  ( G `  x
) )  e.  ( ( ( A  +  T ) [,] ( B  +  T )
) -cn-> CC ) )
94 ioosscn 39716 . . . . . 6  |-  ( A (,) B )  C_  CC
9594a1i 11 . . . . 5  |-  ( ph  ->  ( A (,) B
)  C_  CC )
96 1cnd 10056 . . . . 5  |-  ( ph  ->  1  e.  CC )
97 ssid 3624 . . . . . 6  |-  CC  C_  CC
9897a1i 11 . . . . 5  |-  ( ph  ->  CC  C_  CC )
9995, 96, 98constcncfg 40084 . . . 4  |-  ( ph  ->  ( y  e.  ( A (,) B ) 
|->  1 )  e.  ( ( A (,) B
) -cn-> CC ) )
100 fconstmpt 5163 . . . . 5  |-  ( ( A (,) B )  X.  { 1 } )  =  ( y  e.  ( A (,) B )  |->  1 )
101 ioombl 23333 . . . . . . 7  |-  ( A (,) B )  e. 
dom  vol
102101a1i 11 . . . . . 6  |-  ( ph  ->  ( A (,) B
)  e.  dom  vol )
103 ioovolcl 23338 . . . . . . 7  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( vol `  ( A (,) B ) )  e.  RR )
1041, 2, 103syl2anc 693 . . . . . 6  |-  ( ph  ->  ( vol `  ( A (,) B ) )  e.  RR )
105 iblconst 23584 . . . . . 6  |-  ( ( ( A (,) B
)  e.  dom  vol  /\  ( vol `  ( A (,) B ) )  e.  RR  /\  1  e.  CC )  ->  (
( A (,) B
)  X.  { 1 } )  e.  L^1 )
106102, 104, 96, 105syl3anc 1326 . . . . 5  |-  ( ph  ->  ( ( A (,) B )  X.  {
1 } )  e.  L^1 )
107100, 106syl5eqelr 2706 . . . 4  |-  ( ph  ->  ( y  e.  ( A (,) B ) 
|->  1 )  e.  L^1 )
10899, 107elind 3798 . . 3  |-  ( ph  ->  ( y  e.  ( A (,) B ) 
|->  1 )  e.  ( ( ( A (,) B ) -cn-> CC )  i^i  L^1 ) )
10950resmptd 5452 . . . . . . 7  |-  ( ph  ->  ( ( y  e.  RR  |->  ( y  +  T ) )  |`  ( A [,] B ) )  =  ( y  e.  ( A [,] B )  |->  ( y  +  T ) ) )
110109eqcomd 2628 . . . . . 6  |-  ( ph  ->  ( y  e.  ( A [,] B ) 
|->  ( y  +  T
) )  =  ( ( y  e.  RR  |->  ( y  +  T
) )  |`  ( A [,] B ) ) )
111110oveq2d 6666 . . . . 5  |-  ( ph  ->  ( RR  _D  (
y  e.  ( A [,] B )  |->  ( y  +  T ) ) )  =  ( RR  _D  ( ( y  e.  RR  |->  ( y  +  T ) )  |`  ( A [,] B ) ) ) )
11251a1i 11 . . . . . 6  |-  ( ph  ->  RR  C_  CC )
113112sselda 3603 . . . . . . . 8  |-  ( (
ph  /\  y  e.  RR )  ->  y  e.  CC )
11424adantr 481 . . . . . . . 8  |-  ( (
ph  /\  y  e.  RR )  ->  T  e.  CC )
115113, 114addcld 10059 . . . . . . 7  |-  ( (
ph  /\  y  e.  RR )  ->  ( y  +  T )  e.  CC )
116 eqid 2622 . . . . . . 7  |-  ( y  e.  RR  |->  ( y  +  T ) )  =  ( y  e.  RR  |->  ( y  +  T ) )
117115, 116fmptd 6385 . . . . . 6  |-  ( ph  ->  ( y  e.  RR  |->  ( y  +  T
) ) : RR --> CC )
118 ssid 3624 . . . . . . 7  |-  RR  C_  RR
119118a1i 11 . . . . . 6  |-  ( ph  ->  RR  C_  RR )
120 eqid 2622 . . . . . . 7  |-  ( TopOpen ` fld )  =  ( TopOpen ` fld )
121120tgioo2 22606 . . . . . . 7  |-  ( topGen ` 
ran  (,) )  =  ( ( TopOpen ` fld )t  RR )
122120, 121dvres 23675 . . . . . 6  |-  ( ( ( RR  C_  CC  /\  ( y  e.  RR  |->  ( y  +  T
) ) : RR --> CC )  /\  ( RR  C_  RR  /\  ( A [,] B )  C_  RR ) )  ->  ( RR  _D  ( ( y  e.  RR  |->  ( y  +  T ) )  |`  ( A [,] B
) ) )  =  ( ( RR  _D  ( y  e.  RR  |->  ( y  +  T
) ) )  |`  ( ( int `  ( topGen `
 ran  (,) )
) `  ( A [,] B ) ) ) )
123112, 117, 119, 50, 122syl22anc 1327 . . . . 5  |-  ( ph  ->  ( RR  _D  (
( y  e.  RR  |->  ( y  +  T
) )  |`  ( A [,] B ) ) )  =  ( ( RR  _D  ( y  e.  RR  |->  ( y  +  T ) ) )  |`  ( ( int `  ( topGen `  ran  (,) ) ) `  ( A [,] B ) ) ) )
124111, 123eqtrd 2656 . . . 4  |-  ( ph  ->  ( RR  _D  (
y  e.  ( A [,] B )  |->  ( y  +  T ) ) )  =  ( ( RR  _D  (
y  e.  RR  |->  ( y  +  T ) ) )  |`  (
( int `  ( topGen `
 ran  (,) )
) `  ( A [,] B ) ) ) )
125 iccntr 22624 . . . . . 6  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( ( int `  ( topGen `
 ran  (,) )
) `  ( A [,] B ) )  =  ( A (,) B
) )
1261, 2, 125syl2anc 693 . . . . 5  |-  ( ph  ->  ( ( int `  ( topGen `
 ran  (,) )
) `  ( A [,] B ) )  =  ( A (,) B
) )
127126reseq2d 5396 . . . 4  |-  ( ph  ->  ( ( RR  _D  ( y  e.  RR  |->  ( y  +  T
) ) )  |`  ( ( int `  ( topGen `
 ran  (,) )
) `  ( A [,] B ) ) )  =  ( ( RR 
_D  ( y  e.  RR  |->  ( y  +  T ) ) )  |`  ( A (,) B
) ) )
128 reelprrecn 10028 . . . . . . . 8  |-  RR  e.  { RR ,  CC }
129128a1i 11 . . . . . . 7  |-  ( ph  ->  RR  e.  { RR ,  CC } )
130 1cnd 10056 . . . . . . 7  |-  ( (
ph  /\  y  e.  RR )  ->  1  e.  CC )
131129dvmptid 23720 . . . . . . 7  |-  ( ph  ->  ( RR  _D  (
y  e.  RR  |->  y ) )  =  ( y  e.  RR  |->  1 ) )
132 0cnd 10033 . . . . . . 7  |-  ( (
ph  /\  y  e.  RR )  ->  0  e.  CC )
133129, 24dvmptc 23721 . . . . . . 7  |-  ( ph  ->  ( RR  _D  (
y  e.  RR  |->  T ) )  =  ( y  e.  RR  |->  0 ) )
134129, 113, 130, 131, 114, 132, 133dvmptadd 23723 . . . . . 6  |-  ( ph  ->  ( RR  _D  (
y  e.  RR  |->  ( y  +  T ) ) )  =  ( y  e.  RR  |->  ( 1  +  0 ) ) )
135134reseq1d 5395 . . . . 5  |-  ( ph  ->  ( ( RR  _D  ( y  e.  RR  |->  ( y  +  T
) ) )  |`  ( A (,) B ) )  =  ( ( y  e.  RR  |->  ( 1  +  0 ) )  |`  ( A (,) B ) ) )
136 ioossre 12235 . . . . . . 7  |-  ( A (,) B )  C_  RR
137136a1i 11 . . . . . 6  |-  ( ph  ->  ( A (,) B
)  C_  RR )
138137resmptd 5452 . . . . 5  |-  ( ph  ->  ( ( y  e.  RR  |->  ( 1  +  0 ) )  |`  ( A (,) B ) )  =  ( y  e.  ( A (,) B )  |->  ( 1  +  0 ) ) )
139 1p0e1 11133 . . . . . . 7  |-  ( 1  +  0 )  =  1
140139mpteq2i 4741 . . . . . 6  |-  ( y  e.  ( A (,) B )  |->  ( 1  +  0 ) )  =  ( y  e.  ( A (,) B
)  |->  1 )
141140a1i 11 . . . . 5  |-  ( ph  ->  ( y  e.  ( A (,) B ) 
|->  ( 1  +  0 ) )  =  ( y  e.  ( A (,) B )  |->  1 ) )
142135, 138, 1413eqtrd 2660 . . . 4  |-  ( ph  ->  ( ( RR  _D  ( y  e.  RR  |->  ( y  +  T
) ) )  |`  ( A (,) B ) )  =  ( y  e.  ( A (,) B )  |->  1 ) )
143124, 127, 1423eqtrd 2660 . . 3  |-  ( ph  ->  ( RR  _D  (
y  e.  ( A [,] B )  |->  ( y  +  T ) ) )  =  ( y  e.  ( A (,) B )  |->  1 ) )
144 fveq2 6191 . . 3  |-  ( x  =  ( y  +  T )  ->  ( G `  x )  =  ( G `  ( y  +  T
) ) )
145 oveq1 6657 . . 3  |-  ( y  =  A  ->  (
y  +  T )  =  ( A  +  T ) )
146 oveq1 6657 . . 3  |-  ( y  =  B  ->  (
y  +  T )  =  ( B  +  T ) )
1471, 2, 5, 71, 93, 108, 143, 144, 145, 146, 8, 9itgsubsticc 40192 . 2  |-  ( ph  ->  S__ [ ( A  +  T )  -> 
( B  +  T
) ] ( G `
 x )  _d x  =  S__ [ A  ->  B ] ( ( G `  (
y  +  T ) )  x.  1 )  _d y )
1485ditgpos 23620 . . 3  |-  ( ph  ->  S__ [ A  ->  B ] ( ( G `
 ( y  +  T ) )  x.  1 )  _d y  =  S. ( A (,) B ) ( ( G `  (
y  +  T ) )  x.  1 )  _d y )
14943adantr 481 . . . . . 6  |-  ( (
ph  /\  y  e.  ( A [,] B ) )  ->  G :
( ( A  +  T ) [,] ( B  +  T )
) --> CC )
150149, 70ffvelrnd 6360 . . . . 5  |-  ( (
ph  /\  y  e.  ( A [,] B ) )  ->  ( G `  ( y  +  T
) )  e.  CC )
151 1cnd 10056 . . . . 5  |-  ( (
ph  /\  y  e.  ( A [,] B ) )  ->  1  e.  CC )
152150, 151mulcld 10060 . . . 4  |-  ( (
ph  /\  y  e.  ( A [,] B ) )  ->  ( ( G `  ( y  +  T ) )  x.  1 )  e.  CC )
1531, 2, 152itgioo 23582 . . 3  |-  ( ph  ->  S. ( A (,) B ) ( ( G `  ( y  +  T ) )  x.  1 )  _d y  =  S. ( A [,] B ) ( ( G `  ( y  +  T
) )  x.  1 )  _d y )
154 oveq1 6657 . . . . . . 7  |-  ( y  =  x  ->  (
y  +  T )  =  ( x  +  T ) )
155154fveq2d 6195 . . . . . 6  |-  ( y  =  x  ->  ( G `  ( y  +  T ) )  =  ( G `  (
x  +  T ) ) )
156155oveq1d 6665 . . . . 5  |-  ( y  =  x  ->  (
( G `  (
y  +  T ) )  x.  1 )  =  ( ( G `
 ( x  +  T ) )  x.  1 ) )
157156cbvitgv 23543 . . . 4  |-  S. ( A [,] B ) ( ( G `  ( y  +  T
) )  x.  1 )  _d y  =  S. ( A [,] B ) ( ( G `  ( x  +  T ) )  x.  1 )  _d x
15843adantr 481 . . . . . . . 8  |-  ( (
ph  /\  x  e.  ( A [,] B ) )  ->  G :
( ( A  +  T ) [,] ( B  +  T )
) --> CC )
1598adantr 481 . . . . . . . . 9  |-  ( (
ph  /\  x  e.  ( A [,] B ) )  ->  ( A  +  T )  e.  RR )
1609adantr 481 . . . . . . . . 9  |-  ( (
ph  /\  x  e.  ( A [,] B ) )  ->  ( B  +  T )  e.  RR )
16150sselda 3603 . . . . . . . . . 10  |-  ( (
ph  /\  x  e.  ( A [,] B ) )  ->  x  e.  RR )
1624adantr 481 . . . . . . . . . 10  |-  ( (
ph  /\  x  e.  ( A [,] B ) )  ->  T  e.  RR )
163161, 162readdcld 10069 . . . . . . . . 9  |-  ( (
ph  /\  x  e.  ( A [,] B ) )  ->  ( x  +  T )  e.  RR )
1641adantr 481 . . . . . . . . . 10  |-  ( (
ph  /\  x  e.  ( A [,] B ) )  ->  A  e.  RR )
1651rexrd 10089 . . . . . . . . . . . 12  |-  ( ph  ->  A  e.  RR* )
166165adantr 481 . . . . . . . . . . 11  |-  ( (
ph  /\  x  e.  ( A [,] B ) )  ->  A  e.  RR* )
1672rexrd 10089 . . . . . . . . . . . 12  |-  ( ph  ->  B  e.  RR* )
168167adantr 481 . . . . . . . . . . 11  |-  ( (
ph  /\  x  e.  ( A [,] B ) )  ->  B  e.  RR* )
169 simpr 477 . . . . . . . . . . 11  |-  ( (
ph  /\  x  e.  ( A [,] B ) )  ->  x  e.  ( A [,] B ) )
170 iccgelb 12230 . . . . . . . . . . 11  |-  ( ( A  e.  RR*  /\  B  e.  RR*  /\  x  e.  ( A [,] B
) )  ->  A  <_  x )
171166, 168, 169, 170syl3anc 1326 . . . . . . . . . 10  |-  ( (
ph  /\  x  e.  ( A [,] B ) )  ->  A  <_  x )
172164, 161, 162, 171leadd1dd 10641 . . . . . . . . 9  |-  ( (
ph  /\  x  e.  ( A [,] B ) )  ->  ( A  +  T )  <_  (
x  +  T ) )
1732adantr 481 . . . . . . . . . 10  |-  ( (
ph  /\  x  e.  ( A [,] B ) )  ->  B  e.  RR )
174 iccleub 12229 . . . . . . . . . . 11  |-  ( ( A  e.  RR*  /\  B  e.  RR*  /\  x  e.  ( A [,] B
) )  ->  x  <_  B )
175166, 168, 169, 174syl3anc 1326 . . . . . . . . . 10  |-  ( (
ph  /\  x  e.  ( A [,] B ) )  ->  x  <_  B )
176161, 173, 162, 175leadd1dd 10641 . . . . . . . . 9  |-  ( (
ph  /\  x  e.  ( A [,] B ) )  ->  ( x  +  T )  <_  ( B  +  T )
)
177159, 160, 163, 172, 176eliccd 39726 . . . . . . . 8  |-  ( (
ph  /\  x  e.  ( A [,] B ) )  ->  ( x  +  T )  e.  ( ( A  +  T
) [,] ( B  +  T ) ) )
178158, 177ffvelrnd 6360 . . . . . . 7  |-  ( (
ph  /\  x  e.  ( A [,] B ) )  ->  ( G `  ( x  +  T
) )  e.  CC )
179178mulid1d 10057 . . . . . 6  |-  ( (
ph  /\  x  e.  ( A [,] B ) )  ->  ( ( G `  ( x  +  T ) )  x.  1 )  =  ( G `  ( x  +  T ) ) )
18042, 74eqtri 2644 . . . . . . . 8  |-  G  =  ( w  e.  ( ( A  +  T
) [,] ( B  +  T ) ) 
|->  ( F `  (
w  -  T ) ) )
181180a1i 11 . . . . . . 7  |-  ( (
ph  /\  x  e.  ( A [,] B ) )  ->  G  =  ( w  e.  (
( A  +  T
) [,] ( B  +  T ) ) 
|->  ( F `  (
w  -  T ) ) ) )
182 oveq1 6657 . . . . . . . . 9  |-  ( w  =  ( x  +  T )  ->  (
w  -  T )  =  ( ( x  +  T )  -  T ) )
183182fveq2d 6195 . . . . . . . 8  |-  ( w  =  ( x  +  T )  ->  ( F `  ( w  -  T ) )  =  ( F `  (
( x  +  T
)  -  T ) ) )
184161recnd 10068 . . . . . . . . . 10  |-  ( (
ph  /\  x  e.  ( A [,] B ) )  ->  x  e.  CC )
18524adantr 481 . . . . . . . . . 10  |-  ( (
ph  /\  x  e.  ( A [,] B ) )  ->  T  e.  CC )
186184, 185pncand 10393 . . . . . . . . 9  |-  ( (
ph  /\  x  e.  ( A [,] B ) )  ->  ( (
x  +  T )  -  T )  =  x )
187186fveq2d 6195 . . . . . . . 8  |-  ( (
ph  /\  x  e.  ( A [,] B ) )  ->  ( F `  ( ( x  +  T )  -  T
) )  =  ( F `  x ) )
188183, 187sylan9eqr 2678 . . . . . . 7  |-  ( ( ( ph  /\  x  e.  ( A [,] B
) )  /\  w  =  ( x  +  T ) )  -> 
( F `  (
w  -  T ) )  =  ( F `
 x ) )
18912ffvelrnda 6359 . . . . . . 7  |-  ( (
ph  /\  x  e.  ( A [,] B ) )  ->  ( F `  x )  e.  CC )
190181, 188, 177, 189fvmptd 6288 . . . . . 6  |-  ( (
ph  /\  x  e.  ( A [,] B ) )  ->  ( G `  ( x  +  T
) )  =  ( F `  x ) )
191179, 190eqtrd 2656 . . . . 5  |-  ( (
ph  /\  x  e.  ( A [,] B ) )  ->  ( ( G `  ( x  +  T ) )  x.  1 )  =  ( F `  x ) )
192191itgeq2dv 23548 . . . 4  |-  ( ph  ->  S. ( A [,] B ) ( ( G `  ( x  +  T ) )  x.  1 )  _d x  =  S. ( A [,] B ) ( F `  x
)  _d x )
193157, 192syl5eq 2668 . . 3  |-  ( ph  ->  S. ( A [,] B ) ( ( G `  ( y  +  T ) )  x.  1 )  _d y  =  S. ( A [,] B ) ( F `  x
)  _d x )
194148, 153, 1933eqtrd 2660 . 2  |-  ( ph  ->  S__ [ A  ->  B ] ( ( G `
 ( y  +  T ) )  x.  1 )  _d y  =  S. ( A [,] B ) ( F `  x )  _d x )
19546, 147, 1943eqtrd 2660 1  |-  ( ph  ->  S. ( ( A  +  T ) [,] ( B  +  T
) ) ( G `
 x )  _d x  =  S. ( A [,] B ) ( F `  x
)  _d x )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    /\ wa 384    /\ w3a 1037    = wceq 1483    e. wcel 1990   E.wrex 2913   {crab 2916    C_ wss 3574   {csn 4177   {cpr 4179   class class class wbr 4653    |-> cmpt 4729    X. cxp 5112   dom cdm 5114   ran crn 5115    |` cres 5116   -->wf 5884   ` cfv 5888  (class class class)co 6650   CCcc 9934   RRcr 9935   0cc0 9936   1c1 9937    + caddc 9939    x. cmul 9941   RR*cxr 10073    <_ cle 10075    - cmin 10266   RR+crp 11832   (,)cioo 12175   [,]cicc 12178   TopOpenctopn 16082   topGenctg 16098  ℂfldccnfld 19746   intcnt 20821   -cn->ccncf 22679   volcvol 23232   L^1cibl 23386   S.citg 23387   S__cdit 23610    _D cdv 23627
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-inf2 8538  ax-cc 9257  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014  ax-addf 10015  ax-mulf 10016
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-fal 1489  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-iin 4523  df-disj 4621  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-se 5074  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-isom 5897  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-of 6897  df-ofr 6898  df-om 7066  df-1st 7168  df-2nd 7169  df-supp 7296  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-2o 7561  df-oadd 7564  df-omul 7565  df-er 7742  df-map 7859  df-pm 7860  df-ixp 7909  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-fsupp 8276  df-fi 8317  df-sup 8348  df-inf 8349  df-oi 8415  df-card 8765  df-acn 8768  df-cda 8990  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-2 11079  df-3 11080  df-4 11081  df-5 11082  df-6 11083  df-7 11084  df-8 11085  df-9 11086  df-n0 11293  df-z 11378  df-dec 11494  df-uz 11688  df-q 11789  df-rp 11833  df-xneg 11946  df-xadd 11947  df-xmul 11948  df-ioo 12179  df-ioc 12180  df-ico 12181  df-icc 12182  df-fz 12327  df-fzo 12466  df-fl 12593  df-mod 12669  df-seq 12802  df-exp 12861  df-hash 13118  df-cj 13839  df-re 13840  df-im 13841  df-sqrt 13975  df-abs 13976  df-limsup 14202  df-clim 14219  df-rlim 14220  df-sum 14417  df-struct 15859  df-ndx 15860  df-slot 15861  df-base 15863  df-sets 15864  df-ress 15865  df-plusg 15954  df-mulr 15955  df-starv 15956  df-sca 15957  df-vsca 15958  df-ip 15959  df-tset 15960  df-ple 15961  df-ds 15964  df-unif 15965  df-hom 15966  df-cco 15967  df-rest 16083  df-topn 16084  df-0g 16102  df-gsum 16103  df-topgen 16104  df-pt 16105  df-prds 16108  df-xrs 16162  df-qtop 16167  df-imas 16168  df-xps 16170  df-mre 16246  df-mrc 16247  df-acs 16249  df-mgm 17242  df-sgrp 17284  df-mnd 17295  df-submnd 17336  df-mulg 17541  df-cntz 17750  df-cmn 18195  df-psmet 19738  df-xmet 19739  df-met 19740  df-bl 19741  df-mopn 19742  df-fbas 19743  df-fg 19744  df-cnfld 19747  df-top 20699  df-topon 20716  df-topsp 20737  df-bases 20750  df-cld 20823  df-ntr 20824  df-cls 20825  df-nei 20902  df-lp 20940  df-perf 20941  df-cn 21031  df-cnp 21032  df-haus 21119  df-cmp 21190  df-tx 21365  df-hmeo 21558  df-fil 21650  df-fm 21742  df-flim 21743  df-flf 21744  df-xms 22125  df-ms 22126  df-tms 22127  df-cncf 22681  df-ovol 23233  df-vol 23234  df-mbf 23388  df-itg1 23389  df-itg2 23390  df-ibl 23391  df-itg 23392  df-0p 23437  df-ditg 23611  df-limc 23630  df-dv 23631
This theorem is referenced by:  fourierdlem81  40404
  Copyright terms: Public domain W3C validator